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A Localized Primal-Dual Method for
Centralized/Decentralized Federated

Learning Robust to Data Heterogeneity
Iifan Tyou , Member, IEEE, Tomoya Murata , Takumi Fukami , Yuki Takezawa ,

and Kenta Niwa , Senior Member, IEEE

Abstract—Generalized Edge-Consensus Learning (G-ECL) is
a primal-dual method to solve loss-sum minimization problems.
We propose Local Generalized Edge-Consensus Learning (Lo-
cal G-ECL) as an extension of previous G-ECL, aiming to be a
decentralized/centralized FL algorithm robust to heterogeneous
data sets with a large number of local updates. Our contributions
are as follows: (C1) success in theoretical gradient norm conver-
gence analysis nearly independently of data heterogeneity, and
(C2) equivalency proof between our primal-dual Local G-ECL
and a pure primal Stochastic Controlled Averaging (SCAFFOLD)
algorithm in centralized settings, where the difference in the initial
local model for each round is ignored. Numerical experiments using
image classification tests validated that Local G-ECL is robust to
heterogeneous data with a large number of local updates.

Index Terms—Data heterogeneity, federated learning, localized
learning, primal-dual optimization.

I. INTRODUCTION

F EDERATED Learning (FL) research [1], [2] has flourished
for secure machine learning via message passing between

user nodes without exchanging sensitive data sets. FL is gaining
attention as a method for training models across multiple or-
ganizations, including hospitals, which cannot share data due
to personal and confidential information. Many studies have
been published for improving the accuracy and model consensus
speed, e.g., [3], [4], [5]. Initially, centralized FL was mainstream,
i.e., each worker updates their local model variable using a
local data set, and the central server averages aggregated local
model variables. Meanwhile, decentralized FL consisting of
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peer-to-peer (P2P) workers has also been widely used due to its
flexible network topology and elimination of hierarchy among
workers. In recent centralized and decentralized FL studies, a
standard problem setting has been that the data sets held by
each worker are statistically heterogeneous and the number of
inner local updates is large (K > 1) for sparse communication.
Hence, this study aims to construct decentralized/centralized FL
algorithms robust to data heterogeneity with local updates.

Simple FL algorithms are FedAvg [6] for centralized FL and
Gossip (also referred to as Local Decentralized Stochastic Gradi-
ent Descent (SGD)) [7], [8], [9], [10], [11] for decentralized FL;
specifically, local model updates and averaging of aggregated
model variables are alternatingly performed. However, these
FL algorithms are not robust to data heterogeneity with local
updates, i.e., they often do not reach the global minimum due
to large gradient variance among workers. This is theoretically
shown in for example [12], [13] that gradient norm conver-
gence is guaranteed under the assumption to restrict the differ-
ence between local gradients and global gradient (an example
form is given by Assumption 5: bounded gradient similarity in
Section IV).

To construct FL algorithms robust to data heterogeneity with
a large number of local updates, two approaches are applicable.
The first approach is a pure primal method including stochas-
tic variance reduction [16], [17], [18], [19] in local updates,
such as Stochastic Controlled Averaging (SCAFFOLD) [12]
and MIME [20] for centralized FL, and decentralized SCAF-
FOLD [14]. In their model update, local stochastic gradient is
corrected by using control variates to reduce the variance of
stochastic gradients of local workers. In centralized settings, the
bounded gradient similarity assumption, often required for local
algorithms without stochastic variance reduction, is not neces-
sary for SCAFFOLD’s convergence analysis, and it has been
reported that SCAFFOLD is indeed robust to data heterogeneity
in numerical results. On the other hand, in decentralized settings,
the convergence analysis of decentralized SCAFFOLD requires
the gradient similarity assumption, although the numerical re-
sults suggest it is robust to data heterogeneity. Hence, the theo-
retical explanation of the robustness toward data heterogeneity
of decentralized SCAFFOLD is still an open problem.

The second approach is a primal-dual method to solve loss-
sum minimization while imposing linear constraints to make
local model variables identical. Representative algorithms are
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TABLE I
COMPARISON OF THE COMMUNICATION COMPLEXITIES OF THE SEVERAL CENTRALIZED AND DECENTRALIZED FL ALGORITHMS

the distributed Alternating Direction Method of Multiplier (dis-
tributed ADMM) [21], FedSplit [22], the Primal-Dual Method
of Multipliers (PDMM) for decentralized FL [23], [24], and
its extension Edge-Consensus Learning (ECL) [25], [26]. In
their model update, local stochastic gradient is corrected by
using dual variables originated from linear constraints. A variant
of ECL called Generalized ECL (G-ECL) has recently been
proposed [15]. In G-ECL, the update rules of ECL are refor-
mulated to explicitly include the concept of mixing matrix (see
Assumption 1) and it can be equivalently formulated as Gradient
Tracking [27], [28]. Its convergence analysis for non-convex
loss functions without using a bounded gradient similarity as-
sumption has been rigorously proven. However, multiple local
updates are not applicable to the algorithm, and local drifting
due to multiple local updates is not theoretically considered.

These two approaches, namely primal stochastic variance re-
duction methods and primal-dual methods, resemble each other
in that a local stochastic gradient is corrected by using auxiliary
variables (e.g., control variates, dual variables). This correction
is important to reduce gradient drift due to data heterogeneity
with a large number of local updates. Their connection is first
shown in ECL with Implicit Stochastic Variance Reduction
(ECL-ISVR) [26], i.e., there exists an optimal point to connect
a pure primal stochastic variance reduction and primal-dual
formalism. However, its algorithm form is not equivalent to
existing stochastic variance reduction-based FL algorithms (e.g.,
SCAFFOLD). Furthermore, a strong approximated assumption
is used in its convergence analysis. Hence, the relationship
between a primal-dual approach and a pure primal approach
is still unclear.

In this paper, we propose Local G-ECL for central-
ized/decentralized FL robust to data heterogeneity with a large
number of local updates as a variant of the existing primal-dual
method (G-ECL). Our contribution is summarized as follows:

(C1) Local G-ECL and its convergence analysis: We suc-
ceeded in convergence analysis of a localized variant of G-ECL,

namely Local G-ECL, where the algorithm and its analysis
are shown in Subsection III-A and Section IV, respectively.
The obtained analytical results are summarized in Table I. The
Local G-ECL’s convergence rate1 associated with the gradient
norm is nearly independent of data heterogeneity inheriting the
properties of G-ECL, and it has evolved in that it takes the
effect of a large number of local updates (K > 1) into account.
The robustness to data heterogeneity has not been shown in the
previous analysis of decentralized SCAFFOLD, and has been
only empirically justified. Compared with G-ECL, by increasing
the number of local updates K in Local G-ECL, the effect of
stochastic gradient drift will be relaxed.

