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Abstract

Phasor measurement units (PMUs) are widely recognized
to be instrumental for enhancing the power system situational
awareness – a key step toward the future power grid. With
limited PMU resources and high installation costs, it is of
great importance to develop strategic PMU deployment meth-
ods. This paper focuses on optimally selecting PMU locations
for monitoring transmission line status across the wide-area
grid. To bypass the combinatorial search involved, a linear
programming reformulation is first developed to provide an
upper bound estimate for the global optimum. Furthermore, a
greedy heuristic method is adopted with the complexity only
linearly in the number of PMUs, while leveraging on the
upper bound estimate a branch-and-bound algorithm is also
developed to achieve a near-optimal performance at a reduced
complexity. Numerical tests on various IEEE test cases demon-
strate the validity of our proposed methods, greatly advocating
the satisfactory performance the simple greedy method at only
linear complexity. This suggests a hybrid method by using the
greedy solution as a warm start to reduce the number of BB
iterations.

1. Introduction

The lack of comprehensive situational awareness in wide-
area transmission systems has been identified as one of the
key causes for major blackouts [21]. To build an accurate
power system model in real time, it is highly crucial to timely
monitor the status of generators, transformers, and transmis-
sion lines by collecting measurements from remote meters.
Recently, phasor measurement units (PMUs) have been greatly
advocated to enhance the power system situational awareness,
due to their improved precision and higher sampling rate of
measuring phasor angles [14].

Thanks to the enhanced sensing capability, the PMU devices
have been exploited in a gamut of power system monitoring
tasks, ranging from line outage identification [17], [18], [26]
to state estimation [10], [12], to name a few. The tutorial
paper [19] also provides a list of PMU-enabled applications.

Notwithstanding the promising advancements that can be
offered, the PMU penetration has so far been rather low,
mainly limited by the associated installation and networking
costs. According to the North American Synchrophasor Initia-
tive (NASPI), the number of PMUs installed and networked
in the easter/western interconnection is expected to in the
order of 500 by the year 2014; see e.g. [10]. Hence, it is
particularly critical for power system operators to judiciously
select placement locations in view of the limited number of
PMU devices.

Several works have addressed how to optimally place PMUs
to support power system state estimation [10], [12]. A max-
min error norm criterion has been proposed in [24] for line
outage identification purpose. There also exists a large volume
of literature on the PMU placement strategies for topological
observability; see e.g., [10], [12] and references therein. Even
though the full range of PMU-enabled applications has not yet
been fully understood, it is widely appreciated that the PMU
placement problem needs to be addressed under a task-specific
framework.

The present paper is focused on the task of identifying
power line outages using the wide-area voltage phasor angle
measurements provided by PMUs in real time. Relying on the
grid-wide basecase information from the NERC System Data
Exchange (SDX) module [22], it has been demonstrated in
[17], [18], [26] that the grid topology change is detectable
using only a subset of phase angle measurements, even for
the case of multiple line outages. To exactly improve the
identification performance, the present work proposes to find
the optimal PMU locations by maximizing the success rate of
correctly detecting the line-outage events. It is worthy pointing
out that the line-outage identification framework developed
here can be extended to monitor more general power system
disturbances such as generator outages and load changes.
Hence, the proposed algorithms would also be instructive for
optimally placing PMUs to enhance the model observability
in validating generator or load parameters, and even broadly
for system anomaly detections.

The PMU placement problem for line outage identification
can be explicitly formulated as a discrete set optimization
problem (Section 2), for which finding the global optimum
is likely to incur a combinatorial complexity. To make it
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more tractable, a linear programming (LP) reformulation is
introduced by relaxing the combinatorial constraint as well as
advocating an approximation of the objective function (Section
3). However, it turns out the LP reformulation can only
attain a loose upper bound for the original PMU placement
problem. To directly tackle the combinatorial constraint, a
greedy heuristic method is adopted with only linear complexity
in the number of PMU devices, while a branch-and-bound
algorithm has also been offered which can attain a near-
optimal solution (Section 4). Simulated tests corroborate the
merits of the proposed algorithms and illustrate the trade-
off between performance and complexity (Section 5). The
simplified assumptions used are discussions and the proposed
algorithms are extended to more general scenarios (Section 6).
The paper is wrapped up with a concluding summary (Section
7).

