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Phase Error Scaling Law in Two-Wavelength
Adaptive Optics

Milo W. Hyde IV , Senior Member, IEEE, Matthew Kalensky , and Mark F. Spencer

Abstract— We derive a simple, physical, closed-form expression
for the optical-path difference (OPD) of a two-wavelength
adaptive-optics (AO) system. Starting from Hogge and Butts’
classic OPD variance integral expression [J. Opt. Soc. Am. 72,
606 (1982)], we apply Mellin transform techniques to obtain
series and asymptotic solutions to the integral. For realistic two-
wavelength AO systems, the former converges slowly and has
limited utility. The latter, on the other hand, is a simple formula in
terms of the separation between the AO sensing (i.e., the beacon)
and compensation (or observation) wavelengths. We validate this
formula by comparing it to the OPD variances obtained from
the aforementioned series and direct numerical evaluation of
Hogge and Butts’ integral. Our simple asymptotic expression
is shown to be in excellent agreement with these exact solutions.
The work presented in this letter will be useful in the design and
characterization of two-wavelength AO systems.

Index Terms— Adaptive optics, atmospheric turbulence.

I. INTRODUCTION

ONE of the first analytical treatments of adaptive-optics
(AO) correction concerned two-wavelength compensa-

tion, where atmospheric turbulence sensing—performed at one
wavelength λB—is used to correct for wavefront aberrations
at another λT [1], [2], [3], [4]. The motivation for this early
work was the development of artificial AO beacons, either
Rayleigh beacons or sodium guide stars [5], [6], [7], [8]. For
the latter, a laser excites sodium atoms in the mesosphere
that emit light at 589.2 nm. This light is used to sense and
correct for atmospheric-turbulence-induced optical wavefront
distortions. In astronomy, scientific observations are typically
performed at longer wavelengths in the short-wave infrared.
Quantifying the residual phase error or drop in image quality
(Strehl ratio) therefore became crucial.

Arguably the most influential work in this regard was that
of Hogge and Butts [3], who derived an integral expression
for the optical-path-difference (OPD) variance assuming weak
atmospheric turbulence (i.e., negligible irradiance fluctuations

Manuscript received 17 April 2024; accepted 8 May 2024. Date of
publication 13 May 2024; date of current version 20 May 2024. This work
was supported by the Joint Directed Energy Transition Office (JDETO).
(Corresponding author: Milo W. Hyde, IV.)

Milo W. Hyde IV and Mark F. Spencer are with the Air Force Institute
of Technology, Wright-Patterson Air Force Base, OH 45433 USA (e-mail:
milo.hyde@us.af.mil).

Matthew Kalensky is with the Naval Surface Warfare Center Dahlgren
Division, Dahlgren, VA 22448 USA.

Color versions of one or more figures in this letter are available at
https://doi.org/10.1109/LPT.2024.3399777.

Digital Object Identifier 10.1109/LPT.2024.3399777

or scintillation). Primarily motivated by the astronomical
application, they evaluated the integral numerically using the
Hufnagel–Valley model [9] for the index of refraction structure
constant C2

n and found that as long as λB < λT and |λB − λT|

was less than a few microns, the OPD variance (and ultimately,
the uncorrected phase error) was not overly punitive.

Others soon followed, including Holmes and Gudimetla [4],
Winocur [10], and Wallner [11]. Holmes and Gudimetla
quantified the effects of λB-λT separation on Strehl ratio.
Winocur investigated the OPD variances for the first five
Zernike modes/aberrations. Lastly, Wallner compared the
diffractive OPD error (initially studied by Hogge and Butts)
to refractive error caused by dispersion.

Based on the work of Hogge and Butts as well as these other
scientists, diffractive error was generally found to be negligible
for astronomical applications. Consequently, in the last few
decades, two-wavelength AO research has shifted toward
quantifying and correcting refractive or chromatic errors,
which are more prevalent in astronomical observation [9], [12],
[13], [14] as well as ground-to-satellite and satellite-to-ground
optical communications [15].

However, this focus has begun to change with the
development and fielding of terrestrial-based free-space optical
communication, laser remote-sensing, and other directed
energy systems [16]. The operational environment of these
systems (horizontal propagation paths and small fields of view)
mean that chromatic error is negligible and diffractive effects
become significant. Furthermore, in many instances, these
systems violate the conditions identified by Hogge and Butts,
e.g., λB > λT. Consequently, being able to easily quantify the
potential diffractive wavefront errors of a two-wavelength AO
system is important.

Several recent studies have investigated this problem [17],
[18], [19], but like the original works [3], [4], [10], the
research was predominately computational, either numerical
evaluation of integral relations (i.e., quadrature) or wave-
optics simulations. Reference [17] does derive closed-form
relations for two-wavelength phase error; yet, the expressions
are relatively complicated. Indeed, deriving simple formulas to
predict two-wavelength AO performance was not the purpose
of their work.