(C2) Clarification of the connection between Local G-ECL
and SCAFFOLD: We have succeeded in equivalency proof of
primal-dual Local G-ECL and pure primal SCAFFOLD for
centralized settings (Subsec. III-B). Local G-ECL’s formulation
is started from decentralized settings in Subsec. III-A. When
we perform it over a fully-connected network topology, its
equivalent formalism can also be performed in a centralized
FL manner (details are noted in Subsec. III-B). Interestingly,
we found that the update rules of the primal-dual Local G-ECL
and the pure primal SCAFFOLD are equivalent in centralized
settings, ignoring differences in the initial points of the local
updates. This equivalency suggests that pure primal stochastic
variance reduction-based methods may be naturally derived
from the primal-dual formalism to solve constrained loss-sum
minimization problems.

II. RELATED WORKS

In this section, we first summarize some representative sym-
bols and notations used throughout this paper. Then, the most

1In Table I, convergence rates for Local G-ECL with two initialization
conditions (with/without warm-start) are introduced (See Corollary 5 and 6 in
Section IV). With warm-start initialization, the effect of data heterogeneity can
be mostly ignored.
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related previous methods are illustrated to clarify their connec-
tion to our proposed method described in Section III. In Section
II-A, as a pure primal method, SCAFFOLD is explained. In
Section II-B, as a primal-dual method, G-ECL is illustrated. In
Section II-C, the remaining issues of the previous methods are
described. In the next section, we will propose Local G-ECL,
which is a localized variant of G-ECL, and a connection be-
tween pure primal SCAFFOLD and primal-dual Local G-ECL
is discussed.

Symbols and Notation
� n : the number of workers.
� Ni: the index set of the neighborhood of worker i.
� N+

i : Ni ∪ {i}.
� N : the index set of all the workers.
� W : mixing matrix of the decentralized topology.
� fi: local objective function of worker i.
� f : objective function, which is the mean of {fi}ni=1.
� Di: the local data distribution of worker i.
� xi: local model parameter of worker i.
� x̃i: aggregated model parameter using the model parame-

ters of N+
i .

� ci, νi|·, ν̌i|·, λi: gradient correction variables or dual vari-
ables of worker i.

� ∇Fi(·, ξi): stochastic gradient using local sample ξi of
worker i.

� η: step size.
� K: the number of inner local updates.
� R: the number of communication rounds.

A. Stochastic Controlled Averaging (SCAFFOLD)

As a pure primal method, SCAFFOLD for centralized set-
tings is briefly explained. Let us consider the following n local
worker’s loss-sum minimization problem with respect to the
primal model variable x as

min
x

1

n

n∑
i=1

fi(x), where fi(x) := Eξi∼Di
[Fi(x; ξi)], (1)

fi is the risk function on the data set Di held by the i-th local
worker, and ξi ∼ Di denotes the stochastic data sampling in each
local worker. Each local worker is allowed to have statistically
heterogeneous data sets, i.e., Di �= Dj when i �= j.

In SCAFFOLD, the problem (1) is solved in a centralized FL
manner. Specifically, (i) the average of model variables aggre-
gated on a central server and (ii) stochastic variance reduction-
based local updates of xi for K(≥ 1) times using local data set
Di are alternately repeated. In principle, the gradient drift in
each local worker due to data heterogeneity with local updates
can be corrected by using approximated local full-gradient
ci ≈ ∇fi(xi) and global full-gradient c̃ = 1

n

∑n
j=1 cj . When

using SCAFFOLD (option II [12]), update rules are given by

[Central server]

x̃(r+1) =
1

n

n∑
j=1

x
(r+1)
j , c̃(r+1) =

1

n

n∑
j=1

c
(r+1)
j ,

[Local worker]i

x
(r),k+1
i = x

(r),k
i − η(∇Fi(x

(r),k
i ; ξ

(r),k
i )− c(r)i + c̃(r)),

c
(r+1)
i = c

(r)
i − c̃(r) +

1

Kη
(x̃(r) − x(r+1)

i ), (2)

where r ∈ {1, . . . , R} and k ∈ {1, . . . ,K} denote the index of
outer communication rounds and that of inner local updates re-
spectively, η(> 0) is the learning rate, and∇Fi(x

(r)
i ; ξi) denotes

stochastic gradient using mini-batch samples ξi ∼ Di. In (2),
initial points of the central server and local workers are given by
x
(r+1)
i = x

(r),K
i and x(r),0i = x̃(r), respectively.

Recently, SCAFFOLD is extended to be performed in de-
centralized settings (decentralized SCAFFOLD [14]). Since n
workers are then connected by P2P relationship, each local
worker is allowed to update the local model variable xi without
using computation on the central server.

B. Generalized Edge-Consensus Learning (G-ECL)

Another approach to solving the problem (1) for both central-
ized and decentralized FL is primal-dual methods. The original
problem (1) can be rewritten by a loss-sum minimization with
constraints regarding the local model variables {xi}ni=1:

min
{xi}ni=1

1

n

n∑
i=1

fi(xi) s.t. xi = xj (∀i ∈ N , j ∈ Ni), (3)

whereN := {1, . . . , n},Ni denotes the index set of the i-th local
worker’s connection (Ni is regarded asN for centralized cases).
To solve (3) by alternately repeating (i) synchronous message
passing between connected workers and (ii) inner local updates
for K times, many primal-dual algorithms have been studied.
Since linear constraints to make model variables identical are
imposed in (3), it is expected to be robust to gradient drift due
to data heterogeneity.

Particularly for decentralized FL settings, when the lifted
dual variable is introduced such that it satisfies νi|j=
νj|i (i∈N , j∈Ni) and its stacked notation is given by νi :=
{νi|1, . . . , νi|i−1, νi|i+1, . . . , νi|n}, the primal-dual problem of
(3) is formulated as

min
{xi}ni=1

max
{νi}ni=1

1

n

n∑
i=1

fi(xi) +
1

n

n∑
i=1

∑
j∈Ni

〈−Ai|jνj|i, xi〉

s.t. νi|j = νj|i (∀i∈N , j∈Ni), (4)

where Ai|j := I for i > j and Ai|j := −I for i < j. Assuming
that fi is restricted to be convex, the min-max problem (4)
is generally solved by a primal-dual algorithm. Concretely,
after introducing an auxiliary dual variable ν̌i|j through some
parameter transformation of νi|j , the primal variable xi and
new dual variable ν̌i|j are alternately updated, and the dual
variables are exchanged between connected workers ν̌i|j � ν̌j|i
in PDMM [23], [24]:

x
(r+1)
i = arg minxi

(
fi(xi) +

∑
j∈Ni

γi|j
2
‖Ai|jxi − ν̌(r)j|i ‖2

)
,
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ν̌
(r+1)
i|j = ν̌

(r)
i|j − 2Ai|jx

(r+1)
i , (j ∈ Ni) (5)

where γi|j(> 0) denotes some weight coefficient. In ECL [25],
[26], fi(xi) in (5) is replaced by local quadratic function
fi(x

(r)
i ) + 〈∇fi(x(r)i ), xi − x(r)i 〉+ 1/(2η)‖xi − x(r)i ‖2 to al-

low fi to be non-convex. Then, xi-update rule in (5) can be
rewritten in a closed form. Additionally, stochastic gradient is
used to reduce the computational cost.