Notation: Upper (lower) boldface letters will be used for
matrices (column vectors); (·)T denotes transposition; (·)−1

the matrix inverse; diag(. . .) the diagonalization operator; �
the entry-wise dot-product operator; 1 the all-one vector; 0

the all-zero vector; ‖ · ‖p the vector p−norm for p ≥ 1;
| · | the magnitude or cardinality of a set; S1\S2 the relative
complement of the set S2 in the set S1.

2. PMU placement: A first look

This section provides the modeling basics for our work and
the PMU placement problem formulation.

2.1. Models and assumptions

Consider a power transmission network with the refer-
ence bus 0, N buses in the set N := {1, . . . , N}, and L
transmission lines in the set E := {1, . . . , L}. Collect the
voltage phasor angles {θn} for all buses in N , in the vector
θ ∈ R

N ; and similarly for the injected real power {Pn} in
p ∈ R

N . The linearized DC power flow model is used only
to motivate the sparse overcomplete formulation for the line
outage identification problem. However, it is worthy pointing
out that our placement method does not reply on the DC
approximation at all, and in fact the AC flow model is assumed
for developing the PMU placement method both analytically
and numerically. This will become more clear later in Section
6.

The linearized DC power flow model asserts

p = Bθ, (1)

where B is the N × N bus susceptance matrix; see e.g.,
[23, Ch. 4]. Matrix B is uniquely determined by all line
susceptance {b�}L�=1, and the network topology E . It has been
shown in [26] that B can be viewed as the weighted Laplacian
matrix for the graph (N , E). To this end, consider the N ×L
bus-line incidence matrix M, where its �-th column m� has
only two non-zero entries ±1 corresponding to the two end-
buses for line � ∈ E . The weighted graph Laplacian is thus

given by

B =

L∑
�=1

b�m�m
T
� = MDbM

T (2)

where Db := diag(b1, . . . , bL). Notice that B is of full rank
and invertible after excluding the reference bus 0.

Suppose that due to changes in the system, e.g., cascading
failures at an early stage, several outages occur at the lines
in Ẽ ⊆ E . Line outages in the transmission network yield
the post-event graph (N , E ′), with1 E ′ := E\Ẽ . As in [17],
[18], [26], it is assumed that fast system dynamics are well
damped, and that the system settles down to a quasi-stable
state following the line outages. Furthermore, assume that the
outage lines in Ẽ will not result in islanding of the post-
event system; that is, the underlying graph will not become
disconnected. This precludes considerable changes between
pre- and post-event bus power injections, and the load profile
variation becomes negligible under the timescale of outage
events. Hence, the linear DC model for the quasi-stable post-
event network yields [cf. (1)]

p = B′θ
′ (3)

where B′ is the corresponding post-event weighted Laplacian
for (N , E ′).

The weighted Laplacian representation immediately implies
that the difference B − B′ =

∑
�∈Ẽ b�m�m

T
� . Substituting

this and (3) into (1) leads to the following for the phase angle
difference θ̃ := θ

′ − θ

Bθ̃ = (B− B̃)θ′ =
∑
�∈Ẽ

s� m� (4)

where s� := b�m
T
� θ, ∀�. Upon defining a� := B−1m�,

solving (4) with respect to (wrt) θ̃ yields

θ̃ = B−1

⎛
⎝∑

�∈Ẽ

s� m�

⎞
⎠ =

∑
�∈Ẽ

s� a�. (5)

This relation between Ẽ and θ̃ intuitively explains why it is
possible to utilize synchrophasor data to identify line outages.
Similar to the notion of line outage distribution factor (LODF)
which reflects changes in the real power flow during power
system contingencies [9], the vector a� can be considered as
the signature vector for the line �, in terms of changes in the
bus phasor angle.

2.2. Problem statement

This paper focuses on the problem of placing PMUs to
maximize the performance for identifying line outages. Given
the budget of NP PMU devices, letNP ⊆ N denote the subset
of NP locations chosen for PMU installation. Accordingly, let
θP be the observable sub-vector of θ, collecting phasor angles

1. As a mnemonic, post-event quantities are denoted with prime, and the
differences relative to their pre-event counterparts are denoted with tilde.

