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An Asymptotically Equivalent GLRT Test for
Distributed Detection in Wireless Sensor Networks

Juan Augusto Maya , Leonardo Rey Vega , and Andrea M. Tonello , Senior Member, IEEE

Abstract—In this article, we tackle the problem of distributed
detection of a radio source emitting a signal. We consider that
geographically distributed sensor nodes obtain energy measure-
ments and compute cooperatively a statistic to decide if the source
is present or absent. We model the radio source as a stochastic signal
and work with spatially statistically dependent measurements. We
consider the Generalized Likelihood Ratio Test (GLRT) approach
to deal with an unknown multidimensional parameter from the
model. We analytically characterize the asymptotic distribution of
the statistic when the amount of sensor measurements tends to infin-
ity. Moreover, as the GLRT is not amenable for distributed settings
because of the spatial statistical dependence of the measurements,
we study a GLRT-like test where the statistical dependence is com-
pletely discarded for building this test. Nevertheless, its asymptotic
performance is proved to be identical to the original GLRT, showing
that the statistical dependence of the measurements has no impact
on the detection performance in the asymptotic scenario. Further-
more, the GLRT-like algorithm has a low computational complexity
and demands low communication resources, as compared to the
GLRT.

Index Terms—Composite distributed test, cooperative detection,
asymptotic performance, spectrum sensing.

I. INTRODUCTION

A. Motivation and Related Work

IN RECENT years, wireless sensor networks (WSN) have
received a lot of attention from the industrial and research

community because of their remote sensing and control capa-
bilities [1], [2], [3]. More recently, they have become a crucial
part of the emerging technology of Internet of Things (IoT) [4],
[5], [6]. Among several topics related to WSNs, distributed
detection is an active research area [7], [8], [9], [10], [11],
[12]. In distributed detection problems, a set of nodes sense the
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environment in search for the presence of a source signal, which
is typically linked with some physical process extended over
the geographical area where the network is deployed. Through
collaboration among the nodes, and possibly with a fusion center
(FC), the network is expected to decide with high confidence if
the above-mentioned signal is present or not. A well-studied
application example of this general problem is spectrum sens-
ing [13].

Distributed detection architectures can be broadly classified
in two classes. In the first class, all nodes transmit their local
measurements (or a statistic of them) to a FC, where some pro-
cessing tasks are done and the final decision about the underlying
phenomenon is made [11], [14], [15], [16], [17]. The communi-
cation between the nodes and the FC could be through possibly
a multiple access channel (MAC), or a parallel access channel
(PAC). In MAC channels, all nodes transmit synchronously and
simultaneously a local statistic in order to build the final (global)
statistic in the FC, to then make a decision [18], [19], [20]. On
the other hand, in PAC channels the nodes communicate their
local statistics through orthogonal channels with the FC [21],
[22], [23]. Other authors have also considered clustered sensor
networks, where the nodes are grouped into clusters, and the
communication with the FC is through multiple hops [24], [25],
[26]. An alternative to the above architectures is to consider
in-network processing (IN-P) strategies without a FC. Here, the
nodes build a local statistic, exchange information with their
neighbors and, finally, execute some consensus or diffusion algo-
rithm to achieve a common final decision [27], [28]. In this work,
we do not restrict ourselves to any of these strategies, and we
assume that the nodes cooperate using any of them. In addition,
although distributed detection architectures typically consider
one-bit or multi-bit quantization schemes at the nodes, we here
assume that the nodes transmit their analog (unquantized) local
statistic as in [21], [22], and leave the quantization problem for
future works.

Distributed detection of a non-cooperative source emitting a
radio signal has received a lot of attention in different scenarios.
Some works considered fast-fading in the sensing channels
(the channels that link the radio source with the nodes) [29],
[30], [31], while others have considered slow/block-fading chan-
nels [32], [33], [34], [35]. The first case is a representative
of high-dynamic environments, as in vehicular networks [36],
[37], while the second one models slow-varying or stationary
environments. On the other hand, the source detection problem
can be modeled in different ways. Some authors modeled the
radio source as a deterministic signal with an unknown scalar
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parameter [23], [38], [39], [40]. Under this model, and condi-
tioned to whether the source is active (hypothesis H1) or not
(hypothesis H0), the measurements at different nodes are statis-
tically independent. In that setup, it is shown that locally most
powerful tests or generalized score tests can be implemented. A
generalization for the case with multiple unknown parameters
was done in [41] considering a max/min approach, where the
probability density function (PDF) of the measurements belongs
to the so-called locally asymptotic Gaussian families.

In each of the strategies (with or without FC), a crucial
step for inexpensive WSNs is to build local statistics at each
sensor site with minimum network resources (e.g., energy and
bandwidth), and then implement a detector as a function of them.
It is well-known that the optimal test in the Neyman-Pearson
setting is the likelihood ratio test (LRT) [42], which is defined
through the quotient between the PDF of the measurements
under the hypotheses H1 and H0. When the observations of
different nodes are independent under both hypotheses, the
PDF of the measurements is conveniently factorized and the
local statistics are straightforwardly identified [15]. However, if
the radio signal is modeled as a stochastic process, the node’s
observations are statistically dependent, given that each sensor
receives a noisy version of the same source signal propagated
through the corresponding wireless channel. In this case, no
general factorizations of the involved PDFs are available, and
obtaining the local statistics is challenging [43].

In general, distributed detection problems deal with sensors
that acquire statistically independent observations [23], [44],
[45]. However, the scenario with spatially statistically dependent
measurements can be extremely challenging [46] and it is a
partially explored area. In [33], [34] a statistic based on the
marginal PDFs of the measurements is analyzed for a general
parametric model possibly considering statistically dependent
observations with unrestricted parameters. In [32], [43] a source
detection problem is discussed for sensors measuring the energy
of a temporally-correlated Gaussian signal where the joint PDF
of the measurements is not available when the source is active.
In [46] optimal quantization schemes are discussed for detecting
a mean shift in a set of spatially correlated Gaussian observa-
tions. In [47] a copula-based distributed sequential detection
scheme is designed to take the observations’ spatial dependence
into account. Different from previous works, we investigate the
impact of the observations’ spatial statistical dependence on
the performance of a source detection problem for a particular
physically-grounded model.

B. Contributions and Paper Organization

We assume that the nodes implement energy detectors, and
deal with a model whose parameters are typically unknown,
as for example, the energy of the radio source signal and the
wireless sensing channel amplitudes. Then, it is shown that these
parameters are restricted to be positive. This fact modifies the
procedure for building the local statistics at the nodes, and also
the theoretical characterization of detectors under analysis. This
model is presented in Section II.

Since an optimum approach is not available, we follow the
philosophy of the generalized likelihood ratio test (GLRT). This

approach is sometimes preferred because it has been proved to
be optimal in terms of the error exponents for some particular
distributions and settings [42]. The GLRT uses the joint PDF of
the observations when the source signal is on and off to build
the test, so the statistical dependence of the observations is com-
pletely considered. However, as we will discuss in Section IV, its
implementation is not amenable to WSNs with scarce resources
such as energy and bandwidth.

