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1.6 GHz Frequency Scanning of a 482 nm Laser
Stabilized Using Electromagnetically
Induced Transparency

Krishnapriya Subramonian Rajasree, Kristoffer Karlsson™, Tridib Ray

Abstract— We propose a method to continuously frequency
shift a target laser that is frequency stabilized by a reference laser,
which is several hundreds of nanometers detuned. We demon-
strate the technique using the 55,5 — 5P3,5 — 29D5,> Rydberg
transition in 3’Rb vapor and lock the 482 nm target laser to the
780 nm reference laser using the cascaded electromagnetically
induced transparency signal. The stabilized frequency of the tar-
get laser can be shifted by about 1.6 GHz by phase modulating the
reference laser using a waveguide-type electro-optical modulator.
This simple method for stable frequency shifting can be used
in atomic or molecular physics experiments that require a laser
frequency scanning range on the order of several GHz.

Index Terms— Laser frequency stabilization, Rydberg atom,
electromagnetically induced transparency, laser scanning.

I. INTRODUCTION

ANY modern atomic and molecular physics experi-

ments require a laser with a stabilized frequency, which
can be shifted or scanned over a desired amount, typically
up to a few GHz, in order to address a specific transition
between energy levels of interest. Usually, resonant absorption
on optical transitions, frequency combs, or optical cavity
resonances are used as a reference to stabilize lasers to a
particular frequency. Some techniques in common use for
direct frequency referencing include saturated absorption spec-
troscopy [1], Sagnac interferometry [2], Pound-Drever-Hall
locking [3], [4], and dichroic atomic vapor laser locking [5].
In addition, techniques such as electromagnetically induced
transparency (EIT) or beat note locking can be used to lock
the relative frequency of two lasers [6]-[10]. The first method
is widely employed in situations where it is difficult to obtain
a direct absorption signal, such as the excitation of a neutral
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atom to a Rydberg level using a cascaded process [11]-[13].
The disadvantage of this technique is that it tends to provide
discrete frequency reference shifts. Beat note locking can be
used for a continuously varying frequency shift, but the target
laser can only be separated from the reference laser by up to
a few GHz.

Some of the more common methods to arbitrarily shift a
laser frequency from a stabilized reference point include using
an acousto-optical modulator (AOM) or an electro-optical
modulator (EOM). Laser stabilization using an AOM by
modulating the carrier frequency has been demonstrated [14]
and this method is suitable for probing very narrow absorption
features. To reach GHz shifts using an AOM, a single pass
is typically not sufficient. Therefore, configurations including
2-, 3-, 4-, 6-, and even 12-passes [15]-[19] have been imple-
mented. When using an AOM, the frequency-shifted light is
separated from the carrier (that is the zeroth order beam) via
diffraction. However, the entire frequency range under consid-
eration cannot be covered by a single modulator. Moreover,
the change in frequency can cause a change in intensity of
the frequency-shifted light if the diffraction efficiency of the
modulator is not uniform over the full frequency range.

In contrast, when using an EOM, the attainable frequency
shift can be much larger (for the non-resonant or broadband
case); up to 40 GHz offset using a 10 GHz modulator has
been demonstrated [20] by using the 4th-order sidebands and,
more recently, up to 46 GHz was obtained using the 10th-order
sidebands [21]. However, EOMs require a high driving voltage
over the desired range and the shifted sidebands co-propagate
with the carrier, meaning they cannot be spatially separated
unless a narrow-band cavity is used [22].

In this letter, we demonstrate laser locking and subsequent
frequency shifting up to =800 MHz of a 482 nm target laser
using EIT with a waveguide-type EOM employed for shifting
the frequency of a 780 nm reference laser. The quality of the
frequency stabilization achieved is demonstrated in terms of
both stability and scanning range. The work was motivated by
our need for a tunable, frequency-stabilized laser for cascaded
Rydberg atom excitation in 87Rb [23].