Furthermore in G-ECL [15], the update rules in (5) are re-
formulated to explicitly include general model mixing, which is
commonly used in many decentralized FL algorithms, such as
the Gossip method. Then, the update rules are given by

v
(r)
i = ∇Fi(x

(r)
i ; ξ

(r)
i )− λ

(r)
i ,

x
(r+1)
i = x̃

(r)
i − ηv(r)i and x̃(r+1)

i =
∑
j∈N+

i

Wijx
(r+1)
j ,

λ
(r+1)
i = λ

(r)
i −

∑
j∈N+

i

Wijv
(r)
j + v

(r)
i +

∑
j∈Ni

αi|j
2

(x̃
(r)
j −x̃(r)i ),

(6)

whereN+
i := Ni ∪ {i} denotes the augmented index set includ-

ing both connected workers with own worker,Wij represents the
mixing weight of the model variable of the worker j ∈ N+

i in
the i-th worker’s local model update and αi|j(≥ 0) is another
weight coefficient. From xi-update rule in (6), we can see that
the stochastic gradient is corrected by using new dual variable λi.
This idea to correct stochastic gradients using auxiliary variables
resembles the xi-update rule in pure primal SCAFFOLD (2).
By using analysis techniques in [13] associated with Gossip’s
convergence analysis, G-ECL’s convergence rate is rigorously
proven without using the bounded gradient similarity assump-
tion (see Assumption 5 in Section IV).

C. Remaining Issues in Related Works

There are several issues in both previous primal and primal-
dual methods for decentralized settings as below.

(P1) The convergence analysis of decentralized SCAFFOLD
requires the bounded gradient similarity assumption and the
theoretical justification of the robustness to data heterogeneity is
not achieved. On the other side, G-ECL cannot handle multiple
local updates (K > 1), and its effect is not considered in its
convergence analysis, although robustness to data heterogeneity
is proven in the case K = 1 for decentralized settings.

(P2) The connection between pure primal SCAFFOLD and
primal-dual G-ECL is still unclear, even though they resemble
an idea to correct stochastic gradient using auxiliary variables.

III. LOCAL GENERALIZED ECL (LOCAL G-ECL) AND ITS

CONNECTION TO SCAFFOLD

In Section III-A, a localized variant of previous G-ECL,
referred to as Local G-ECL, is proposed, where its convergence
analysis appears in Section IV. In Section III-B, the relation-
ship between the centralized version of the Local G-ECL and
SCAFFOLD is revealed.

Algorithm 1: Local G-ECL for Decentralized FL.

1: function WORKER PROCESS (x(0)i , λ
(0)
i , η, Wij ,

{αi|j}j∈Ni
, K, R)

2: x̃
(0)
i ← x

(0)
i .

3: for each r = 0, . . . , R− 1 do
4: x̃

(r),0
i ← x̃

(r)
i , x(r),0i ← x

(r)
i .

5: for each k = 0, . . . ,K − 1 do
6: v

(r),k+1
i ← ∇Fi(x

(r),k
i ; ξ

(r),k
i )− λ

(r)
i .

7: x
(r),k+1
i ← x̃

(r),k
i − ηv(r),k+1

i .

8: x̃
(r),k+1
i ← x

(r),k+1
i .

9: x
(r+1)
i ← x

(r),K
i .

10: v̄
(r+1)
i ← 1

K

∑K−1
k=0 v

(r),k+1
i .

11: Send: (x(r+1)
i , v̄

(r+1)
i ) to worker j ∈ Ni.

12: Receive: {(x(r+1)
j , v̄

(r+1)
j )}j∈Ni

.

13: x̃
(r+1)
i ←∑

j∈N+
i
Wijx

(r+1)
j .

14: λ
(r+1)
i ← λ

(r)
i −

∑
j∈N+

i
Wij v̄

(r+1)
j + v̄

(r+1)
i +∑

j∈Ni

αi|j
2 (x̃

(r)
j − x̃(r)i ).

15: if {αi|j}j∈Ni
�= {0}j∈Ni

then

16: Send: x̃(r+1)
i to worker j ∈ Ni.

17: Receive: {x̃(r+1)
j }j∈Ni

.
18: end if
19: end function

A. Local G-ECL for Decentralized FL

The procedures of the proposed Local G-ECL for decentral-
ized settings are illustrated in Algorithm 1). Although our algo-
rithm is based on the update rules of G-ECL in (6), the critical
difference from G-ECL is the usage of multiple local updates.
For each communication round r, local worker i updates their
own local model variable xi for K(> 1) times using stochastic
local data sampling ξi ∼ Di (line 5–8). In line 7, gradient drift
caused by data heterogeneity with local updates will be corrected
by subtracting dual variable λ

(r)
i from the stochastic gradient

∇Fi(x
(r),k
i ; ξ

(r),k
i ). Note that for the initial point of local updates

(k = 0), the stochastic gradient is computed at the local model
x
(r),0
i = x

(r)
i rather than the aggregated model x̃(r),0i = x̃

(r)
i . In

line 12, worker i sends (x(r+1)
i , v̄

(r+1)
i ) to the connected workers

j ∈ Ni and receives {(x(r+1)
j , v̄

(r+1)
j )}j∈Ni

. In line 13, the local

models are aggregated. In line 14, dual variable λ
(r)
i is updated.

B. Local G-ECL for Centralized FL and Its Connection
to SCAFFOLD

In this subsection, we start from the reformulation of Local
G-ECL for decentralized settings (Algorithm 1) to be a central-
ized manner (Algorithm 2). This is mainly aimed at associating
the primal-dual Local G-ECL with pure primal SCAFFOLD,
explained in Section II-A.

a) Equivalent reformulation of Local G-ECL from decen-
tralized to centralized settings: Let us consider performing Lo-
cal G-ECL in Algorithm 1 over a fully-connected decentralized
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Algorithm 2: Local G-ECL for Centralized FL.

1: function SERVER PROCESS (x̃(0), R)
2: Send: x̃(0).
3: for each r = 0, 1, . . . , R− 1 do
4: Receive: {x(r+1)

j }j∈N .

5: x̃(r+1) ← 1
n

∑n
j=1 x

(r+1)
j .

6: Send: x̃(r+1) to worker j ∈ N .
7: end function
8: _____________________________________________
9: function WORKER PROCESS (λ(0)

i , η, K, R)

10: Receive: x̃(0) and x(0)i ← x̃(0).
11: for each r = 0, 1, . . . , R− 1 do
12: x

(r),0
i ← x

(r)
i , x̃(r),0i ← x̃(r).

13: for each k = 0, 1, . . . ,K − 1 do
14: v

(r),k+1
i ← ∇Fi(x

(r),k
i ; ξ

(r),k
i )− λ

(r)
i .