To sort this issue out, we study an algorithm that uses the
product of the marginal PDFs as a substitute of the joint PDF
for implementing a GLRT-like test. This strategy, called L-MP,1

allows us to immediately identify the local statistics at each
sensor site for implementing a suitable distributed detector. This
statistic was proposed in [33] for a general parametric model, and
its performance was characterized for unrestricted estimators.
Those results do not apply directly to the particular problem
tackled here, given that the positivity constraints on the model’s
parameters poses a different and more challenging problem.
Moreover, and differently from [33], we here are able to obtain
the L-MP statistic in closed-form, which makes its computation
more efficient at each sensor node.

Most importantly, the key point is that the L-MP strategy
preserves the asymptotic performance of the GLRT. To prove
this, in Section III, we first compute the asymptotic distribu-
tion of the GLRT under both hypotheses. When the unknown
parameters have no constraints, the asymptotic distribution of
the GLRT when the signal is off (on, resp.) is the well-known
central (non-central) chi-square distribution. However, the pos-
itivity restriction on the estimated multidimensional parameters
modifies the asymptotic distributions under both hypotheses,
and it is carefully considered in the presented results. Then,
in Section IV, we also compute the asymptotic distributions
of the L-MP detector under both hypotheses considering also
the parameter constraints and show that they are exactly the
same to those of the restricted GLRT. In Section V, we conduct
some Monte Carlo simulations and show that the L-MP detector
has practically the same performance as the GLRT also when
the data size at each sensor is relatively small. In addition,
its asymptotic theoretical performance characterization presents
only a small gap in that scenario. The main contributions of the
paper can be summarized as follows:

1) Theoretical Performance Analysis: New theoretical results
for characterizing the asymptotic performance of the GLRT
and L-MP for the problem at hand are derived, for which the
estimation of a multidimensional parameter with restrictions is
needed. See Lemmas 1 and 2.

2) Restricted L-MP Detector: A new computationally low-
cost and low-communication resource demanding distributed
detector is presented. The algorithm is implemented using only
elementary functions, given that a closed-form expression is ob-
tained for estimating the unknown parameters. In addition, and
more importantly, it preserves the same asymptotic performance
of the GLRT. See Section IV-A.

1The acronym L-MP refers to that the GLRT-like statistic estimates its
parameter/s locally (L) and the joint PDF is replaced by the product of the
marginal PDFs (MP) under each hypothesis
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Fig. 1. (a) Representation of the WSN for sensing the source’s state. Nodes (black dots) distributed in space want to detect the presence or absence of a radio
source (red dot). (b) Flowchart of the distributed detection system. Nodes observe energy measurements and generate local statistics which then are combined in a
FC through a MAC/PAC channel or using some consensus algorithm to make the decision about the state of the source.

3) Impact of the Statistical Dependence of the Observations:
The theoretical results show that the sensor measurements’
statistical dependence has no impact on the detector performance
in the asymptotic scenario. This conclusion relies on the fact that
the L-MP detector, based on the product of the marginal PDFs
of the observations, completely discards the data dependence
structure of the PDFs. However, it asymptotically achieves the
same performance as the GLRT, which considers the joint PDFs
instead. See Section IV-A, in particular, Remark 1.

We finally draw the conclusions of the work in Section VI,
and relegate most of the technical details to the appendices.

C. Notation

We denote with 0N the N -dimensional null vector and with
IN theN ×N identity matrix. Given a vector a we denote with
diag(a) a diagonal matrix with the diagonal entries given by the
components of a. With N (μ,Σ) we denote a multivariate nor-
mal distribution with mean vector μ and covariance matrix Σ.
With CN (0, σ2) we denote the zero-mean complex circularly-
symmetric normal distribution with variance σ2. Given two N -
dimensional vectors a and b we write a � b (a � b) if ai ≥ bi
(ai > bi) for all i ∈ [1, N ]. {a}+ � max(0, a), and {a}+ op-
erates identically as {a}+ over each component of a. 1(C) is
the indicator function, i.e., 1(C) = 1 if the condition C is true,
and 0 otherwise. We use the big-O notation for convergence
in probability, that is, f(x) = Op(g(x)) for a strictly positive
function g(x) if |f(x)|/g(x) → K in probability, when x→ ∞
for a positive constant K.

II. MODEL

We consider a WSN with N nodes with sensing capabilities
distributed in a bounded geographical area. We assume that at an
unknown position there is a possibility of having a source emit-
ting a signal s(i). Through the processing of their observations,
the network looks for the correct decision regarding the presence
or absence of the source. See Fig. 1 for a schematic representa-
tion of the problem. We assume that the nodes implement energy
detectors, which is a common assumption for a WSN given
that low-cost sensors are able to implement them. In addition,
energy detectors can be implemented even in scenarios with a
non-cooperative source, where the signal waveform is typically
unknown. The energy detectors measure the energy of the signal

during T0 seconds. IfW is the sensed bandwidth, and according
to [48], [49, Ch. 8.4], the energy detector measurements can be
modeled as the energy of2 M ≈WT0 complex-baseband signal
samples taken in a time window of duration T0, as shown in (2).
Let yn(i) denote the i-th signal sample, i ∈ [1,M ], taken by the
n-th node. UnderH0, the source is assumed to be silent and only
thermal noise is present. Under H1, the source is assumed to be
active and the received signal (before the energy detector) is the
sum of thermal noise and the source signal:3{H0 : yn(i) = vn(i), i ∈ [1,M ], n ∈ [1, N ],

H1 : yn(i) = hns(i) + vn(i).
(1)

hn denotes the complex wireless channel gain from the source to
then-th node, s(i) is assumed to be i.i.d. with distribution s(i) ∼
CN (0, Es), and vn(i) is the thermal noise sample at the n-th
node, distributed as vn(i) ∼ CN (0, N0), independent of s(i).
We assume that the source, the nodes and the environment are
static during the observation time interval, thus, hn is constant
during that time. That is, we consider a slow-fading scenario. The
noise varianceN0 can be estimated in known silent time periods
of the source, and it is assumed to be known at each node. The
energy detector of the n-th node delivers the normalized energy
level4, that is:

zn =
1√
MN0

M∑
i=1

(|yn(i)|2 −N0), n ∈ [1, N ]. (2)

Now we compute the joint PDF of the energy vector z �
[z1, . . . , zN ]T . For many applications, the time-bandwidth prod-
uctM is typicallyM � 1, therefore the multidimensional cen-
tral limit theorem (CLT) [50] can be used to approximate the
joint distribution of z by a multivariate Gaussian distribution.
Assuming that each node acquiresL independent and identically
distributed (i.i.d.) energy measurements according to (2) during
the observation time interval LT0, i.e. z1:L � (z1 . . . ,zL), the
hypothesis testing problem can be formulated as follows (see

2Note that M needs to be a positive integer. This is satisfied considering the
largest integer smaller or equal to WT0, i.e., �WT0.