Our goal in this short letter is to obtain such a formula.
Starting with Hogge and Butts’ integral expression for the
OPD variance and applying Mellin transform techniques,
we obtain an exact series solution, expressed in terms of
hypergeometric functions, and an asymptotic approximation
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for the OPD variance. The former slowly converges for
realistic two-wavelength AO systems and is solely used to
validate the latter, which is both simple and physical. We verify
our asymptotic solution by comparing it to both the series OPD
variance as well as direct numerical evaluation of Hogge and
Butts’ integral. We lastly conclude with a brief summary of
our work.

II. THEORY

The starting point for our analysis is the two-wavelength
OPD variance given in Eq. (18) of [3], namely,〈

1ℓ2
〉
= 1.303
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where z is the propagation distance, D is the diameter of
the circular receiving aperture, C2

n is the index of refraction
structure constant, jinc (x) = 2J1 (x) /x , and J1 is a first-
kind, first-order Bessel function. Lastly, kB and kT are the
AO beacon and transmitter wavenumbers, respectively. Note
that Eq. (1) is derived assuming Kolmogorov atmospheric
turbulence [9], [20], [21] and that the beacon and transmitter
fields are plane waves. The phase variance σ 2

φ can be obtained
simply by computing the product σ 2

φ = k2
T

〈
1ℓ2〉 [3].

For constant C2
n (generally applicable to horizontal

propagation paths), the ζ integral can be evaluated in closed
form and Eq. (1) becomes〈
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where sinc (x) = sin (x) /x . Equation (2) can be written as the
sum of five integrals, such that〈
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While the ci are simply the coefficients of the sinc
functions, the αi define the “two-wavelength Fresnel zone
size,” which determines when (or if) diffractive phase errors
are significant [20]. We can estimate this parameter from the
argument of the third sinc function as l ∼

√
z |λT − λB|. For

small l, which implies short propagation distances z or small

λT-λB separations,
〈
1ℓ2〉

≈ 0. This situation corresponds
to the geometric optics region (or approximation) in classic
turbulence theory [9], [20], [21]. On the other hand, for large
l—implying large z and large |λT − λB|—diffractive phase
errors are significant and

〈
1ℓ2〉 > 0. Indeed, under these

conditions, the contributions to
〈
1ℓ2〉 from the sinc

(
α3κ

2) and
sinc

(
α4κ

2) terms are negligible, implying that the phases at
λB and λT are uncorrelated. Consequently,

〈
1ℓ2〉 simplifies to

the sum of the individual OPD variances at λB and λT [3].
Returning to Eq. (3), the first integral, after substituting

x = κ D/2, is equal to the Mellin transform of J 2
1 (x) evaluated

at s = −11/3 [9]. The result is
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A. Series Solution

We now focus on evaluating the second integral in Eq. (3).
Using Mellin transform properties and the Mellin convolution
theorem [9], [22], the second integral in Eq. (3), which we
represent as I hereafter, is equal to
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where the integration contour C crosses the real s axis between
−4 < Re (s) < −11/3. The integrand has simple poles at
s locations where the arguments of the numerator gamma
functions are negative integers. The integral converges for
all values of the parameter D/

√
2αi when the integration

contour is closed to the left. The result is an infinite series—
formed by the sum of the pole residues at s = −2m − 2 for
m = 1, 2, · · · , ∞—that converges slowly for large values of
D/

√
2αi . Recall that αi ∼ z/k, and therefore, large values

of the parameter are physically expected. Consequently, this
series solution is not desired nor useful in achieving our goal
of deriving a simple scaling law for

〈
1ℓ2〉. Nevertheless, since

we do use it for the results presented in Section III, we include
it here for completeness:
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where m Fn is a generalized hypergeometric function [23], [24].
Note that Eqs. (5) and (7) must be substituted back into Eq.
(3) to ultimately find

〈
1ℓ2〉.
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B. Asymptotic Solution

On the other hand, an asymptotic solution to Eq. (6) can
be found by closing the integration contour to the right,
circumscribing the poles at s = −2, s = 4m − 11/3, and
s = 2m + 1 for m = 0, 1, 2, · · · , ∞. For large values of
the parameter, this series converges quickly and therefore,
we only need a few terms of the series to obtain accurate
results. Focusing on the parameter’s exponent reveals

I ∼ D5/3
(

D
√

2αi

)−s−11/3

, (8)

which for the poles at s = −11/3, −2, 1/3, and 1, yields
powers equal to 0, −5/3, −4, and −14/3, respectively.
Consequently, we only need to include the contributions from
the first two poles as the others are negligible.

Applying Cauchy’s integral theorem [25], [26], we obtain

I ≈ 0.3354 D5/3
− 0.4715α

5/6
i . (9)

Substituting this and Eq. (5) back into Eq. (3) and simplifying
produces〈
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Reintroducing the αi yields the final result:〈
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The most interesting aspect of Eq. (11) is that it is
independent of the aperture diameter D. Indeed, when
multiplied by 1.303 C2

n z, the first term in Eq. (9) equals
the result in Eq. (5). This term is subsequently canceled by
the sums and differences in Eq. (3). If we include additional
pole contributions, Eq. (11) does depend on D; however, the
dependence is weak. We can quantify

〈
1ℓ2〉’s dependence

on D by evaluating Eq. (8) at s = 1/3; the result is〈
1ℓ2〉

∼ D−7/3. Consequently, the accuracy of Eq. (11)
generally suffers for two-wavelength AO systems with small
diameters. This is to be expected since small D results in a
small value of the parameter, which violates our assumption
that D/

√
2αi → ∞.