II. EXPERIMENTAL DETAILS
We focused on frequency shifting a frequency stabilized
laser so as to excite 8’Rb atoms from the 55 /2 ground level
to the 29D5,, Rydberg level via the 5P3/; intermediate level
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Fig. 1. (a) Simplified energy level diagram for 87Rb showing the relevant

transitions. The ground level 582, the intermediate level 5P3,5 and the
Rydberg level 29Ds); constitute the cascaded three-level system. J is the
frequency shift on the 780 nm reference laser from the resonance condition.
(b) Schematic of the experimental setup. The 482 nm target laser and the
780 nm reference laser pass through the 87Rb-enriched vapor cell in a
counter-propagating configuration. Absorption of the 780 nm light in the
absence and presence of the 482 nm light is detected on Pl and P2,
respectively. The difference between the two signals yields the Doppler-free
EIT signal, which is used to frequency stabilize the 482 nm laser. EOM:
electro-optic modulator; H: half-wave plate; PBS: polarizing beam splitter; M:
mirror; DM: dichroic mirror; BD: Beam dump; P1, P2: balanced photodiodes.
The different colored arrows indicate different wavelengths of light, red for
780 nm and blue for 482 nm.

using a cascaded excitation process, as shown in Fig. 1(a).
The experimental setup is shown in Fig. 1(b). We used a
natural abundance rubidium vapor cell to frequency lock a
780 nm laser (DL pro, Toptica) on the 8>Rb 5812(F=3) —
5P; /2(F/ = 3,4)., transition using saturated absorption spec-
troscopy (SAS). The locked 780 nm laser acted as the ref-
erence while the target laser at 482 nm was derived from a
frequency-doubled high power laser (TA SHG pro, Toptica).
The aim was to scan the target laser across the Rydberg
transition (see Fig. 1(a)), for which the direct absorption
strength is very weak, hence a signal is difficult to detect.
For stabilizing the target laser frequency we relied on
Rydberg EIT [24]; the 780 nm reference laser at a low power
(50 uW) was used as the probe and the 482 nm target
laser (90 mW) acted as the pump to produce the EIT signal.
The Rydberg EIT experiments were done in a 8’Rb-enriched
vapor cell (TT-RB87-75-V-P, TRIAD Technology Inc.) of
dimensions 25 mm Xx 75 mm, at room temperature. Since
the reference laser addressed the 5Rb 5S;,,(F = 3) —
5P (F "= 3,4)., transition and the vapor cell was enriched
with the 8’Rb isotope, the conditions necessary to observe
EIT were not met. To overcome this, we sent the refer-
ence laser through an EOM (NIR-NPX800 LN-10, Photline
Technologies) to produce sidebands at the desired frequency.
The EOM used is a Mach-Zehnder waveguide-type intensity
modulator with a high bandwidth, low drive voltage, and low
insertion loss, driven by a radio frequency (RF) synthesizer.
Almost any wideband EOM and modulation method that can
create frequency tunable narrow sidebands could be used. The
frequency separation between the 8Rb 55 p(F = 3) —
5P;p(F' = 3,4), and the 3Rb 5851,(F = 2) —
5Py (F " = 3) transition, used to drive the Rydberg excitation,
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Fig. 2. (a) Saturated absorption spectrum for Rb obtained from a commercial
frequency locking interface (Digilock, Toptica). The frequency separation
between the 85Rb 551 /2(F = 3) — 5P32(F' = 3,4)¢, and the 3'Rb
5812(F =2) — 5P3/2(F’ = 3) transition is 1.0662 GHz as shown. (b) A
typical 780 nm probe EIT signal used for locking the 482 nm target laser to
the 87Rb 5P3/2 = 29Ds); transition.

is 1.0662 GHz and ¢ represents a shift from this frequency
(see Figs. 1(a) and 2(a)).

The radio frequency (RF) signal to the EOM was chosen
so as to adjust the sideband frequency by (1.0662+6) GHz,
thereby ensuring that the EOM output satisfied the EIT con-
dition in 8’Rb. This then guaranteed that the frequency of
the 482 nm laser was also correct. The transmission of the
780 nm probe laser through the atomic vapor in the presence or
absence of the 482 nm pump was detected using photodiodes,
P1 and P2, respectively, see Fig.1(b). When the 482 nm laser
was resonant with the Rydberg transition, we observed a peak
in the 780 nm transmission and this was the desired EIT
signal, see Fig. 2(b). Here, in this EIT-based locking technique,
the EIT signal was generated from a two-photon resonance
and, as such, the target laser was locked relative to the
reference laser. Only one of the EOM sidebands participated
in the EIT process and both the carrier and the other sideband
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Fig. 3. Shift in the frequency of the 482 nm target laser as a function of
the applied radio frequency to the EOM. The total shift achievable is on the
order of 1600 MHz. The zero frequency corresponds to 0 = 0.

passed through the vapor cell without any interaction. The EIT
signal was modulated so as to yield an error signal, which was
then used to lock the target laser.