3We remark that the signal yn(i) is not available at each node. It is used
only to model the energy measurements (2) that each receiver delivers every T0

seconds.
4We define the energy samples in this way in order to have zero-mean, unit-

variance random variables under H0, as can be seen in Appendix I.
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Appendix I for the details):{
H0 : z1:L

iid∼ p(z;θ0)

H1 : z1:L
iid∼ p(z;θ1),

(3)

where the vector parameter θ = [θ1, . . . , θN ]T is a N -
dimensional vector with positive or zero components
as it is evident in Appendix I, i.e. θ � 0N , θ0 =
0N , θ1 = [Es|h1|2/N0, . . . , Es|hN |2/N0]

T , and p(z;θ) =
N (μ(θ),Σ(θ)) with

μ(θ) =
√
Mθ

Σ(θ) = θθT + 2diag(θ) + IN . (4)

Under H1, the true vector parameter θ1 is assumed to be un-
known. This is because of the lack of knowledge of the true
position of the source and its transmitted energyEs, and because
of the wireless channel amplitude |hn| is typically unknown. The
wireless channel is influenced by several complex phenomena
(e.g. path-loss, shadowing and fading) which are difficult to
know in advance. Therefore, (3) is a composite hypothesis
testing problem, for which the vector parameter θ1 ∈ R

N
>0 is

unknown. Moreover, and to the best of the authors knowledge,
the optimal uniformly most powerful test (UMPT) is unknown
or does not exist. This is a typical situation for composite
hypothesis testing problems with multiple unknown parameters.
Thus, we need a statistic that avoids the use of the unknown
parameters or estimates them in some way. In this paper, we
follow the approach of the GLRT, which estimates the unknown
vector parameter using the MLE. Observe that techniques as
locally most powerful test [51, Sec. 6.7] or locally directionally
maximin test [41] cannot be applied for different reasons. The
former one is only valid for PDFs with a scalar parameter, and the
latter one is only valid for the so-called locally asymptotically
normal families. Unfortunately, the PDF (3) under H1 does not
belong to that class.

III. THE RESTRICTED GLRT

The GLRT is a well-known technique frequently used for
composite hypothesis testing problems, like the one presented
in the previous section. Its success relies on the asymptotic
properties of the MLE, which, under mild conditions, is an
efficient estimator when the number of observations tends to
infinity [52]. In addition, the GLRT is proved to be optimal in
terms of the error exponents for several distributions, including
the Gaussian distribution and the exponential families of prob-
ability distributions [42, Sec. 5.6.2], [53, Th. 3.2.1, Th. 3.2.2].
Moreover, under some mild assumptions, and when there are
no constraints on the unknown parameters, the exact asymptotic
characterization of the GLRT is easily obtained [51]. On the
other hand, in our problem we do have constraints: the entries
of θ1 are nonnegative. This fact impacts on the asymptotic
distributions of the GLRT under both hypotheses, but only partial
results can be found in the current literature. We next present
a complete characterization of the asymptotic distribution of
the GLRT, which allows us to analytically compute its error
probabilities when the amount of observationsL tends to infinity.

Let f(z1:L,θ) �
∏L

l=1 p(zl,θ) be the likelihood function
with parameter θ. The GLRT statistic is defined as [54]:

TG(z1:L) �
maxθ�0N f(z1:L,θ)

f(z1:L,0N )
. (5)

Under the model (3), it evaluates as follows:

2
L log TG(z1:L) = − log detΣ(θ̂) + 1

L

L∑
l=1

‖zl‖2

− (zl − μ(θ̂))TΣ−1(θ̂)(zl − μ(θ̂)), (6)

where θ̂ is the positive constrained global MLE5 defined as

θ̂ � arg max
θ�0N

f(z1:L;θ)

= arg min
θ�0N

log detΣ(θ)

+ 1
L

L∑
l=1

(zl − μ(θ))TΣ−1(θ)(zl − μ(θ)). (7)

The optimization set of θ in (5) and (7) is the cone Θ = {θ ∈
R

N : θ � 0N}. The true value of θ under H0, θ0 = 0N , is
a corner point of Θ. As the true parameter under H0 is not
an interior point of Θ, the usual asymptotic analysis (see for
instance [51]) for the GLRT under H0 is not valid. On the other
hand, the true value of the parameter θ under H1, θ1 � 0N ,
is an interior point of Θ. However, the optimization set also
modifies the asymptotic distribution of the GLRT under the
so-called weak signal assumption, i.e., when θ1 scales as 1√

L
when L→ ∞. This condition is necessary in order to have a
non-degenerated hypothesis testing problem6.

For a given statistic T and a given predefined threshold t, the
false alarm probability and the miss-detection probability are
defined, respectively, asPfa = P(T > t;H0) andPmd = P(T ≤
t;H1). Then, we can expressPfa = 1− F 0

T (t) andPmd = F 1
T (t)

in terms of the cumulative distribution function (CDF) underH0,
F 0
T (t), and, under H1, F 1

T (t). We summarize the asymptotic
performance characterization of the GLRT in the following
lemma. We obtain a closed form expression for it under H0.
Nevertheless, this is not possible under H1. In the latter case,
we get the characteristic function of the GLRT under H1 in-
stead. Then, the corresponding CDF can be computed using a
numerical method for evaluating its inverse Fourier transform
(e.g., see [55]). We first enumerate the following properties.

Properties 1: The PDF p(z;θ) in (3) satisfies
P1) For almost all z, the derivatives ∂ log p

∂θn
, ∂2 log p

∂θn∂θk
and

∂3 log p
∂θn∂θk∂θm

, n, k,m = 1, . . . , N , exist for every θ in the
closure of a neighborhood B of θ = 0.

P2) If θ ∈ B, E| ∂3 log p
∂θn∂θk∂θm

| < A, whereA is independent of
θ.

5We call this estimator global MLE to differentiate it from the local one
θ̂L-MLE to be defined in the following section.

6A degenerated hypothesis testing problem is a problem for which Pmd = 0
and Pfa ≤ ε, for any ε > 0 simultaneously, when L → ∞, using a simple test
statistic as for example the sample mean.
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P3) If θ ∈ B, the Fisher information matrix i(0) with i, j-
element (i(0))i,j = E(∂ log p(z,0)

∂θi

∂ log p(z,0)
∂θj

) is finite
and positive definite.