15: x
(r),k+1
i ← x̃

(r),k
i − ηv(r),k+1

i .

16: x̃
(r),k+1
i ← x

(r),k+1
i .

17: x
(r+1)
i ← x

(r),K
i .

18: Send: x(r+1)
i to the server.

19: Receive: x̃(r+1) from the server.
20: λ

(r+1)
i ← λ

(r)
i + 1

Kη (x̃
(r+1) − x(r+1)

i ).
21: end function

network and when the mixing matrix is set to the Metropolis-
Hastings weights, i.e., Wij = 1/n for every i, j. Although the
equivalency proof is noted later, one can construct a simplified
algorithm of Local G-ECL for centralized settings, which is
summarized in Algorithm 2. The communication cost per round
of Algorithm 2 is two times smaller than that of Algorithm 1 be-
cause communicating v̄(r+1)

i is not necessary. The simplification

comes from the fact that the aggregated model x̃(r+1)
i does not

depend on worker index i in centralized cases and thus λ
(r+1)
i

can be computed only through {x(r+1)
j }j∈N . The equivalency

of Algorithm 2 to Algorithm 1 is proven as follows:
Proposition 1: Suppose that Wij=1/n for every i, j in Al-

gorithm 1. Then, Local G-ECL for decentralized FL (Algorithm
1) is equivalent to centralized formalism (Algorithm 2).

Proof: First observe that x̃
(r+1)
i = 1

n

∑n
j=1 x

(r+1)
j =:

x̃(r+1) and v̄
(r+1)
i = 1

Kη (x
(r+1)
i − x̃(r)) for i ∈ N in Algo-

rithm 1. To show the equivalency of the two algorithms, we only
need to show the equivalency of the update rules of λ

(r+1)
i . In

Algorithm 1, line 14 holds that −∑j∈N+
i
Wij v̄

(r+1)
j + v̄

(r+1)
i

= 1
n

∑n
j=1 v̄

(r+1)
j − v̄(r+1)

i = 1
Kη (x̃

(r+1)−x̃(r))− 1
Kη (x

(r+1)
i

− x̃(r)) = 1
Kη (x̃

(r+1) − x(r+1)
i ). Finally, since x̃(r)j − x̃(r)i =

0, it is concluded that λ
(r+1)
i = λ

(r)
i + 1

Kη (x̃
(r+1) − x(r+1)

i ).�
b) Equivalency to SCAFFOLD: The concrete procedures

of SCAFFOLD are given by Algorithm 3. The important obser-
vation is that the dual variable λ

(r)
i in Algorithm 2 can be regard

as the centered control variate c(r)i − c̃(r) in Algorithm 3. The
following proposition reveals a surprising connection between

Algorithm 3: SCAFFOLD (Option II) Without Client Sam-
pling [12] for Centralized FL.

1: function SERVER PROCESS (x̃(0), c̃(0), R)
2: Send: (x̃(0), c̃(0)).
3: for each r = 0, . . . , R− 1 do
4: Receive: {(x(r+1)

j , c
(r+1)
j )}j∈N .

5: x̃(r+1) ← 1
n

∑n
j=1 x

(r+1)
j .

6: c̃(r+1) ← 1
n

∑n
j=1 c

(r+1)
j .

7: Send: (x̃(r+1), c̃(r+1)) to worker j ∈ N .
8: end function
9: _____________________________________________

10: function WORKER PROCESS (c(0)i , η, K, R)

11: Receive: (x̃(0), c̃(0)) and x(0)i ← x̃(0).
12: for each r = 0, 1, . . . , R− 1 do
13: x

(r),0
i ← x̃(r).

14: for each k = 0, 1, . . . ,K − 1 do
15: v

(r),k+1
i ←∇Fi(x

(r),k
i ; ξ

(r),k
i )− c(r)i + c̃(r).

16: x
(r),k+1
i ← x

(r),k
i − ηv(r),k+1

i .

17: x
(r+1)
i ← x

(r),K
i .

18: Send: (x(r+1)
i , c

(r+1)
i ) to the server.

19: Receive: (x̃(r+1), c̃(r+1)) from the server.
20: c

(r+1)
i ← c

(r)
i − c̃(r) + 1

Kη (x̃
(r) − x(r+1)

i ).
21: end function

a primal-dual formulation and a pure primal formulation with
a stochastic variance reduction technique; Local G-ECL (Algo-
rithm 2) originated from a primal-dual formulation is equivalent
to the famous SCAFFOLD with option II (Algorithm 3) that is
a pure primal method, where the differences in the initial local
model for each round are ignored.

Proposition 2: Suppose that λ
(0)
i in Algorithm 2 is equal to

c
(0)
i − c̃(0) in Algorithm 3 and 1

n

∑n
i=1 c

(0)
i = c̃(0). Then, the

centralized version of Local G-ECL (Algorithm 2) is equivalent
to SCAFFOLD (Algorithm 3) except that Algorithm 2 computes
the stochastic gradient at x(r)i rather than x̃(r) at the initial
iteration k = 0 for each round r.

Proof: We will show that if the initial points of the local
updates x

(r),0
i = x

(r)
i are replaced by aggregated model

x̃(r) in Algorithm 2, then the obtained algorithm is exactly
equivalent to Algorithm 3. To show this, it is necessary
to show that λ

(r)
i in Algorithm 2 matches c

(r)
i − c̃(r) in

Algorithm 3 using mathematical induction. Suppose that λ(r)
i =

c
(r)
i − c̃(r) for some r ≥ 0. Then, observe that c

(r+1)
i −

c̃(r+1) = c
(r)
i − c̃(r) + 1

Kη (x̃
(r) − x(r+1)

i )− c̃(r+1) = λ
(r)
i +

1
Kη (x̃

(r) − x(r+1)
i )− 1

n

∑n
i=1((c

(r)
i − c̃(r)) + 1

Kη (x̃
(r) −

x̃(r+1))) = λ
(r)
i + 1

Kη (x̃
(r+1) − x(r+1)

i )− 1
n

∑n
i=1 λ

(r)
i .

Finally, observing that 1
n

∑n
i=1 c

(r)
i = c̃(r) and thus

1
n

∑n
i=1 λ

(r)
i = 0 gives the desired claim. �
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IV. ANALYSIS OF LOCAL G-ECL

Here, a theoretical analysis of Local G-ECL (Algorithm 1) is
provided. First, we provide the notation used in this section.

