IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 32, NO. 21, NOVEMBER 1, 2020

1381

Single-Pixel Salient Object Detection via Discrete
Cosine Spectrum Acquisition and Deep Learning

Yonghao Li, Jianhong Shi*, Lei Sun, Xiaoyan Wu, and Guihua Zeng

Abstract— Single-pixel imaging (SPI) can reduce the cost and
have the potential of being competent for some challenging tasks.
However, for a SPI system, acquiring detailed information from
a complex scene for complex vision task is a measurements-
consuming process, by which low efficiency resulted is one of the
important obstructions of SPI for practical application. Reason-
able allocation of resources of measurements and calculations is
one of the effective solutions to this problem. As a preprocessing
procedure with a role of guidance, salient object detection can
help the vision system focus more attention on the area with
more important information to improve the efficiency. Therefore,
in this letter, we explore the implement of salient object detection
based on SPI system and present a scheme via discrete cosine
spectrum (DCS) acquisition and deep learning model.

Index Terms— Single-pixel imaging, salient object detection.

I. INTRODUCTION

S A computational imaging system, SPI can break
through the limit of hardware by powerful data post-
processing [1]. Meanwhile, compared with a pixelated detec-
tor, the fabrication of a single-pixel detector with fast timing
response, high sensitivity to low light or effectivity to invisible
light is cheaper and easier. Thus, SPI has potential of eco-
nomically completing the tasks which conventional imaging
system can do and applications on some challenging scenarios
such as remote sensing [2], weak light imaging [3] and scatter
imaging [4]. But for a SPI system, acquiring detailed informa-
tion from a complex scene to meet the needs of some complex
vision tasks always consumes a great many measurements and
results low efficiency, which is one of the important causes
to block the practical process of SPI. It is worth noting that
there is a certain amount of redundant information in nature
scene and the detection of them is usually useless for many
vision tasks. Therefore, reasonably allocating the resource
of detection and calculation is an effective way to increase
efficiency of a SPI system for practical vision application.
Salient object detection, commonly serving as preprocessing
procedure in many complex vision tasks including object
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recognition [5], visual tracking [6], robot navigation [7], etc.,
is in imitation of the human’s talent that the regions of
attractive objects in complex nature scene can be rapidly
captured and more information from these areas is processed
in full detail leaving the inessential from other areas relatively
unprocessed, which greatly ensures the human vision system
efficiently and normally working. Such an ability can be
introduced into a SPI system as a preprocessing step to
locate the areas with more important information in the scene,
which can direct the SPI system to focus more detection
and calculation on these areas to improve the efficiency of
subsequent vision tasks. Meanwhile combined with the SPI’s
advantages of compressive sensing at data acquisition step
and stronger adaptability to challenging applications, salient
object detection based on a SPI system has potential to
be a low-measurements-consumption preprocessing procedure
with potential applications on some challenging scenarios.
Therefore, the research on salient object detection based on
a SPI system is valuable.

In this letter, we explore the implement of salient object
detection based on a SPI system and present a scheme via
more efficient acquisition of DCS and deep learning model.
In proposed scheme, the DCS of scene is acquired. And for
taking the SPI’s advantage of compressive sensing at data
acquisition step, a CNN-based model which can detect the
regions of salient objects in the scene reconstructed from the
undersampled DCS is trained. Simulation and experiment are
conducted to verify feasibility of the proposed scheme.

II. THEORIES AND METHODS

The two set of discrete cosine basis patterns [8] for illumi-
nation can be expressed as

Pi(x,y;u,v)==xa-cu)c(w)Cx,u, M\)C(y,v, N)+b (1)

where (x, y) is the spatial coordinates; (u,v) is the spatial
frequency; a is the contrast; c(r) = 1/[2 when 7 = 0;
c(t) =1 when 7 #0; C(,w,k) = cos [(0 + 0.5 wr /k]; M
and N indicate that size of image R(x, y) to be reconstructed
is M x N; b is a constant to ensure no negative number in
Py (x, y; u,v). To make the digital micromirror device (DMD)
with high ceiling of modulation speed available, we use
upsampling and Floyd-Steinberg error diffusion dithering [9]
to binarize the gray-scale patterns Py (x, y; u,v), which can
be denoted as

Ppi(x, y;u,v) = F{U{P+(x, y: u,v)} )

where Ppi(x,y;u,v) are binary discrete cosine basis pat-
terns; a and b are set to 0.5; U, {e} denotes »-folds upsampling
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Fig. 1. Training images with different utilization ratios of DCS.