Proof: See Appendix II-A. �
Lemma 1: Considering that p(z,θ) satisfies the properties

enumerated in Properties 1, and assuming that there exists a
positive constant c such that ‖θ1‖ ≤ c/

√
L (weak signal as-

sumption under H1), the asymptotic distribution of the GLRT
(5), when L is sufficiently large, is 2 log TG(z1:L)

a∼{∑N
n=1{u0,n}2+ : H0, u0,n ∼ N (0, 1), n ∈ [1, N ],∑N
n=1{u1,n}2+ : H1, u1,n ∼ N (ψn, 1),

(8)

where
a∼ means “asymptotically distributed as”, {u0,n}Nn=1

and {u1,n}Nn=1 are independent random variables, and ψn �√
L(M + 2)Es|hn|2/N0, n ∈ [1, N ]. The closed-form expres-

sion of the CDF of (8) under H0, F 0
TG
(t) = P(2 log TG(z1:L) ≤

t;H0), is

F 0
TG
(t) =

(
1

2N
+

N∑
n=1

(
N

n

)
1

2N
Fn(t)

)
1(t ≥ 0). (9)

Fn(t) is the central chi-square CDF with n degrees of freedom.
In addition, the characteristic function of (8) under H1 is

Ψ1
TG
(ω) =

N∏
n=1

{
Φ(−ψn) +

1
2 (1− 2jω)−

1
2 e

jωψ2
n

1−2jω

×
(
1− erf

(
−ψn(2(1− 2jω))−

1
2

))}
. (10)

Φ is the CDF of a standard Gaussian random variable, j is the
imaginary unit, and erf : C → C is the error function defined as
erf(z) � 2√

π

∫ z

0 e
−u2/2du.

Proof: See Appendix II-B. �
It is clear from (8) that the asymptotic distribution of the

GLRT under H0 (H1, resp.) is the distribution of the sum of N
independent truncated central (non-central) chi-square random
variables with one degree of freedom. The difference between
these results and the classical results for the unrestricted GLRT is
the truncation of the Gaussian random variables in (8) performed
by the operator {·}+.

Remark 1: The asymptotic characterization in Lemma 1 is
important because it provides theoretical guaranties, it allows
us to understand the impact of each involved parameter in the
GLRT performance, but also has a practical implication: the
distribution F 0

TG
(t) can be used to set the GLRT threshold for

obtaining Pfa ≤ ξ, where ξ is the desired size of the test. We will
use this in the numerical experiments in Section V.

IV. A GLRT-EQUIVALENT DISTRIBUTED STATISTIC

A. Algorithm Design and Performance Characterization

As we will discuss in Sections IV-B and V, the implementation
of the GLRT in distributed settings demands relatively high
communication resources (energy and bandwidth) and it has an
elevated computational complexity, especially for WSNs with
limited communications resources and computational capabili-
ties. We look for a more efficient approach in terms of network

resources to build a test suitable for distributed scenarios based
on the following observation: if each node considers only its
own measurements, thanks to the special structure of (4), it can
estimate its corresponding component of θ, and then build coop-
eratively a statistic with the others nodes. Specifically, we study
the L-MP statistic based on the product of the marginal PDFs
instead of the joint PDF in (5), where the parameter estimation
at each node is done using only its local measurements. This
statistic, noted hereafter as TL-MP, is defined as follows for the
problem at hand:

TL-MP(z1:L) �
N∏

k=1

maxθk≥0 fk(zk(1), . . . , zk(L); θk)

fk(zk(1), . . . , zk(L); 0)
, (11)

where fk(zk(1), . . . , zk(L); θk) =
∏L

l=1 pk(zk(l), θk) and

pk(zk(l), θk) = N (
√
Mθk, (θk + 1)2) (12)

is the marginal PDF of p(zl,θ) for the component zk(l). We
also define the local MLE of θk, k ∈ [1, N ] as

θ̂L-MLE,k � argmax
θk≥0

fk(zk(1), . . . , zk(L); θk). (13)

It is shown in Appendix III-C that the local MLE has the
following closed-form expression:

θ̂L-MLE,k

=
1

2

{√
(M + 2 +

√
Mm1

k)
2 + 4(m2

k +
√
Mm1

k − 1)

− (M + 2 +
√
Mm1

k)
}
+
k ∈ [1, N ], (14)

where m1
k � 1

L

∑L
l=1 zk(l), and m2

k � 1
L

∑L
l=1 z

2
k(l). Then,

(11) can be written as follows

log TL-MP(z1:L) =

N∑
k=1

log Tk, (15)

log Tk =

L∑
l=1

− log(1 + θ̂L-MLE,k) +
1

2
z2k(l)

− 1

2

(
zk(l)−

√
Mθ̂L-MLE,k

1 + θ̂L-MLE,k

)2

. (16)

We next prove that the L-MP detector (15) preserves the asymp-
totic performance of the GLRT.

Lemma 2: The asymptotic distribution of TG and TL-MP are
exactly the same under both hypotheses when L grows un-
bounded.

Proof: See Appendix III-A �
Remark 2: The previous result can be explained as follows.

As shown in (23) and (24) in Appendix II-B, the asymptotic
distribution of the GLRT under both hypothesesH0 orH1 (using
the weak signal assumption) depends on the Fisher information
matrix under H0, i(0N ). Given that i(0N ) is a diagonal matrix,
and its diagonal elements depends exclusively on the marginal
PDFs of the observations, the statistical properties of the GLRT
test in the asymptotic scenario is preserved by the L-MP test,
which is based on the marginal PDFs. Therefore, both tests are
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TABLE I
NETWORK COMMUNICATION RESOURCES FOR IMPLEMENTING THE GLRT AND

L-MP TESTS

asymptotically equivalent, and the statistical dependence of the
measurements for the finite data regime (c.f. (4)) has no influence
in the asymptotic scenario, when L→ ∞.

B. Communication Resources for the GLRT and L-MP

In Table I, we compare the communication resources (energy
and bandwidth) needed for implementing both the GLRT and
the L-MP tests. The energy and the bandwidth resources are
estimated as the number of transmissions and channel uses, re-
spectively. We consider three typical communication scenarios:
parallel access channel, multiple access channel and in-network
processing. In all cases, we assume that the communication is
through error-free channels.

As seen in (6), the implementation of the GLRT requires,
on the one hand, to compute L quadratic forms of the vector
zl, whose elements are the measurements of different nodes
for the time slot l ∈ [1, L]. On the other hand, it also requires
the computation of the global MLE (7). This is a resource-
demanding task that strongly depends on the network sizeN and
the number of samples at each nodeL, given that no closed-form
expression is available for it and an iterative algorithm is required
to solve the optimization problem with constraints. That is, there
is no processing strategy for building cooperatively (with or
without FC) and efficiently the GLRT. The naive approach of
communicating all sensor measurements to the FC using a PAC
channel requiresNL transmissions and channel uses. In the case
of IN-P (without a FC), a flooding algorithm [56] can be used to
communicate all measurements to the remaining nodes. In this
case, the N nodes transmit NfL messages, where Nf depends
on the network topology. Nf is proportional to the number of
edges of the graph that models the communication network, and
it is typically Nf > N [56]. A distributed algorithm designed
for using minimal communication resources should employ
substantially less transmissions than both previous strategies.
In the case of the MAC channel, there is no straightforward
strategy for implementing the GLRT and it is not considered in
this case.