Notations: For a vector a ∈ R
m, ‖ · ‖ means the Euclidean

norm, i.e., ‖a‖ :=
√∑m

j=1 a
2
j . For a matrixA ∈ R

m1×m2 , ‖ · ‖
denotes the Frobenius norm, i.e., ‖A‖ :=

√∑
i,j a

2
ij for matrix

A ∈ R
m1×m2 . Also, for a matrix A ∈ R

m1×m2 ‖ · ‖2 denotes
the operator norm, i.e.,‖A‖2 := supx∈Rm2\{0}

‖Ax‖
‖x‖ .D ∈ R

n×n

is defined by Dij := αi|j if (i, j) ∈ E and Dij = 0 other-
wise. E ∈ R

n×n denotes diag(
∑

k∈N1
αk|1, . . . ,

∑
k∈Nn

αk|n).
1 means (1, . . . , 1)�. For a, b ∈ R, a ∧ b denotes min{a, b}.
f(x) = 1

n

∑n
i=1 fi(x).

A. Theoretical Assumptions

In this subsection, theoretical assumptions used in our analy-
sis are introduced.

Assumption 1 (Mixing matrix [13]): ‖XW − X̄‖2F ≤ (1−
p)‖X − X̄‖2F for everyX = [x1, . . . , xn] ∈ R

d×n for some p ∈
(0, 1], where X̄ := (1/n)X11� andW is symmetric and doubly
stochastic. W is called mixing matrix with mixing parameter p.

Note that it holds that p = 1 when the network topology is
fully-connected.

Assumption 2 (Smoothness): For every i ∈ [n], fi is L-
smooth for some L > 0, i.e., ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖
for every x, y ∈ R

d.
Assumption 3 (Bounded stochastic gradient variance):

Eξi∼Di
[∇Fi(xi; ξi)] = ∇fi(xi) and Eξi∼Di

‖∇Fi(xi; ξi)−
∇fi(xi)‖2 ≤ σ2 for every xi ∈ R

d and i ∈ [n] for some
σ2 ≥ 0.

Assumption 4 (Existence of a global minima): f has a global
minima x∗ ∈ R

d.
Assumption 5 (Bounded gradient similarity): 1

n

∑n
i=1

‖∇fi(x)‖2 ≤ G2 +B2‖∇f(x)‖2 for every x ∈ R
d for some

G,B ≥ 0.
Assumption 5 is not necessary in our theory, although

Assumption 5 is typically used to analyze local or decentralized
settings to guarantee the convergence.2

B. Convergence Rate and Communication Complexity

In this subsection, the convergence rate and communica-
tion complexity of Algorithm 1 are derived. All the proofs
are included in the supplementary material, a proof sketch is
provided.3

Proof sketch: We first derive a decent lemma, which is typi-
cally used in first-order optimization theory.

Lemma 1 (Descent lemma): Suppose that Assumptions 1, 2
and 3 hold. Assume thatαi|j = αj|i ≥ 0 for every (i, j) ∈ E and
1
n

∑n
i=1 λ

(0)
i = 0. Then, under η ≤ 1/(4L), it holds that

E[f(x̄(r+1))] ≤ E[f(x̄(r))]

2For simple convergence analysis, client sampling is not considered in this
paper.

3Due to the 13-page maximum limit for the first submission, a part of our
proofs will appear in the Appendix of the revised paper.

+O

(
Kη2Lσ2

n
+ ηL2

K−1∑
k=0

Ξ(r),k

)

− Ω(η

K−1∑
k=0

(
E‖∇f(x̄(r),k)‖2 + E‖ 1

n

n∑
i=1

∇fi(x(r),ki )‖2
)

for r ∈ {0, . . . , R− 1}. Here, Ξ(r),k := 1
n

∑n
i=1 E‖x(r),ki −

x̄(r),k‖2 and x̄(r),k := (1/n)
∑n

i=1 x
(r),k
i .

The error Ξ(r),k, which is the averaged deviation of each
client model from the global model, arises in the upper bound
in Lemma 1 and can be further bounded using the recursive
inequality in the following lemma.

Lemma 2 (Recursion for Ξ(r),k): Suppose that Assumptions
1, 2 and 3 hold. Under η ≤ p/(48KL),

Ξ(r),k ≤ (1− Ω(p))Ξ(r) +O(Kη2σ2)

+O

(
K2η2

p

1

K

K−1∑
κ=0

(E(r),κ + E‖∇f(x̄(r),κ)‖2)
)

for k ∈ {1, . . . ,K} and r ∈ {0, . . . , R− 1}. Here, E(r),κ :=
1
nE‖∇f(X̄(r),κ)− Λ(r) − 1

n∇f(X̄(r),κ)11�‖2 and Ξ(r) :=

Ξ(r),0, where Λ(r) := [λ
(r)
1 , . . . , λ

(r)
n ].

The error E(r),k represents the averaged deviation of local
gradients {∇fi(x̄(r),k)}i corrected by dual variable Λ(r) from
the global gradient ∇f(x̄(r),k). The main difficulty of our
analysis is to simultaneously evaluate the client drift caused
by the decentralized nature and even caused by the multiple
local updates. Since the dual variablesΛ(r) are only periodically
updated, we need to carefully investigate the effect of the drift
correction by the dual variables containing only old information.
This situation is very different from [15], where multiple updates
are not applied in their algorithm and the dual variables always
possess fresh information.

Lemma 3 (Recursion for E(r),k): Suppose that Assumptions
1, 2 and 3 hold. Assume thatαi|j = αj|i ≥ 0 for every (i, j) ∈ E .
Then, it holds that

E(r),k ≤ (1− Ω(p))E(r) +O

(
σ2

pK
+
L2Δ(r),K

p

)

+O

(
L2

pK

K−1∑
κ=0

(Ξ(r),κ +Δ(r),κ) +
(1− p)‖D − E‖22

p
Ξ(r)

)

for every k ∈ {0, . . . ,K − 1} and r ∈ {0, . . . , R− 1}.
Here, E(r) := E(r),0 and Δ(r),κ := 1

nE‖X̄(r),κ − X̄(r)‖2 =

O(Kη2
∑K−1

κ=0 E‖ 1n
∑n

i=1∇fi(x(r),ki )‖2 +Kη2σ2/n).
Combining Lemma 1 with Lemmas 2 and 3 gives the follow-

ing theorem.
Theorem 4 (Convergence rate): Suppose that Assumptions

1, 2, 3, and 4 hold. Assume that αi|j = αj|i ≥ 0 for every

(i, j) ∈ E , 1
n

∑n
i=1 λ

(0)
i = 0 and x

(0)
i = x

(0)
j (i �= j). Then,

Local G-ECL (Alg. 1) with appropriate η = Θ((p2/(KL)) ∧
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(p2/(
√
1− pK‖D − E‖2K))) satisfies

1

KR

R−1∑
r=0

K−1∑
k=0

E‖∇f(x̄(r),k)‖2

≤ O

(
f0,∗
ηKR

+

(
ηL

n
+
Kη2L2

p4

)
σ2 +

K2η2L2

p3R
E(0)

)
,

where E(0) := 1
n

∑n
i=1 E‖∇fi(x̄(0))− c(0)i −∇f(x̄(0))‖2 and

f0,∗ := f(x̄(0))− f(x∗).
Importantly, the heterogeneity E(0) introduced in the conver-

gence rate only depends on the initial point x̄(0) and thus the
uniform boundedness of the gradient similarity is not necessary.
Theorem 4 immediately yields the following corollary.