by ‘bicubic’ image interpolation algorithm; F{e} denotes
Floyd-Steinberg error diffusion dithering. After the pro-
jected patterns Ppy(x, y; u, v) illuminating the scene T (x, y),
the corresponding responses D4 (u, v) of detector to reflected
light can be shown as follow:

nM—1nN—1

D:I:(uav):k' z z PB:I:(x»y§”»U)'T(X,Y)+e (3)

x=0 y=0

where k is the scale factor depending on the size and location
of detector and e is the response of detector to background
illumination. The DCS RD(u, v) of the reconstructed image
R(x, y) can be obtained by canceling out the effect of constant
b introduced in Egs. 1, 2 and the response to background
illumination e, which can be shown as

D .(U,V)+D_(U,V)
2

where (U, V) is a selected and fixed frequency; 4 is a constant.
According to this method, sampling for a full DCS consumes
only M x N + 1 measurements which are nearly 50% fewer
than [8] and 33% fewer than [9].

After the DCS RD(u, v) acquired, the image R(x, y) of the
scene is reconstructed by inverse DCT to be the input of the
CNN-based model for extracting regions of the salient objects.
The CNN-based model in our scheme adopts the structure of
PoolNet [10] with ResNet-50 [11] as backbone but no joint
training with edge detection. For training the network, firstly
the 10553 images in training set of DUTS [12] are converted
to gray and resized to 128 x 128. Then, DCT is applied to
the preprocessed images to obtain their corresponding DCS.
Next, according to 4 squares with different sizes (respectively
64 x 64,32 x 32, 16 x 16, 8 x 8), we segment each spectrum
to generate other 4 spectrums, as shown in row (a) of Fig. 1.
Then, the corresponding images are acquired by inverse DCT,
as shown in row (b) of Fig. 1. So, 5 sets of images (in total
52765) with different utilization ratios (respectively 100%,
25%, 6.25%, 1.56%, 0.39%) of spectrum are generated as
training set. In the training phase, the 52765 training images
with 128 x 128 pixels are mixed together to train the network.
And as the settings in [10], the loss function is standard binary
cross entropy loss. The network is trained for 24 epochs by
Adam [13] optimizer with weight decay of 5e-4. The learning
rate is initially Se-5 and changed to 5e-6 after 15 epochs.
Parameters of ResNet-50 pretrained on the ImageNet
dataset [14] is used to initial the backbone and rest parameters
of the network are randomly initialized. The program of the
network ran on a graphics processing unit (NVIDIA TITAN
Xp) with Python version 3.7 using PyTorch 1.1.0.

RD(u,v) ={D(u,v) - }/ho(4)
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Fig. 2. (a) The results of several example object scenes. (The top row is object
scenes and corresponding ground truths; the rest of rows are the reconstructed
images at 5 different sampling ratios and the corresponding saliency maps);
(b) Example application on visual tracking with sampling ratio 1.56%.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Computational Simulations

In simulation, the theoretical feasibility of DCS-acquisition
method in our scheme is verified and the performance of the
trained CNN-model to input images reconstructed at different
sampling ratios of DCS is observed. We set M = N = 128,
n=2and U =V = 8. The 1000 images in ECSSD [15]
are converted to gray and resized to 256 x 256 as the test
object scenes to be illuminated. According to the segmentation
strategy shown in Fig. 1, the images of the test object scenes
are reconstructed at 5 different sampling ratios of DCS.
Then according to different sampling ratios, the 5000 test
reconstructed images with 128 x 128 pixels are divided into
5 batches and respectively input into the trained CNN-based
model. The reconstructed images and saliency maps of several
test examples are shown in Fig. 2 (a). And because F-measure
score and mean absolute error (MAE) are widely-used metrics
for evaluating the performance of salient object detection
models, we present the mean values of max Fy and MAE
on the overall test object scenes at different sampling ratios
in TABLE I. The higher F-measure score and the lower MAE
mean better accuracy. F-measure is denoted as Fjp:

Fo— (1 + %) x Precision x Recall
P = T2 X Precision + Recall

where Precision = |B N G|/|B|; Recall = |B N G|/|G|;
B is a mask generated by binarizing the prediction saliency
map S with a threshold; G is ground truth; | e | denotes the
accumulation of non-zero entries; A2 is empirically set to 0.3.
MAE is calculated by

5)