The L-MP test requires the implementation of the statistic
(15). Its efficiency in terms of communication resources relies
on the fact that each node is able to compute the local statistic
(16) without cooperating with other nodes for this task, given
that, by definition in (11), it only depends on the locally acquired
observations. Therefore, no communication resources are spent
for this task. Then, only a cooperation step between the nodes
(or with the FC, if present) is needed for computing (15). In
the case of a MAC channel (when there is a FC), and after
some calibration step of the channels [57], the sensor node k
transmits log Tk simultaneously with the remaining sensor nodes
to the FC, which receives (15), if the communication noise

is negligible. Thus, N transmissions are needed but only one
channel use is required, given that all nodes use the channel
simultaneously. If the PAC channel is used instead, the local
statistics {log Tk} are communicated through orthogonal chan-
nels, and then (15) is implemented. This option requires N
transmissions andN channel uses. Finally, in a fully-distributed
scenario with in-network processing, (15) can be computed
with some consensus algorithm, as for example [28], where the
nodes transmit messages only to their neighbors. In this case,
βN transmissions and channel uses are required, where β is a
constant that depends on the network topology and the consensus
algorithm. Typically, β < N [28].

It is clear that the L-MP test is more efficient than the GLRT
test when using the PAC and IN-P communication strategies, and
it also could be implemented efficiently with a MAC channel.
In the next section, we also show the computational benefits of
the L-MP strategy.

V. RESULTS

Next we evaluate the performance of the L-MP statistic and
compare it against the GLRT and other detectors for finite-length
data. The source is assumed to be a communication signal,
as can be found in applications of spectrum sensing for IoT
devices [13], [58], [59]. In this section, we will consider two
possible distributions for the samples s(i): i) the circular com-
plex Gaussian distribution, as it was assumed for deriving the
model in Section II; and ii) a 16-QAM7 constellation with uni-
formly distributed symbols. The numerical performance of each
algorithm is computed using 105 Monte Carlo runs. The data is
generated following the model in (2), i.e., without considering
that the distribution of the energy measurements is Gaussian.
The channel variance σ2

n, which is equal to the quotient between
the received power (without considering the noise) and the
transmitted power, is modeled using the path-loss/log-normal
shadowing model [60],

σ2
n(dB) = K − 10α log10(dn/d0)− ηn, (17)

where dn is the distance between the source position and the
n-th node position, K (in dB) is the path-loss attenuation at
a certain distance d0, α is the path-loss exponent, and ηn is
a zero-mean Gaussian random variable with variance σ2

η which
models the shadowing effect. In order to compute dn, we assume
that the node positions are uniformly randomly distributed in
an square area of 1600 m×1600 m, centered at (0,0) m, and
the position of the radio source is (0,1000) m. In Fig. 2, we
show a realization of the sensor network topology. The channel
gains are determined as follows. For each Monte Carlo run,
σ2
n is sampled following (17). Then, as it is assumed that the

source and the sensors are static, the channel gains {hn}Nn=1

(which are the same for all time windows l ∈ [1, L]) are i.i.d.
sampled from the PDF CN (0, σ2

n). That is, we assume that the
channel amplitude is Rayleigh distributed, representative of a
non-line-of-sight slow fading channel. Therefore, with this pro-
cedure, and after considering all Monte Carlo runs, we are able to

7We have also simulated other constellation orders obtaining similar results.
We decided not to include them to keep the figures clear.
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Fig. 2. One realization of the network topology with N = 20 nodes (black
dots) and the radio source (red triangle) for the considered scenario.

TABLE II
SELECTED PARAMETERS FOR THE SIMULATION SETUP

TABLE III
TEST STATISTICS TO BE COMPARED

obtain the average performance of the detectors with respect to
the channels’ distribution (induced by the source-nodes distance
distribution, and the path-loss/shadowing model).

The chosen parameters for the simulation setup are shown in
Table II . The selected propagation model parameters (K, α,
d0 and ση) are typical for outdoors scenarios [60, Ch. 2]. The
signal-to-noise ratio is defined by SNR � Esσ̄

2

N0
, where σ̄2 is the

average variance of the channels (17) across the nodes. Notice
that the source energy Es is varied to be consistent with the
corresponding SNR.

We compare the performance of the L-MP algorithm against
the ones shown in Table III (see the definitions of the acronyms
in the third column). LR is the likelihood ratio test, which is the
optimal test when the vector parameter θ1 is perfectly known,
which is not the case in most of the applications of interest. It
is included only as a reference for comparison. Note that some
performance loss of the GLRT-based algorithms is expected with
respect to this genie-aided test statistic due to the estimation
errors of the unknown parameters.

The test statistic MD is the mean detector, i.e., the average of
all network measurements, and is equivalent to the equal gain

combining (EGC), typically used in low SNR regimes [61]. The
test statistic SD is the square detector. The SMC detector [30]
selects the highest average measured energy among all the
sensors. We also include two eigenvalue-based detectors (SSE
and ME), which are typically used in similar scenarios. These
detectors naturally consider the statistical dependence of the
observations under H1 at different sensor nodes, introduced
by the random signal source, given that they are based on the
eigenvalues {λn}Nn=1 of the sample covariance matrix of the
observations {zl}Ll=1. Nevertheless, judging by the theoretical
analysis in the previous section, and the following numerical
results, the statistical dependence appears to have a negligible
impact in the detectors’ performance in this scenario. Finally,
we also consider the Rao test statistic (RD).8

In the last column of Table III, we also include an estimation
of the computational complexity of each detector by computing
the average CPU time9 needed to implement the corresponding
algorithm for each Monte Carlo run for SNR= −10 dB. Observe
that the estimated complexity corresponds to the total complex-
ity of the algorithms, which includes the local complexity at
each sensor node. The computational cost of the L-MP test is
four orders of magnitude smaller that the one of the GLRT. It is
also less than the one of the eigenvalue-based algorithms (SSE
and ME) and SMC, and one order of magnitude more than the
remaining algorithms (MD, SD, and RD), whose performance is
degraded with respect to the L-MP test, as we will see next. The
high computational cost of the GLRT is due to the numerical
procedure needed for computing the positive constrained MLE
of theN -dimensional parameter θ1. We used here a trust-region
algorithm for which the number of iterations needed depends on
the scenario (fundamentally on the SNR) and the stopping cri-
teria parameters (e.g. the gradient tolerance and step tolerance).
We used the default settings [62].

In Figs. 3 and 4, we show the complementary receiver op-
erating characteristic (CROC) of the detectors, and the miss-
detection probability of the detectors against the SNR (with
Pfa ≤ 0.1), respectively, for different combinations of the pa-
rameters M and L, and when the source is circular complex
Gaussian distributed. Besides the genie-aided LRT test, the
GLRT and the L-MP tests achieve the best performance among
all implementable tests in the shown scenarios, and indistin-
guishably among them (their curves are superimposed). Con-
sidering the theoretical results of the previous section, this is
expected for the asymptotic scenario, when L grows to infinity,
however, we are obtaining that TG and TL-MP are almost equiv-
alent even for small data size (L = 10). We also note that the
asymptotic theoretical result of both GLRT and L-MP (labeled
as GLRT/L-MP-TH) predicts really well the performance of
the finite data case. A larger deviation between the curves
GLRT/L-MP-TH and GLRT/L-MP (computed through Monte
Carlo simulations) occurs when M decreases from 50 to 20.