2484



at buses in NP ; and similarly for the sub-vectors θ′P and θ̃P .
Extracting only the rows in (4) corresponding to NP , one can
obtain

θ̃P =
∑
�∈Ẽ

s� a�,P (6)

where a�,P is also constructed by selecting the entries from
NP .

Now the problem amounts to identifying the lines in Ẽ using
the available θ̃P . By enumerating all the line combinations
for a given cardinality of Ẽ , it is possible to exhaustively
check the least-squares (LS) error norm of reconstructing θ̃ for
each candidate scenario, and select the one with the minimum
cost; see e.g., [17], [18]. This enumerative search (ES) method
incurs a combinatorial complexity that grows with the number
of lines in Ẽ . To tackle this, a fresh sparse overcomplete
representation has been proposed in [26] for the system model
(6), which allows to leverage exciting ideas from compressive
sensing (CS) [5], [20] for identifying Ẽ . Among various CS
algorithms, the greedy orthogonal matching pursuit (OMP)
approach [20] has been advocated by [26] as an efficient
and (near-)optimal alternative to the ES. The OMP has been
deemed as the algorithm to be able to cope with the real-time
monitoring requirement for multiple line outages in practise.
More interestingly, the OMP leads directly to a tractable
characterization for the event of successful detection. Hence, it
will be used as the identification method in the present paper.

To better characterize the objective, this paper will also
consider only single line-outage events, namely, |Ẽ | = 1. The
reason is two-fold. First, as demonstrated by the numerical
analysis in [26], the identification error rate for single line
outages is extremely close to that of the double outages.
Second, it can be shown that if the vectors {a�,P } are
nearly orthogonal, the coupling among lines is very weak
and it is possible to decompose the multiple line outages to
single cases. In the large-scale power systems, the coupling
of lines should be very weak for us to focus on only single
line outages. Hence, this simplification can be deemed very
representative of the overall system performance even with
multiple line outages.

Given a single line-outage event Ẽ = {�}, let the vector
y�,P ∈ R

Np×1 denote the copy of θ̃ obtained numerically
through contingency analysis using the AC power flow model.
In practical power systems, the measurement y�,P would
account for system uncertainties due to the operating point
and metering noise. The noise can be assumed negligible for
the high-rate and synchronous PMU data, whereas the system
operating point may vary vastly depending on different load
profiles. For simplicity, this majority of the paper will focus on
one basic load profile case. Extensions to account for multiple
operating points are possible, as detailed in Section 6. The
assumptions on single line outages as well as the OMP will
also be discussed then.

Assuming all signature vectors {a�} have been normalized
to be of unit Euclidean norm, the OMP method would identify

the outage line as

�̂ := argmax
k∈E

|yT
�,P ak,P |. (7)

Without loss of generality (Wlog), the sign of y� can be flipped
to make sure that yT

�,Pa�,P ≥ 0 always holds. Hence, the
outaged line � is correctly identified if and only if (iff)

yT
�,Pa�,P ≥ |y

T
�,Pak,P |, ∀k ∈ E . (8)

A weighting coefficient α� ∈ [0, 1] is introduced here that
associates with any line �. The value α� is chosen depending
on the impact if the system operator can correctly detect the
outage event occurring at line �. One simple choice is the
uniform weighting rule where α� = (1/L), ∀� ∈ E . However,
in practical power systems, some transmission lines such as
those high-voltage ones could carry much larger power flows,
and thus they are of higher priority for the control center to
monitor. To account for this, it is possible to choose α� to be
proportional to the pre-event real power flow on line �. With
{α�} given, the weighted success rate of identifying all single
line-outage events is given for any subset NP , as

f(NP ) :=
∑
�∈E

α�11{y
T
�,Pa�,P ≥ |y

T
�,Pak,P |, ∀k ∈ E} (9)

where the indication function 11(·) = 1 if the statement is
true, otherwise 0. Given the budget of NP PMU devices, the
problem of interest becomes how to select the locations to
maximize the weighted success rate, as given by

f� := max
NP⊆N

f(NP )

s. t. |NP | ≤ NP . (10)

The PMU placement problem (10) is complicated by two
issues. First, the optimization variable NP is a discrete subset,
which implies a combinatorial problem complexity in the
number of candidate bus locations. Second, the presence of
the indicator function makes it more difficult in terms of eval-
uating the objective cost, as elaborated soon. As will be shown
in the ensuing section, the problem (10) can be reformulated
as a non-convex Mixed-Integer NonLinear Program (MINLP),
and thus is generally NP-hard; see e.g., [4]. This motivates us
to first approximate the objective cost to a concave function,
and further relax it to a linear program.