M—1N-1

1
MAE = —— > D186 ) — GG, ) (©6)

i=0 j=0

As the results shown in Fig. 2 (a) and TABLE I, accuracy
of salient object detection is decreased with the decrease of
sampling ratio. When the sampling ratio is reduced to 25%
which is sub-Nyquist sampling, the decrease of accuracy on
the whole test object scenes is small. It shows the possible of
saving measurements-consuming on the premise of ensuring
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TABLE I
MAX Fps AND MAES ON TEST OBJECT SCENES

100%  25% 6.25%
MaxFg 0.8581 0.8528 0.7820
MAE  0.0798 0.0834 0.0995

1.56% 0.39%
0.6909  0.6548
0.1292  0.1701

DMD

Computer

Beam Expansion

. Lens
Object scene

Lens Single-pixel detector

Fig. 3. Experimental setup. DMD: Digital micromirror device.

good accuracy. And when the sampling ratio is reduced to
6.25%, the system still works not badly. When the recon-
structed image become quite fuzzy with the sampling ratio
further declining to 1.56%, the rough shapes can also be
output on saliency maps, as shown in Fig. 2 (a). Even when
the reconstructed images are barely recognizable at 0.39%
sampling ratio, the sketchy location can be obtained. From
the results, we can see when the sampling ratio is too small,
the reconstructed image is greatly distorted and the accuracy
of salient object detection is obviously reduced. But for some
applications, the required accuracy of salient object detection
is low. For example, in the visual tracking [6], only location
information of object is needed but the contour information is
unimportant. So, there is no need to use more measurements
to reconstruct less distorted image used in [6] for locating the
salient object, as shown in Fig. 2 (b). It shows the potential to
save unnecessary measurements-consuming, according to the
requirements of different applications.

B. Laboratory Experiments

In laboratory experiments, we verify the practical feasibility
of the scheme by detecting two kinds of object scenes (one
is 2-dimensional (2D) picture printed on photo papers and
another is a complex object scene with 3D objects as salient
objects and 2D picture as background.). The experimental
setup is schematically shown in Fig. 3. The laser with wave-
length of 633 nm is expanded by a beam expansion. A DMD is
used to modulate the laser beam. The size of all object scenes
is 3.39cm x 3.39cm. And a charge-coupled device (CCD),
which works as a single-pixel detector, is used to collect the
intensity of light reflected from the object scene.

We set M = N =64, y = 4and U =V = 8.
There are 4097 binary discrete cosine basis patterns (4906
Ppy(x,y;u,v) and 1 Pp_(x,y;8,8)) with size 256 x 256
loaded into DMD for light modulation. By processing the mea-
sured light’s intensities (D4 (u,v) and D_(8, 8)), the image
with 64 x 64 pixels is reconstructed at 4 different sampling
ratios (respectively 100%, 25%, 6.25%, 1.56%) of DCS which
is segmented by 4 squares with different sizes (respectively
64 x 64, 32 x 32, 16 x 16, 8 x 8) in a similar way in Fig. 1.
Before inputting the reconstructed images into the trained
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TABLE II
MAES ON TEST OBJECT SCENES
Training  Test 100% 25%  6.25% 1.56%
128 x 128 64 x 64 0.1738 0.1814 0.1973 0.2138
128 x 128 128 x 128(upsampling) 0.0892 0.0998 0.1291 0.1705
64 x 64 64 x 64 0.1322 0.1342 0.1490 0.1782
@) b '
Fig. 4. (a) reconstructed image without denoising; (b) measured Dy (u, v);

(c) denoised RD(u,v); (d) reconstructed image with denoising.

network for salient object detection, we choose to resize them
to 128 x 128 by ‘bicubic’ image interpolation algorithm. The
reason for upsampling is as follows. We have done simulation
experiments similar with the one in Sec. III A. In simulation,
we set M = N = 64 and = 4. And the images of the test
object scenes are reconstructed at 4 different sampling ratios
of DCS. Other settings are the same as ones in Sec. III A. The
size of test reconstructed image is 64 x 64. We compare the
performances with and without upsampling. Moreover, we also
consider the result of that the test reconstructed image without
upsamling is input into the network trained by images with
size 64 x 64 generated in similar way in Sec. II. From the
MAESs shown in TABLE II, it shows better performance that
reconstructed images are resized to 128 x 128 before input
into the network trained by the method in Sec. II.