Corollary 5 (Communication complexity): Assume that
f(x̄(0))− f(x∗) = O(1). Let Λ(0) = [λ

(0)
1 , . . . , λ

(0)
n ] :=

[0, . . . , 0]. Then, under the same conditions as in Theorem
4, if we appropriately choose learning rate η, the necessary
number of communication rounds R of Local G-ECL becomes

O

(
L+
√
1− pψ
p2ε

+
L2/3ζ

2/3
1,0

pε
+

Lσ

p2
√
Kε3/2

+
Lσ2

Knε2

)

to satisfy (1/(KR))
∑R−1

r=0

∑K−1
k=0 E‖∇f(x̄(r),k)‖2 ≤ ε.

Here, ζ1,0 := (1/n)
∑n

i=1 ‖∇fi(x̄(0),0)−∇f(x̄(0),0)‖ and
ψ := ‖D − E‖2.

a) Improvement by warm-start strategy: To reduce the
impact of E(0), one can adopt a warm-start strategy for Λ(0) :=

[λ
(0)
1 , . . . , λ

(0)
n ] rather than simply initializing λ

(0)
i = 0 at the

expense of additional communication and computation cost. 4

For centralized cases, it is natural to use λ
(0)
i = −∇f(x̄(0)) +

∇fi(x̄(0)). For decentralized cases, to approximate ∇f(x̄(0)),
{∇fi(x̄(0))}ni=1 is mixed r̃ times.

Corollary 6 (Communication complexity with warm-
start): Suppose that f(x̄(0))− f(x∗) = Θ(1). Let x(0)i = x

(0)
j

and Λ(0) = [λ
(0)
1 , . . . , λ

(0)
n ] := −∇f(X(0))W r̃ +∇f(X(0)),

where ∇f(X(0)) := [∇f1(x(0)1 ), . . . ,∇fn(x(0)n )]. Then, under
the same conditions as in Theorem 4, if we appropriately choose
learning rate η, the necessary number of communication rounds
r̃ +R of Local G-ECL with warm-start becomes

O

(
L+
√
1− pψ
p2ε

+
log

Lζ1,0
p

p
+

Lσ

p2
√
Kε3/2

+
Lσ2

Knε2

)

to satisfy (1/(KR))
∑R−1

r=0

∑K−1
k=0 E‖∇f(x̄(r),k)‖2 ≤ ε, where

ψ and ζ1,0 are defined in Corollary 5.
We can see that the second term has a much better dependence

on ζ1,0 and ε than the one in Corollary 5 even taking into account
the additional communication rounds.

Remark 1: The communication complexity of Local G-ECL
for centralized settings (Alg. 2) can be immediately obtained

4The warm-start strategy only requires the local full gradients instead of the
global full gradient. Although the strategy requires Õ(1/p) times communi-
cation rounds to mix the local gradients, the additional communication cost is
reflected in the rate shown in Corollary 6. Also, the cost of the local full gradient
computations is negligible when RKb� n for empirical risk minimization
with local data set size n.

by substituting p← 1 in Corollary 5 or 6 since the Alg. 2 is
equivalent to Alg. 1 with a fully-connected network topology.

C. Comparison With the Previous Results

Here, the obtained theoretical communication complexities
are compared with the previous results.

a) Decentralized settings: As shown in Table I, the authors
of the decentralized SCAFFOLD derived the convergence analy-
sis under Assumption 5, i.e., bounded gradient similarity, which
depends on B, G. Since the update rule of the decentralized
SCAFFOLD and the proposed method are similar, by devising
a convergence analysis of the decentralized SCAFFOLD, a
convergence rate that does not depend on gradient similarity
may be possible to obtain.

The communication complexities of the previous decentral-
ized local algorithms (Local Decentralized SGD [13] and De-
centralized SCAFFOLD [14]) heavily depend on heterogeneity
parameters G and B in Assumption 5 due to the nature of
decentralized network topology and the usage of local updates.
In contrast, our theory does not rely on Assumption 5 and
the obtained communication complexities only depend on the
gradient heterogeneity at initial point. In particular, the use of
the warm-start strategy will mitigate the impact of the gradient
heterogeneity and its dependence is only logarithmic order. This
shows that Local G-ECL is highly robust to heterogeneous
data, which is typically desirable in FL. Also, compared with
G-ECL, the usage of the multiple local updates reduces the third
and fourth terms of the communication complexity bounds in
Corollaries 5 and 6.

b) Centralized settings: In centralized cases, the commu-
nication complexity of Local G-ECL is almost equal to that
of SCAFFOLD [12]. This is natural because Proposition 2
shows that our algorithm is nearly equivalent to SCAFFOLD
in centralized cases. In particular, Local G-ECL inherits the
robustness to heterogeneous data of SCAFFOLD and achieves
better communication complexity than FedAvg [12].

V. NUMERICAL EXPERIMENTS

Numerical experiments using image classification benchmark
tests are performed to validate our theoretical results. We pre-
pared Local G-ECL for decentralized FL in Alg. 1 and that for
centralized FL in Alg. 2, respectively. Through experiments on
decentralized and centralized settings, we will show (i) robust-
ness to data heterogeneity with local updates by comparing Lo-
cal G-ECL vs. average consensus methods (Gossip and FedAvg),
and (ii) convergence curve trend equivalence between primal-
dual Local G-ECL and SCAFFOLD in centralized settings.

A. Experimental Setups

a) Network, data set, and its heterogeneous allocation:
We prepared both decentralized and centralized settings obeying
n = 10 workers. For decentralized settings, we chose a bidi-
rectional ring architecture (i.e., the number of nodes connected
to each node is |Ni| = 2) and the mixing matrix parameter in
Assumption 1 is then p < 1.0, while p = 1.0 for centralized
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Fig. 1. Experimental results for FashionMNIST classification tests using a two-layer perceptron.

settings. We solved image classification problems using the
FashionMNIST data set [29] by fitting a non-convex two-layer
perceptron model.5 Then, the cross entropy loss was used. For
heterogeneous data allocation, we used latent Dirichlet alloca-
tion to partition 60,000 training images for n = 10 workers,
e.g., [30], [31], where the number of local data subsets was
allowed to be different for each worker. By discretely varying
the concentration parameter as h = {0.1, 0.5, 1.0, 2.0,∞} in
the Dirichlet distribution, data heterogeneity was controlled.
Although h cannot be directly associated with {G,B} in
Assumption 5 and ζ1,0 in Corollary 5 and 6, data heterogeneity
can be increased by approaching h to 0. In total, R = 400
communication rounds were performed. For each communi-
cation round r, all workers are synchronously communicat-
ing with each other, where K is discretely varied as K =
{1, 8, 16, 32, 64, 128, 256} to investigate the robustness to local
updates. Note that Local G-ECL when K = 1 shrinks to the
previous G-ECL for decentralized settings.

b) Algorithms and hyper-parameters: For each network
setting, the following methods were tested. For decentralized
settings, we tested three methods, namely Gossip vs. decentral-
ized SCAFFOLD v.s. Local G-ECL (Alg. 1). For Local G-ECL,
we chose λ

(0)
i = 0 and αi|j = 0 to expect fast convergence by

setting ψ = 0 in Corollary 5.6 Meanwhile, for centralized set-
tings, we tested three methods, namely FedAvg v.s. SCAFFOLD
(option II) vs. Local G-ECL (Alg. 2) with λ

(r)
i = 0, where client

sampling was not applied.
The learning rate was determined by testing with several

learning rates η = {0.2/4i : i ∈ {0, . . . , 5}}, and we chose it
to give the highest accuracy for each method. The mini-batch
size was set to 128.