3. A linear programming reformulation

This section will offer a reformulation of the PMU place-
ment problem (10), using an approximate objective function
and the convex relaxation technique. This reformulation not
only provides a coarse approximate solution to the original
problem, but also turns out to be useful for developing a more
sophisticated algorithm later.

To simplify (9), define the N × 1 vector c�k := y� � ak as
the dot product vector for any k, � ∈ E , and an N×1 indicator
vector wP ∈ {0, 1}N corresponding to NP such that

wn,P :=

{
1, if n ∈ NP ,
0, otherwise.

(11)
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Clearly, any subset NP ⊆ N can be uniquely represented by
a vector wP ∈ {0, 1}N ; and also the other way around. With
these notations, the event of correctly identifying line � in (9)
now yields

11
{
wT

P c�� ≥ |w
T
P c�k|, ∀k

}
= 11

{
wT

P c�� −wT
P c�k ≥ 0,wT

P c�� +wT
P c�k ≥ 0, ∀k

}
which is equivalent to having the minimum of all these
difference terms to be non-negative. Recalling the one-to-one
correspondence between NP ⊆ N and wP ∈ {0, 1}N , the
identification success rate in (9) can take wP as its variable,
as

f(wp) :=
∑
�∈E

α�11

{
min
k

{
wT

P (c�� − c�k),

wT
P (c�� + c�k)

}
≥ 0

}
. (12)

The PMU placement problem in (10) can be cast as one
over an N × 1 vector w, as given by

f� = max
w,{t�}

∑
�∈E

α�11
{
t� ≥ 0

}

s. t. t� ≤ wT (c�� − c�k), ∀k, �

t� ≤ wT (c�� + c�k), ∀k, �∑
n∈N

wn ≤ NP

wn ∈ {0, 1}, ∀n ∈ N (13)

where the auxiliary variable t� is introduced to represent the
minimum of all the difference terms per line �. Compared to
the discrete set optimization in (10), the reformulation in (13)
is more tractable. For example, its first three constraints are all
linear, and thus convex over w and t�. However, the indicator
operator 11(·) actually yields the unit step function as shown in
Fig. 1, hence the objective in (13) is not concave over t�. Thus,
this equivalent formulation (13) still gives rise to a non-convex
problem in addition to its binary constraints. This implies
that even its continuous relaxation by relaxing the binary
alphabet to the interval constraint is likely to be NP-hard or
eve nundecidable; see e.g., [4] and the references therein. This
speaks for how intractable the non-convex MINLP problem
(13) could be.

To tackle this, we propose to relax (13) to a convex linear
program. The continuous relaxation is performed using the
interval constraint 0 ≤ wn ≤ 1, ∀n [3]. There also exist other
more sophisticated convex relaxation methods, such as the
semidefinite relaxation (SDR) technique that would lead to a
semidefinite program; see e.g., [8]. In this work, we choose the
interval relaxation for its simplicity. To tackle the non-concave
cost function, we propose to replace the operator 11{t� ≥ 0}
of the objective in (13) using the following approximation as
shown in Fig. 1

g(t�) := min{1, 1 + t/c} (14)

Fig. 1. The unit step function (in solid line) and its
approximate function g(·) (in dashed line).

for some c > 0. Since g(·) is the minimum of two concave
functions, itself is also concave.

As elaborated later, it will be useful to find an upper bound
estimate for the optimal value of the original problem (13).
Therefore, the positive c needs to be chosen to make sure that
g(t�) > 0 always holds; i.e., t� ≥ −c for any � ∈ E . Recalling
that t� is the minimum of all the difference terms in (12), and
also noting that no entry of w would exceed NP , one can
select

c = Np ×min{c−, c+} (15)

where c− is the minimum entry among all the vectors {c��−
c�k}�,k, and c+ the minimum entry among all {c�� + c�k}�,k.