8The statistic 1/L
∂ logp(z1:L;0)T

∂θ i(0)−1 ∂ logp(z1:L;0)
∂θ is the general ex-

pression for the Rao detector [51], and evaluates as it is shown in the table for
the model at hand.

9One core of an Intel Xeon CPU ES-2690 v2 3.0 GHz server is used for
running the simulations.
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Fig. 3. Complementary receiver operating characteristics when the source is
circularly-symmetric complex Gaussian distributed with the indicated M and
L, and SNR = −11 dB.

This behavior can be explained in terms of the real distribution of
the observations {zl} in (2), which, through the CLT theorem, is
closer to the multivariate Gaussian distribution for higher values
of M , and converges to it (in distribution) when M → ∞.

Observe that the Rao test is known to be asymptotically equiv-
alent to the GLRT, when the MLE is unrestricted, which is not the
case considered here. Its performance degradation with respect
to the GLRT and L-MP can be at least partially attributed to the
fact of not considering the positive constraint on the parameters
in the derivation of the statistic. The eigenvalues-based detectors
(SSE and ME) could potentially benefit from the correlation of
the observations of different nodes (i.e., the term θθT in (4)).
However, based on the asymptotically equivalence between the
GLRT and the L-MP detectors, and the numerical results shown
here, the correlation seems to be a second order effect for the
considered detection problem. In Fig. 5, we show the CROCs and
the miss-detection probabilities vs the SNR of the considered
detectors, when the distribution of the source is 16-QAM. The
results are quite similar to those obtained when the source is
circular complex Gaussian distributed (compare with Figs. 3(a)
and 4(a), also with M = 50 and L = 10).

Finally, in Fig. 6 (left figure) we show the deflection coef-
ficients for the GLRT and the L-MP computed through Monte

Fig. 4. Miss-detection probability vs SNR when the source is circularly-
symmetric complex Gaussian distributed with the indicated M and L, and
Pfa ≤ 0.1.

Carlo simulations for M = 50 and L = 10. On the right side
of the same figure, we plot the relative difference between both
of them. The deflection coefficient of a statistic is a measure
to characterize the detection performance of a test, which is
easy to compute and has a monotone correspondence with
the ultimate performance (the higher deflection coefficient, the
better detection performance) [42, Sec. 2.4]. It is defined as
DT = |E1(T )− E0(T )|/

√
Var0(T ), where Ei is the expec-

tation operator under Hi, i = 0, 1, and Var0 is the variance
operator under H0. We see that the GLRT performs slightly
better than the L-MP in the finite regime (L = 10), and that
the difference between both of them increases with the SNR.
Observe also that the SNR can be expressed as follows in terms
of the vector parameter θ1: SNR = E( 1

N

∑N
i=1 θn), where the

expectation is over the fading channels,hn. Therefore, the higher
the SNR, the higher impact of the observations’ correlation
(see (4)), and thus, the better performance of the GLRT as
compared to the L-MP. However, the small difference in the
deflection coefficients in Fig. 6 has little impact on the error
probabilities, as shown in Figs. 3 and 4. GLRT is expected to
work substantially better than the L-MP in much higher SNR
scenarios, where typically even simple detectors, such as the
sample mean detector, perform sufficiently well.
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Fig. 5. Results when the source is 16-QAM distributed with M = 50 and
L = 10.

Fig. 6. Deflection coefficients of the GLRT and the L-MP (left) and their
relative difference (right) for M = 50 and L = 10.

VI. CONCLUDING REMARKS

In this paper, we considered the problem of detecting a
stochastic radio source signal in a distributed scenario. When
the radio source signal is present, the network measurements
are shown to be statistically dependent and follow a PDF
parametrized by an unknown N -vector parameter, where N is

the amount of nodes of the sensing network. Moreover, the com-
ponents of this vector are constrained to be positive. Considering
the absence of an optimal test, we followed the GLRT approach.
Although the restrictions of the model make the characterization
of the GLRT more involved than the classical unrestricted GLRT,
we derived new theoretical expressions to assess its asymptotic
performance, when the amount of measurements at the nodes
tend to infinity.

In addition, we showed that the GLRT is not well suited
to distributed scenarios because the spatial correlation present
in the network measurements complicates the implementation
of the test. Therefore, we studied the L-MP test, where the
joint PDF of the observations is replaced by the product of the
marginal PDFs, and therefore, the data dependence structure
is completely discarded. This statistic is much more efficiently
implemented in distributed scenarios than the GLRT, and more
importantly, it preserves the GLRT’s asymptotic performance.
This theoretical result also allows us to conclude that the spatial
statistical dependence of the network measurements is irrelevant
to the detection problem in the asymptotic scenario. Monte Carlo
simulations show similar results in the finite-length data regime.

Future research directions may include evaluating the al-
gorithms with real measurements, considering scenarios with
multiple radio sources, and exploring optimal strategies for the
joint detection and localization problem of radio sources.

APPENDIX I
MOMENTS OF THE ENERGY SAMPLES

We compute the mean and covariance matrix of z under H1.
Under H0, they can be obtained by setting hn = 0, n ∈ [1, N ]
in the result. Equations (1) and (2) can be written in vector form
as yn = hns+ vn, and zn = 1√

MN0
(‖yn‖2 −MN0), where

s = [s(1), . . . , s(M)]T , and vn = [vn(1), . . . , vn(M)]T . Then,

E(zn) =
1√
MN0

E(‖hns‖2 + ‖vn‖2

+ 2�(h∗nsHvn)−MN0)

=
√
M
Es|hn|2
N0

, (18)

where we have used that E(‖s‖2) =MEs, the signal from the
source is independent of vn, and vn is a zero-mean random
vector. On the other hand, the covariance of zn and zn′ , with
n, n′ ∈ [1, N ] is

Cov(zn, zn′) =
1

MN2
0

E [(αn + βn + γn)(αn′ + βn′ + γn′)]

(19)

where αn = ‖hns‖2 − |hn|2MEs, βn = ‖vn‖2 −MN0 and
γn = 2�(h∗nsHvn) are all zero-mean random variables. Then,

E(αnαn′) =M |hn|2|hn′ |2E2
s ,

E(βnβn′) =MN2
0 δnn′ ,

E(γnγn′) = 2MN0Es|hn|2δnn′ ,
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where δnn′ is the Kronecker delta. The rest of the terms are
zero: E(αnβn′) = 0 because αn and βn′ are zero-mean and
independent random variables; E(αnγn′) = 0 because s and
vn′ are independent and vn′ is a zero-mean random vector;
and E(βnγn′) = 0 because s and vn′ are independent and s
is a zero-mean random vector. Finally, we use (18) and (19) to
obtain (3).