III. PERFORMANCE AND DISCUSSION

The RF signal applied to the EOM was varied to ensure that
the sidebands were detuned from the 8’Rb cooling transition,
5812(F = 2) — S5P3p(F’ = 3), by d. To satisfy the
resonance condition, the frequency of the target laser shifts
by an equivalent amount —J. In fact, the RF signal to the
EOM could either be kept fixed so as to lock the target laser
to a specific frequency or it could be varied continuously in
order to shift the frequency of the target laser. Importantly,
this technique does not change the intensity of the target laser
output. Figure 3 is a plot of the 482 nm target laser frequency
shift as a function of the applied RF signal to the EOM. We see
that the target laser shifted over about 1600 MHz (+800 MHz)
as the RF signal was changed by 892 MHz (£446 MHz).
Note that the power of the 482 nm laser was constant over the
frequency scan and no compensation techniques, such as those
usually required when an AOM is used to shift the frequency,
were needed.

Figure 4 presents the frequency stability of the 482 nm
target laser over a reasonably long time of 75 minutes when
locked using the presented technique. We can see rapid fre-
quency fluctuations of £0.4 MHz and an overall frequency
drift of ~0.5 MHz. These values are within the range of the
wavemeter used for the measurements (HighFinesse Angstrom
WS-6/600 with a stability of £2 MHz). The lock stability
using the first order output from the EOM was comparable
and equivalently as good as the zeroth order lock previously
demonstrated for a Rydberg level [25] and the frequency
stability demonstrated was sufficient for a typical atomic
physics experiment [23].

The limitation on the frequency scanning range was
+800 MHz. This arises from the Doppler width of the
87Rb cooling transition manifold. Beyond the Doppler broad-
ened absorption, it becomes harder to obtain an EIT peak.
An alternative approach would be to lock the frequency of the
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Fig. 4. Fluctuations (rapid changes) and drift (slow variation) in the frequency
of the 482 nm target laser as a function of time when frequency locking
is on.

482 nm laser to a reference laser using an optical phase-locked
loop [26]. The beat note generated could be referenced to an
RF signal and the frequency of the target laser could then
be varied more or less arbitrarily without changing the light
intensity [27]. However, the implementation of this technique
would be significantly more complicated and limited to refer-
ence and target lasers with adjacent frequencies, typically not
separated by more than a few GHz. In contrast, our technique
provides a simple, stable method to produce a phase-coherent
pair of laser beams which are hundreds of nm apart.

IV. CONCLUSION

In summary, we have shown a novel method to shift a
stabilized laser by a desired frequency. A reference laser at
780 nm, which was hundreds of nanometres away from the
target laser at 482 nm, was used for the frequency stabilization.
Though the methods of using amplitude or phase modulation
by an EOM or using EIT in a hot alkali vapor cell to stabilize
a laser are well-established in their own rights, combining
the phase-modulated light with an isotope-enriched 3’Rb cell
to generate the EIT signal is novel. This technique involves
only one sideband (which can be scanned in frequency) to
take part in the EIT process while the carrier and the second
sideband pass through the cell without participating in the
process. This simple trick is exploited to scan or shift the
frequency of the target laser deterministically, while it remains
locked in frequency with respect to the reference laser. This
method of achieving a subnatural linewidth stable target laser
with a long range frequency scan (1.6 GHz) can be used
for atomic physics experiments involving Rydberg levels [23].
The frequency shift is limited by the Doppler width of 8’Rb,
which is used for obtaining the EIT signal. The range could
be extended by heating the vapor cell. Alternatively, a larger
pump power could be used to get an EIT-signal that is beyond
the Doppler width.

While we have focused on a specific ladder-type EIT con-
figuration, the technique could also be used to lock any laser
used for excitation from 5P3/3 to nSy/2, nD3/2 or nDs ;. For
example, a 776 nm laser could be locked to a master 780 nm
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laser using a similar technique. It can also be extended to
lock lasers in A- or V-type EIT configurations. Other than for
Rydberg experiments, this relatively easy frequency locking
and shifting method could provide a simple alternative in a
wide range of AMO experiments when lasers with a large
detuning or large scan are required, for example, in long-term
precision measurements, such as frequency chirping, atom
clocks, atom interferometers, and laser frequency modulation.
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