B. Experimental Results

a) Convergence speed: Convergence curves for training
loss for each network setting are shown in Fig. 1(a) and (d),
respectively. From Fig. 1(a) and (d), compared with average con-
sensus methods (Gossip, FedAvg), the training losses of Local
G-ECL were rapidly reduced for each network setting. Mean-
while, there was little difference in the trend of the convergence
curves between (decentralized) SCAFFOLD and Local G-ECL.
Comparing Fig. 1(a) and (d), more stable and faster convergence
was obtained on the centralized network. This is because the
centralized algorithms are equivalent to the decentralized ones
with fully-connected topology and Metropolis-Hastings weights
(i.e., Wij = 1/n), and the mixing parameter p in Assumption 1
is then maximized to 1. Also, from Fig. 1(d), the performances
of Local G-ECL and SCAFFOLD were almost equivalent. This
is because centralized Local G-ECL (Alg. 2) is nearly equivalent
to SCAFFOLD (Alg. 3) as shown in Proposition 2.

b) Effect of data heterogeneity: In Fig. 1(b) and (e), ro-
bustness to data heterogeneity h are investigated. The dots in
SCAFFOLD that are not visible are due to the fact that their
results were almost identical with Local G-ECL. When data
heterogeneity was increased by approaching h to 0, high test
accuracy was maintained with Local G-ECL and (decentralized)
SCAFFOLD. Meanwhile, test accuracy with average consensus
methods (Gossip and FedAvg) decreased as data heterogeneity

5The details of the architecture are found in Appendix A. We also tested
another model to validate the effectiveness of the proposed algorithms.

6Experiments investigating the effectiveness of warm-start setting of λ
(0)
i in

Corollary 6 are summarized in Appendix A.
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TABLE II
COMPUTING ENVIRONMENTS

Fig. 2. Heterogeneous data allocations when h = {0.1, 0.5,∞}.

increased. These results support that their convergence rates
require Assumption 5, as noted in Table I.

c) Effect of the number of local updates: In Fig. 1(c) and
(f), robustness to the client drift due to the local updates was
investigated. When a large number of local updates was chosen
(K ≥ 64), high test accuracy was maintained with Local G-
ECL and (decentralized) SCAFFOLD, while test accuracy was
decreased when K = 1 (then Local G-ECL shrinks to G-ECL).
The differences in test accuracy due to local updates K are
explainable using convergence rate analysis in Table I. Since the
third and fourth terms in the convergence rate of Local G-ECL
depend on K and its effect can be reduced by increasing K, the
learned model would be closer to its optimal point.

In summary, our theoretical findings are well-supported by
the numerical experimental results.

VI. CONCLUSION

Local G-ECL was proposed for decentralized/centralized FL
robust to data heterogeneity with a large number of local updates.
First, our theoretical analysis showed that the convergence rates
of Local G-ECL are nearly independent of data heterogeneity
(see Table I). Second, we found that a pure primal SCAFFOLD
(Alg. 3) and a primal-dual Local G-ECL for centralized setting
(Alg. 2) are equivalent, ignoring differences in the initial points
of the local updates. Through numerical experiments using
image classification tests, Local G-ECL was found to be robust
to data heterogeneity with a large number of local updates, as

with (decentralized) SCAFFOLD for both decentralized and
centralized settings.

APPENDIX

ADDITIONAL NUMERICAL EXPERIMENTS

A. Experimental Setups

To support experimental reproducibility, we provide a part of
the latest source code as supplementary material. The computing
environment is summarized as Table II:

As explained in Subsec.V-A, 60,000 Fashion-MNIST im-
age samples were heterogeneously allocated over n = 10 lo-
cal workers. Examples of heterogeneous data allocations when
h = {0.1, 0.5,∞} are shown in Fig. 2. Whenh =∞ is selected,
data is homogeneously allocated; specifically, each local worker
has 600 image samples for each class. Segregated from training
data sets, test data sets with the homogeneous allocation (1,000
image samples for each class) were prepared. All the local
workers (in decentralized settings) and the central server (in
centralized settings) accessed these test data sets, and evaluation
scores using accuracy and loss were calculated for every 10
communication rounds.

B. Details of Numerical Experiments in Section V

In Section V, a two-layer perceptron was used to solve the im-
age classification problem. Its architecture consists of 1 hidden
layer with 500 neurons and ReLU activation. Table III shows
the best test accuracy in 1,000 rounds of each learning rate
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TABLE III
PRE-EXPERIMENTAL RESULTS FOR TUNING LEARNING RATE η USING BEST TEST ACCURACY FOR EACH METHOD WHILE HYPER-PARAMETERS WERE SET AS

(h,K,R) = (0.1, 64, 1000) AND A TWO-LAYER PERCEPTION MODEL WAS USED

Fig. 3. Convergence curves using (a) test accuracy and (b) train loss when data heterogeneity parameter is changed as h = {0.1, 0.5,∞}while hyper-parameters
are set as (K,R) = (64, 1000). With Local G-ECL and decentralized SCAFFOLD methods, convergence curves overlap even when h is changed. With the Gossip
method, resulting scores (test accuracy, train loss) were degraded when data heterogeneity was increased (by approaching h to zero).

η at h = 0.1 for each method. For all methods, we selected
η = 0.000781 for this two-layer perceptron model. For cen-
tralized settings summarized in Section V, we commonly used
η = 0.000781.

1) Investigation of Convergence Curve Trends by Changing
Data Heterogeneity Parameter h: Fig. 3 shows the convergence
curves using (a) test accuracy and (b) train loss for decentralized
settings over the ring topology, where heterogeneity parameters
were restricted as h = {0.1, 0.5,∞} for simply showing con-
vergence curve trends. The number of local updates was fixed
by K = 64 and the number of total communication rounds was
fixed byR = 1, 000. In Fig. 3, convergence curves (both training
loss and test accuracy) when using Local G-ECL and decen-
tralized SCAFFOLD overlap even when the data heterogeneity
parameter is changed as h = {0.1, 0.5,∞}. Fig. 1(b) shows
that resulting scores (test accuracy) at the last communication
roundR = 1, 000were nearly independent of data heterogeneity
parameter h. Since convergence curves (test accuracy, train loss)
for each communication round overlap even when heterogeneity
parameters are changed as h = {0.1, 0.5,∞} in Fig. 3, experi-
mental validation showing independence of convergence trends
toward to h in Fig. 1(b) is not coincidental. Although theoretical
convergence analysis in decentralized SCAFFOLD depends on
data heterogeneity as shown in Table I, it is experimentally
shown that convergence curves with decentralized SCAFFOLD
were nearly independent of data heterogeneity.