Under this setting, it is guaranteed that g(t�) ≥ 11
{
t� ≥ 0

}
over the region of interest. Furthermore, the convex interval
relaxation would expand the feasibility set for the maximiza-
tion problem. Hence, it is possible to attain an upper bound
for the maximum of (13) by solving

max
w,{t�,g�}

∑
�∈E

α�g�

s. t. g� ≤ 1, g� ≤ 1 + t�/c, ∀�

t� ≤ wT (c�� − c�k), ∀k, �

t� ≤ wT (c�� + c�k), ∀k, �∑
n∈N

wn ≤ NP

0 ≤ wn ≤ 1, ∀n ∈ N (16)

where the auxiliary variable g� would be equal to the value
g(t�) at the optimum. The reformulated problem (16) is
actually a linear program (LP); see e.g., [3]. The computational
complexity for LP problems is typically polynomial in the
problem dimension, which grows quadratically with the num-
ber of lines as in (16). There are some efficient solvers to find
the global optimum, such as the interior-point method [16].
Upon obtaining the optimum to (16), the achieved maximal
cost can be considered as the upper bound for the optimal
cost of (13). Furthermore, although the solution of (16) is no
longer binary due to the relaxation, it is still possible to find an
approximate solution to the original problem (13) by setting its
largest NP entries to 1, and zero the rest [3]. This approximate
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solution would attain a lower bound for the original optimal
cost of (13).

The LP formulation in (16) is not only efficiently solvable,
but also provides some bounding results for the optimal values
of (13). Nonetheless, the numerical tests will illustrate that
these bounds could be very loose. In lieu of this approach, the
ensuing section will propose two (sub-)optimal algorithms to
directly tackle the binary constraint of (13).

4. (Sub-)optimal algorithms

One of the major limitations of the proposed LP formulation
is that it fails to respect the binary constraint in (13) . Next,
two (sub-)optimal PMU placement algorithms are developed
to account for such constraint explicitly.

4.1. A greedy heuristic method

The greedy method is first adopted for the PMU placement
problem (10), as tabulated in Algorithm 1. This heuristic
approach is initialized with a pre-selected subset of buses N o

P ,
such as the empty set ∅ if no bus has been selected so far. It
proceeds by iteratively choosing the next PMU bus location
that achieves the largest ’marginal’ cost in terms of (9), one bus
at a time until the solution NG

P reaches the cardinality budget
NP . Notice that although Algorithm 1 adopts the set/element
notations, it can be easily represented using the indicator
vector w as well.

Clearly, the complexity of such iterative scheme grows only
linearly with the number of available PMU devices, which
makes it extremely suitable for implementation in large-scale
systems. In addition to the low complexity, the buses selected
at an early stage are always maintained even if the budget
NP increases later on, which is termed as the consistency
property for the solutions of the greedy method. This nested
property also makes it a very attractive scheme for PMU
placement in general, since it can easily accommodate any
future system expansion plans if more and more PMU devices
become available. For this reason, the greedy method has
been very popular in several other PMU placement works for
e.g., improving the power system state estimation in [12], and
optimizing the max-min error criterion in [24].

Remark 1. (Greedy’s performance.) Although the greedy
method seems to be simply heuristic, it is provable to achieve
an approximation ratio of (1 − 1/e) to the optimum for
some specific discrete set optimization problems, as in [12].
This performance guarantee can be established if the problem
objective function is shown to satisfy the so-termed ’sub-
modularity’ property; see e.g., [13]. In general, the objective
function does not need to be strictly submodular as long as
it can be approximated as a submodular one under some
conditions [7]. It is very promising to show that the detection
success rate function (9) is approximately submodular based
on the increasing curves in the numerical results. This helps
explain why the greedy solution achieves the near-optimal

Algorithm 1 (Greedy): Input NP , {y�}, {a�}, and the initial
set N o

P . Output NG
P = N o

P ∪ {nρ}
NP−|N

o
P |

ρ=1 .