APPENDIX II
RESTRICTED GLRT’S PROOFS

A. Proof of Properties 1

P1) We start with the first property. Let z ∈ R
N . From [52,

eq. (3 C.5)], we have that

∂ log p(z;θ)
∂θk

= − 1
2 tr(Σ(θ)∂Σ(θ)

∂θk
) + ∂μ(θ)

∂θk
Σ−1(θ)(z − μ(θ))

− 1
2 (z − μ(θ))T ∂Σ−1(θ)

∂θk
(z − μ(θ)).

We also have that (μ(θ))i =
√
Mθi, and that (Σ(θ))i,j =

(1 + 2θi)δij + θiθj , for i, j ∈ [1, N ]. Then, their derivatives of
any order exist for any θ. On the other hand, we need to prove
that Σ−m(θ) exists, for (at least) m = 1, 2 and 3, in a given
neighborhood of θ = 0. A sufficient condition for that is Σ(θ)
to be positive definite, which is satisfied if |θi| < 1√

N−1
∀i. This

condition restricts the definition of the neighborhoodB ofθ = 0,
and guarantees that Σ(θ) is strictly diagonally dominant. Then,
a symmetric diagonally dominant real matrix with nonnegative
diagonal entries is positive definite. Therefore, Σ−m(θ) exists
for any positive integer m. Then, P1) is satisfied.

P2) It is straightforward to see that ∂3 log p(z;θ)
∂θk∂θj∂θi

can be

expressed as ∂3 log p(z;θ)
∂θk∂θj∂θi

= f1(θ) + f2(θ)
Tz + zTF3(θ)z,

where f1(θ), f2(θ) and F3(θ) are, respectively, a scalar, vector
and matrix bounded functions of θ, if θ ∈ B. In addition, the
expectation under p(z;θ) of the linear and quadratic terms of
z are also bounded, if θ ∈ B. Therefore, the second property
follows.

P3) is clearly satisfied given that i(0) = (M + 2)IN , as
shown in Appendix II-C.

B. Proof of Lemma 1

Using Theorem 1 from [54], the asymptotic distribution of
2 log TG(z1:L) under H0 is precisely the distribution of

uT i(0N )u− inf
θ:θ�0N

(u− θ)T i(0N )(u− θ), (20)

whereu ∼ N (0N , i(0N )−1). As can be seen in the next section,
i(0N ) = (M + 2)IN . Replacing this in (20), using that ũ �
i(0N )

1
2u ∼ N (0N , IN ), and observing that a positive scaling

factor does not affect the optimization set, we have

2 log TG(z1:L)
a∼ ‖ũ‖2 − inf

θ:θ�0N
‖ũ− θ‖2

=
N∑
i=1

ũ2i1(ũi ≥ 0), (21)

where ũi is the i-th component of ũ. We see that the asymp-
totic distribution of the GLRT under H0 is (8), i.e., the dis-
tribution of the sum of N independent truncated central chi-
square random variables with one degree of freedom. Then, it
is straightforward to show that the CDF and the characteristic
function (CF) of ũ2i1(ũi ≥ 0) are, respectively, Φ(

√
t)1(t ≥ 0)

and 1
2 (1 +

1

(1−2ıw)
1
2
), where Φ is the standard normal CDF.

Then, as ũi, i ∈ [1, N ] are i.i.d., the CF of
∑N

i=1 ũ
2
i1(ũi ≥ 0) is

1
2N

(1 + 1

(1−2ıw)
1
2
)N . Finally, by applying the binomial theorem,

and the inverse Fourier transform, we obtain the CDF in (9).
Now we characterize the asymptotic distribution of the re-

stricted GLRT under H1. Using P1) of Properties 1, consider
the following Taylor expansion

log p(z1:L;θ) = log p(z1:L;0) + a(z1:L)
Tθ − 1

2θ
TB(z1:L)θ

+ ‖θ‖3Op(L), (22)

with the following definitions: a(z1:L) � ∂ log p(z1:L;0)
∂θ ∈ R

N ,

and B(z1:L) � −∂2 log p(z1:L;0)

∂θ∂θT
∈ R

N×N . The last term of the
previous equation is due to the fact that each of the third-order
derivatives of p(z;θ) w.r.t. θi, θj and θk ∀i, j, k converges in
probability to a constant if they are normalized by the factor
1/L. Here we used the property P2) of Properties 1. Then, (5)
can be equivalently written as

log TG(z1:L) = max
θ�0N

log p(z1:L;θ)− log p(z1:L;0)

= max
θ�0N

a(z1:L)
Tθ − 1

2θ
TB(z1:L)θ

+ ‖θ‖3Op(L). (23)

Consider that the hypothesis H1 is true, and consider also the
weak signal assumption. Then, the first term of (23) converges
in distribution to a normal random variable (c.f. (26)). Second,
we have that [52, App. 7B] 1

LB(z1:L) → i(0) = (M + 2)IN
in probability, as L→ ∞. Thus, θTB(z1:L)θ = Op(1). Addi-
tionally, the third term of (23) converges to zero as Op(L

−1/2).
Therefore, when L is sufficiently large, we can solve the above
optimization problem considering only the first two terms of
(23). The fact that i(0) is a diagonal matrix makes the compu-
tation of the restricted GLRT easier given that

log TG(z1:L) =

N∑
n=1

max
θi≥0

− 1
2Bii(z1:L)

(
θi − ai(z1:L)

Bii(z1:L)

)2

+ 1
2Bii(z1:L)

(
ai(z1:L)
Bii(z1:L)

)2
+Op(L

−1/2)

(24)

In the last equation, ai(z1:L) and Bii(z1:L) are the i-th and
(i, i)-th element of a(z1:L) and B(z1:L), respectively. For
L large enough, 1

LBii(z1:L) > 0 (c.f. P3) in Properties 1).
Therefore, the i-th element of the positive constrained MLE is
θ̂i = { ai(z1:L)

Bii(z1:L)
}+, i ∈ [1, N ]. Then, (24) becomes

log TG(z1:L) =
1

2

N∑
n=1

{
ai(z1:L)√
Bii(z1:L)

}2

+

+Op(L
−1/2)



898 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023

=
1

2

∥∥∥∥{( 1
LB(z1:L))

−1/2 1√
L
a(z1:L)

}
+

∥∥∥∥
2

+Op(L
−1/2). (25)

Using P3) in Properties 1 and the classical results of the GLRT
theory [52, App. 7B] (i.e., the convergence in distribution of
1√
L
a(z1:L) via the central limit theorem and the continuous

mapping theorem), we have that

( 1
LB(z1:L))

−1/2 1√
L
a(z1:L)

a∼ N (
√
Li(0)1/2θ1, IN )

a∼ N (
√
L(M + 2)θ1, IN ) (26)

Using (26), it is clear that the asymptotic distribution of (25)
under H1 is (8), i.e., the sum of N independent non-central
truncated chi-square random variables with one degree of free-
dom. Unfortunately, this distribution has not a closed-form ex-
pression. However, it is actually possible to get its characteristic
function. From [29, Lemma 2, eq. (23)], we obtain (10).