Meanwhile, the convergence curves with the Gossip method
were relatively sensitive to data heterogeneity. By making h
approach to zero to increase data heterogeneity, resulting scores
(test accuracy, train loss) were degraded. This supports the

theoretical analysis in Table I that the convergence rate of the
Gossip method needs Assumption 5 to bound gradient similarity.

2) Investigation of Convergence Curve Trends by Changing
the Number of Local UpdatesK: Fig. 4 shows the convergence
curves using test accuracy and train loss over a decentralized
setting (ring topology) for each method (Local G-ECL, de-
centralized SCAFFOLD, Gossip) by changing the number of
local updates as K = {1, 64, 256}. Although only the best test
accuracy is used to show the dependency toward K for each
method in Fig. 1, Fig. 4 shows overall convergence curve trends.
The trends shown in Fig. 1 are found to be maintained for each
communication round.

By increasing K with all methods (Local G-ECL, decen-
tralized SCAFFOLD, Gossip), improvements in the resulting
scores (test accuracy, train loss) for each communication round
were increased. This was caused by the number of model update
iterations (RK) being different. Since resulting score improve-
ments are not significantly increased when increasing K ≥ 64,
we fixed K = 64 for other hyper-parameter turnings.

3) Investigation of Convergence Curve Trends by Changing
Network Topologies: Fig. 6 shows convergence curves using
test accuracy and train loss for each method by changing net-
work topology, where a data heterogeneity parameter was fixed
by h = 0.5. For decentralized settings, three topologies were
prepared, composed of ring (|Ni| = 2), double ring (|Ni| = 4),
and fully-connected (|Ni| = n− 1 = 9) as in Fig. 5. In addi-
tion, we prepared the centralized setting composed of a central
server and n = 10 local workers. The mixing parameter p in
Assumption 1 depends on network topology; specifically, a
denser network makes p approach to 1.0. Since many of the
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Fig. 4. Convergence curves using test accuracy (a) and train loss (b) when the number of local updates is changed as K = {1, 64, 256} while hyper-parameters
are set as (h,R) = (0.5, 1000).

Fig. 5. Network topologies of ring (|Ni| = 2), double ring (|Ni| = 4), fully-connected (|Ni| = 9), and the centralized network.

Fig. 6. Convergence curves using (a) test accuracy and (b) train loss for each network topology; i.e., three decentralized networks composed of ring (|Ni| = 2),
double ring (|Ni| = 4), and fully-connected (|Ni| = 9) and the centralized network. Associated hyper-parameters were set as (h,K,R) = (0.5, 64, 1000). With
Local G-ECL and decentralized SCAFFOLD, convergence curves are overlapped for all network topologies. Although the effect of network topology did not
appear, it may be due to the small size of networks (n = 10).

convergence analyses summarized in Table I including our Local
G-ECL are dependent on p, its effect on convergence curves is
experimentally investigated.

Fig. 6 shows that convergence curves with Local G-ECL
and decentralized SCAFFOLD overlap even though network
topologies are changed. We consider that this weak effect of p

would be presumably due to the small size of networks using 10
local workers. In addition, experimental results using Local G-
ECL support that the convergence curve with a fully-connected
decentralized network (p = 1.0) and that with the centralized
network (p = 1.0) are equivalent (Since stochastic local data
sampling is difficult to control in these two network settings,
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Fig. 7. Convergence curves using (a) test accuracy and (b) train loss using Local G-ECL with/without warm-start, and Gossip as a reference. Associated
hyper-parameters are set as (h,K,R) = (0.5, 64, 400).

Fig. 8. Convergence curves using (a) test accuracy and (b) train loss of LeNet, where hyper-parameters were set as (h,K,R) = (0.5, 64, 1000), and the ring
topology with n = 10 workers was used.

slight differences existed in convergence curves. However, these
differences do not significantly impact our conclusion; that is,
experimental results match our theory in Section III-B.)

4) Investigation of Convergence Curve Trends With Warm-
Start Initialization Setting: The effect of warm-start initializa-
tion discussed in Section IV-B is investigated. Let us recall
that the warm-start initialization is proposed to reduce the
effect of data heterogeneity at the initial point ζ1,0. For this
investigation, η = 0.00312 was selected. Experimental results
using Local G-ECL with/without warm-start setting, h = 0.5,
and K = 64 are summarized in Fig. 7. Although slight differ-
ences appeared in their convergence curves, especially in early
communication rounds, overall curve trends were maintained
regardless of the warm-start initialization setting. The resulting
scores using Local G-ECL with/without warm-start were much
higher than those of Gossip.

C. Experimental Validation Using Other Models

To validate the effectiveness of the proposed algorithms,
we conducted experiments using non-convex LeNet [32].
LeNet [32] is a neural network that consists of two convolution
layers, three hidden layers, and ReLU activation. Fig. 8 shows

experimental results for CIFAR10 [33] classification tests using
LeNet, which shows that Local G-ECL has advantages over the
Gossip method (higher test accuracy, lower loss) and is almost
as robust as SCAFFOLD against data heterogeneity.

Experiments have shown that the proposed Local G-ECL is
robust to data heterogeneity and effective independent of neural
models, whether in two-layer perceptron or logistic regression
or in networks containing convolutional layers such as LeNet.

D. Evaluation of Computational Complexity

The computational complexity of Local G-ECL is shown
in Table IV, consisting of training time and traffic volume
when training two-layer MLP for CIFAR10 recognition for each
method.

Table IV shows that the traffic volume when using SCAF-
FOLD requires twice as much as other methods under central-
ized conditions since it sends c, c̃. On the other hand, Centralized
Local G-ECL reduces the traffic volume since it does not send
ν̄ or λ and is almost equivalent to FedAvg. However, in a
decentralized setting, Local G-ECL cannot omit to send ν̄; thus,
the traffic volume is almost the same between Decentralized
SCAFFOLD and Decentralized Local G-ECL.
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TABLE IV
THE COMPUTATIONAL COMPLEXITY WHEN USING TWO-LAYER PERCEPTRON USING CIFAR10, 10 WORKERS OVER RING NETWORK, AND ASSOCIATED

HYPER-PARAMETERS ARE SET BY (h,K,R) = (0.5, 128, 400)

In addition, Table IV shows that training time for each method
is almost equivalent. This may be caused by the fact that we
conducted the experiments using GPUs mounted on one server;
specifically, experiments were not affected by network latency
and volume.
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