Before proceeding, we note that we can obtain an even
simpler

〈
1ℓ2〉 by assuming that 21/6 (λT + λB)5/6

≈ λ
5/6
B +

λ
5/6
T . In turn, Eq. (11) becomes〈
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This result implies that the OPD error in two-wavelength
AO systems is approximately “wavelength shift-invariant,”
i.e., it depends only on the difference between the beacon
and transmitter wavelengths and not on the wavelengths
themselves.

III. NUMERICAL RESULTS

In this section, we validate Eqs. (11) and (12) (and most
importantly, their physical implications) by comparing

〈
1ℓ2〉

to those obtained from the series solution in Eq. (7) and direct
numerical evaluation of the integral in Eq. (2).

Fig. 1. Scaled OPD variance versus λB comparing direct numerical
integration of Eq. (2), the series solution in Eq. (7), the asymptotic solution in
Eq. (11), and the asymptotic solution approximation in Eq. (12). These

〈
1ℓ2

〉
are labeled “Quadrature,” “Series,” “Asymptotic,” and “Asymptotic Approx,”
respectively and are distinguished by trace color and symbol. (a)–(d) show
the

〈
1ℓ2

〉
for λT = 2 µm, λT = 6 µm, and D = 25 cm, 50 cm, 75 cm, and

100 cm, respectively.

Figure 1 shows these results. The figure is composed of
four plots, wherein we show the “Quadrature” [numerical
evaluation of Eq. (2)], “Series” [see Eq. (7)], “Asymptotic”
[see Eq. (11)], and “Asymptotic Approx” [see Eq. (12)]
scaled OPD variances versus beacon wavelength λB (µm) ∈

[0.5, 10]. The
〈
1ℓ2〉 traces for each are delineated by color

and symbol. In (a)–(d), λT = 2 and 6 µm, and D = 25 cm,
50 cm, 75 cm, and 100 cm, respectively. Table I reports the
percent errors for the Series, Asymptotic, and Asymptotic
Approx results relative to the Quadrature

〈
1ℓ2〉 averaged

over λB.
Overall, the results shown in Fig. 1 and Table I validate

our asymptotic analysis. Comparing the λT = 2 µm values
of

〈
1ℓ2〉 in (a)–(d), we see the weak dependence of

〈
1ℓ2〉

on D. We observe the same weak dependence on D for the
λT = 6 µm

〈
1ℓ2〉. In the D = 25 cm plot, there is some error

in Eqs. (11) and (12), especially at large λB-λT separations.
Examining Table I, we see that the error in Eq. (11) decreases
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TABLE I
SERIES, ASYMPTOTIC, AND ASYMPTOTIC

APPROXIMATION PERCENT ERRORS

as D increases (as predicted), while the error in Eq. (12)
remains relatively constant and less than 3%. Furthermore,
comparing the λT = 2 µm

〈
1ℓ2〉 with the λT = 6 µm

〈
1ℓ2〉

in each of the Fig. 1 subplots, we observe the approximate
wavelength shift-invariance of

〈
1ℓ2〉, as the V-shaped traces

simply shift to the right.
Before concluding, it is important to note that the two-

wavelength OPD variance expressions derived in this letter
are applicable in weak atmospheric turbulence (i.e., negligible
scintillation). In turbulence conditions where scintillation
is present, the problem is not analytically tractable. Ref-
erence [19] numerically studied how scintillation affected
two-wavelength, phase-conjugate AO performance. Through
a series of wave-optics simulations, the authors found that
the Hogge and Butt’s

〈
1ℓ2〉 (and therefore, ours as well)

underestimated the true phase error. This difference was due
to the weak correlation of the rotational phases [8], [27], [28]
at λT and λB as well as not correcting the optical field’s
amplitude (phase-conjugate versus field-conjugate AO).

IV. CONCLUSION

In this letter, we derived a simple formula to predict
the OPD variance of a two-wavelength AO system. Starting
from Hogge and Butts’ OPD variance integral and applying
Mellin transform techniques, we obtained both an exact,
slowly converging series solution and an accurate, asymptotic
approximation for the aforementioned variance. The latter
implied that the two-wavelength wavefront error was weakly
dependent on the aperture diameter and furthermore, was
wavelength shift-invariant, i.e., only depended on the differ-
ence between the beacon and transmitter wavelengths and not
on the wavelengths themselves. To our knowledge, these two
findings have not been reported before. Lastly, we validated
our asymptotic approximation by comparing it to both the
series solution and direct numerical evaluation of Hogge and
Butts’ integral. The results were found to be in excellent
agreement. The work presented in this letter will be useful
in the design of optical systems that use two-wavelength AO.
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