C. Computation of the Fisher Information Matrix

When p(z;θ) is Gaussian, as in (3), the i, j-th component of
the Fisher information matrix can be computed as [52]

[i(θ)]i,j =
∂μ(θ)

∂θi
Σ(θ)−1 ∂μ(θ)

∂θj

+
1

2
tr

[
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 ∂Σ(θ)

∂θj

]
. (27)

From (4), we have ∂μ(θ)
∂θi

=
√
Mei, and ∂Σ(θ)

∂θi
= (θeTi +

eiθ
T ) + 2eie

T
i , where ei ∈ R

N is the canonical vector with
value 1 in the i-th coordinate and 0 otherwise. Then, i(0N ) =
(M + 2)IN .

APPENDIX III
RESTRICTED L-MP’S PROOFS

A. Proof of Lemma 2

In order to characterize the asymptotic distribution of TL-MP

under H0, we can apply again Theorem 1 in [54] separately to
each of the N scalar optimization problems in (11). Then, the
asymptotic distribution of 2 log TL-MP(z1:L) underH0 coincides
with the distribution of

N∑
k=1

(
jk(0)u

2
k − inf

θk:θk≥0
jk(0)(uk − θk)

2

)
, (28)

where uk ∼ N (0, jk(0)
−1) with k ∈ [1, N ] are independent

random variables, and jk(0) = E((∂ log pk(zk;0)
∂θk

)2). Using (27),
we have jk(0) =M + 2 for all k. Then, it is evident that
the distribution of (28) and (21) is the same, proving that the
asymptotic distribution of TG and TL-MP under H0 are equal.

Now it remains to find the distribution of the restricted TL-MP

under H1. Consider the following definitions: pMP(z1:L; θ) �∏N
k=1

∏L
l=1 pk(zk(l); θk), ã(z1:L) � ∂ log pMP(z1:L;0)

∂θ ∈ R
N ,

and B̃(z1:L) � −∂2 log pMP(z1:L;0)

∂θ∂θT
∈ R

N×N . It is straight-

forward to show that also in this case 1
LB̃(z1:L) → j(0) =

(M + 2)IN , in probability, where j(0) is defined in (33). Using
the same arguments than in the previous section, we can express
the restricted L-MP as follows:

log TL-MP(z1:L) = max
θ�0N

log pMP(z1:L;θ)− log pMP(z1:L;0)

= max
θ�0N

ã(z1:L)
Tθ − 1

2θ
T B̃(z1:L)θ

+ ‖θ‖3Op(L).

=
1

2

∥∥∥∥{( 1
LB̃(z1:L))

−1/2 1√
L
ã(z1:L)

}
+

∥∥∥∥
2

+Op(L
−1/2). (29)

From the asymptotic distribution of the unrestricted L-MP under
H1 in (36) (see next section), we have that

( 1
LB̃(z1:L))

−1/2 1√
L
ã(z1:L)

a∼ N (
√
L(M + 2)θ1, IN ).

(30)

Now, comparing (29) and (30) with (25) and (26), we conclude
that the asymptotic distribution of the restricted L-MP is exactly
the same as the restricted GLRT.

B. Asymptotic Distribution of the Unrestricted L-MP Under
H1

The following results are used to prove the asymptotic dis-
tribution of the unrestricted TL-MP (actually 2 log TL-MP) under
H1. The proof is found in [33].

Lemma 3: Assume i) the first and second-order derivatives
of the log-likelihood function are well defined and continuous
functions. ii) E[∂ log pk(zk(l); θk)/∂θk] = 0, ∀l, k ∈ [1, N ].
iii) the matrix j(θ1) defined in (33) is nonsingular. Then, the
asymptotic distribution of TL-MP under H1 is:

2 log TL-MP(z)
a∼ gN (μMP,1,ΣMP,1), (31)

where μMP,1=
√
LiMP(θ1)

1
2 (θ1 − θ0), and ΣMP,i=iMP(θi)

1
2

j(θi)
−1ĩ(θi)j(θi)

−1iMP(θi)
1
2 , i = 0, 1, pMP(zl;θ1) � ΠN

k=1

pk(zk(l); θ1k) is the product of the marginal PDFs used for
building TL-MP, and

[̃i(θ1)]kj � Eθ1

(
∂ log pk(zk(l);θ1k)

∂θk

∂ log pj(zj(l);θ1j)
∂θj

)
, (32)

[j(θ1)]kj � −Eθ1

(
∂2 log pk(zk(l);θ1k)

∂θk∂θj

)
, (33)

iMP(θ1) � Eθ1

(
∂ log pMP(zl;θ1)

∂θ
∂ log pMP(zl;θ1)

T

∂θ

)
, (34)

where the expectations are taken with respect to p(z;θ1). We
also define gN (μ,Σ) as the PDF of ‖n‖2 when n ∼ N (μ,Σ).

Corollary 1: If the signal to be tested is weak, i.e., there exists
a constant c such that ‖θ1 − θ0‖ ≤ c√

L
, then, as L→ ∞,

‖μMP,1‖2 = L(θ1 − θ0)
T iMP(θ0)(θ1 − θ0), (35)

and ΣMP,1 = ΣMP,0.
Now we evaluate the quantities defined in the previous re-

sults for p(z;θ) in (3) under the weak signal hypothesis. It
is straightforward to show that ĩ(0N ) = iMP(0N ) = j(0N ) =
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(M + 2)IN . Thus, ΣMP,1 = ΣMP,0 = IN . Using (35), we ob-
tain ‖μMP,1‖2 = L(M + 2)‖θ1‖2. Finally, the asymptotic dis-
tribution of the unrestricted L-MP is

2 log TL-MP(z)
a∼ gN (L(M + 2)‖θ1‖2, IN ) ∼ ‖n‖2, (36)

where n ∼ N (
√
L(M + 2)θ1, IN ).

C. Derivation of the Local MLE

Consider sensor k and its energy measurements denoted
by zk = [zk(1), . . . , zk(L)]

T . The distribution of zk under
H1 is zk ∼ N (

√
Mθk1L, (θk + 1)2IL). The log-likelihood

logLk(z
k; θk) is given by (neglecting terms which do not

depend on θk):

log p(zk; θk) ∝ −L log(1 + θk)− 1

2

∥∥∥∥∥z
k −√

Mθk1L

1 + θk

∥∥∥∥∥
2

.

Deriving this expression with respect to θk and equaling it to
zero, it is easy to show that the solution for the MLE has to
satisfy the following quadratic equation as long as at least one
root is positive (i.e. it belongs to the optimization set):

θ2k + (M + 2 +
√
Mm1

k)θk − (m2
k +

√
Mm1

k − 1) = 0.
(37)

If both roots are negative, it can be shown that the log-likelihood
is decreasing as a function of θk in the interval [0,∞), meaning
that the MLE is 0 for that case. If one root is positive and the
other is negative, the positive root is the solution (i.e., the one
with positive radical). It also can be shown that it is not possible
to have both roots positive. Thus, the local MLE can be expressed
as (14).
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