In our laboratory experiment, the measured Dy (u,v) is
introduced into some low-frequency noises which can be
inferred from that the mean plane of surface in Fig. 4 (b) has
a slow descending with the u and o increasing. Such noises
result some pixels in the area nearing the top row and leftmost
column of reconstructed image with high value, which makes
the trained network can detect nothing because the contrast of
input image is decreased as shown in Fig. 4 (a). To alleviate
the influence of the noises, we utilize the symmetry of DCT
and inverse DCT to design an simple denoising algorithm.
First, we apply DCT to the measured D, (u,v) for getting
DD(u’,v"), which makes the noises more concentrated on the
left and top boundaries of DD(u’, v"). Then we use a method
based on histogram statistics to generate a mask, of which the
flowchart is shown in Fig. 5. Next, we use MASK to get rid
of the high values in DD(u’, v"), which can be expressed as

DD'(u',v")y=DD',v") x MASK (', v") @)

Then according to the direction represented by orange arrows
in Fig. 5, we use the mean value of adjacent pixel values to
sequentially make up the hollows in DD’ (u’,v") and get the
DD”(u',v"). The denoised RD(u,v) with flat mean plane as
is shown in Fig. 4 (c) can be obtained by applying inverse
DCT to DD" (', v").

In our laboratory experiments, because the influence of
noises is small at sampling ratios 1.56% and 6.25%, RD (u, v)
is obtained by Eq. 4 but no denoising. At sampling ratios
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Limy, = Max{DD(u',v")}
Limgown =
Min{DD (', v")}
MASK = ones(M,N)

Make histogram statistics (the number
L) of bins is fixed to Bn and the bin

limits is from Limyy to LiMgown ) on
DD(u',v")

Yes
Limy,, and
Limgown changed 2

- e

Find the rightmost and

N leftmost bins, Bg and By, in

which the counts are greater
than Ct.

w S| N

Limy, = Up{Bg}
Limggyn = Down{B,}

if DD(',v") > Limyp, MASK(u',v") = 0;
ifDD(',v") < Limgown, MASK(W',v") = 0;
if u' € [h,M] and v' € [w,N], MASK(u',v") = 1;

Fig. 5. Flowchart of mask generation. (Max{e} and Min{e} respectively
denote returns of the max and min value of the matrix; ones(M, N) denotes
the generation of a M x N matrix with all value 1; Bn and Ct are constants
preseted according to the data characteristic; Up{e} and Down{e} respectively
denote returns of the upper and lower bounds of the bins; 4 and w is used to
limit the scope in DD (u’,v) to be denoised).

100%
25%
6.25%

1.56%

Fig. 6. The results of 2D object scenes. (The top row is object scenes and
corresponding ground truths; the rest of rows are the reconstructed images at
4 different sampling ratios and the corresponding saliency maps).

6.25% 1.56%

Fig. 7. The results of 3D object scenes. (The leftmost column is object scenes;
the rest of columns are the reconstructed images at 4 different sampling ratios
and the corresponding saliency maps).

25% and 100%, RD(u,v) is directly obtained by applying
the proposed denoising algorithm(Bn = 256, Ct = 8 and
h = w = 3) to measured D4 (u, v). The reconstructed images
and saliency maps of 2D object scenes are shown in Fig. 6.
And the ones of complex object scene are shown in Fig. 7.
The results show the feasibility and validity of our scheme
to the practical 2D and 3D object scenes. As the results
and the denoising process show, in the practical process of
data measurements, the introduced noises may influence the
quality of the reconstructed image. When the noises severely
destroy the global information of the reconstructed scene
like in Fig. 4 (a), the trained network may lose efficacy to
the acquired scenes. But because of the excellent antinoise
characteristic of DCT, some main noises could be alleviated
by designing simple denoising algorithm. And from Fig. 6 and
Fig. 7, we can see the trained network still works for the
reconstructed images with some noises which don’t greatly
influence the global information.
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IV. CONCLUSION

In this letter, we explore the implement of salient object
detection based on SPI system and present a scheme via DCS
acquisition and deep learning model. Fewer measurements
for DCS are needed. And a CNN-based model is used to
detect salient objects in the scene reconstructed from the
undersampled data. The proposed scheme shows the potential
of efficiency improvement, brought by salient object detection,
of a SPI system for complex vision tasks. And experimental
results and analyses also shows the flexibility of a single-
pixel salient object detection system for adapting different
application’s need. When well-defined boundaries are needed,
the more data can be measured in some applications such
as image segmentation [16] and photo synthesis [17]. When
only the sketchy location and region are enough, the more
measurements can be reduced in some applications such as
visual tracking [6] and object locating. It is believed that the
proposed scheme provides a promising strategy for single-
pixel salient object detection, and the single-pixel salient
object detection has potential to promote the process of SPI
applied on complex and practical tasks.
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