Initialize NG
P ← N o

P , and compute all the dot-product
vectors c�k = yT

� ak, for any k, � ∈ E .

for ρ = 1, . . . , NP − |N o
P | do

Find nρ = argmaxn/∈NG

P
f(NG

P ∪ {n});

Update NG
P ← NG

P ∪ {nρ}.

end for

performance numerically. Future research directions open up
to investigate its performance guarantee by possibly showing
that the objective (9) is approximately submodular.

4.2. A branch-and-bound algorithm

To improve the gap between the greedy and the optimal
solutions, we develop a branch-and-bound (BB) algorithm [2],
[11] to solve for (13). It can obtain a feasible and δ-optimum
solution w� satisfying: a) w�

n ∈ {0, 1} and
∑

n∈N w�
n ≤ NP ;

and b) f� ≤ f(w�) ≤ f�+ δ, where δ denotes a pre-specified
margin and f� is the optimum value for (13). Although by
relaxing the objective, it is possible to cast (13) as a mixed-
integer linear program (MILP) and use generic BB-based
solvers for it, the continuous relaxation would lead to very
bad approximation results. This motivates us to specifically
develop a BB method for (13) which accounts for the non-
concave cost function.

The BB algorithm successively improves the estimates of
lower and upper bounds on the optimum f� of (13), by
splitting one candidate solution into two cases. Let i be
the iteration index, and Li and Ui stand for the lower and
upper bounds per iteration i, respectively. At iteration i = 1,
Algorithm 1 can be invoked with N o

P = ∅ to provide an initial
lower bound, as given by L1 = f(NG

P ). The optimal value of
(16) can also be obtained efficiently as the initial upper bound
U1. To proceed to iteration i = 2, pick one bus ν ∈ N to split
the problem (13) into two sub-problems by fixing wν to be
either 0 or 1, as given by

max
w,{t�}

∑
�∈E

α�11
{
t� ≥ 0

}

s. t. t� ≤ wT (c�� − c�k), ∀k, �

t� ≤ wT (c�� + c�k), ∀k, �∑
n∈N

wn ≤ NP , wν = 0

wn ∈ {0, 1}, ∀n �= ν (17)
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and

max
w,{t�}

∑
�∈E

α�11
{
t� ≥ 0

}

s. t. t� ≤ wT (c�� − c�k), ∀k, �

t� ≤ wT (c�� + c�k), ∀k, �∑
n∈N

wn ≤ NP , wν = 1

wn ∈ {0, 1}, ∀n �= ν. (18)

To find the upper bounds u(0)
2 and u

(1)
2 for sub-problems (17)

and (18), respectively, similar techniques as in (16) can be
used to reformulate them to LP problems. It is possible to
obtain their respective lower bounds l

(0)
2 and l

(1)
2 using the

greedy heuristic method. Notice that Algorithm 1 needs to
be slightly modified to account for the constraint wν = 0 in
(17) by muting bus ν from the selection pool, while l

(1)
2 can

simply obtained by initializing N o
P = {ν}. Upon solving for

these bounds, the lower and upper bounds are further refined
as

L2 = max{l
(0)
2 , l

(1)
2 },

and U2 = max{u
(0)
2 , u

(1)
2 }. (19)

Such splitting process corresponds to the branch part of the
BB algorithm to generate a pair of candidate solutions from
an existing one. Per iteration i, Li and Ui are always updated
as the maximum lower and upper bounds achieved so far.

To eventually bound the estimates of f�, the BB algorithm
also keeps the list of candidate solutions S. Once a new
candidate solution is generated by the splitting process, it will
be augmented to the list S if and only if its upper bound
exceeds the current Li. Otherwise, this candidate solution will
definitely not be the global optimum and thus can be trimmed
from any future considerations.

The detailed BB scheme is tabulated in Algorithm 2. To
computer the lower and upper bounds, LB(·) and UB(·)
denote the aforementioned methods based on either the greedy
heuristic or the LP reformulation. Algorithm 2 always picks
the candidate with the largest upper bound to split, and
splits at the first bus with the best marginal improvement
as suggested by Algorithm 1. If only one bus is needed in
w̄ (

∑
n w̄n = NP − 1), that first bus can be added to find

the actual best cost under this scenario. Otherwise, a pair of
candidate solutions are generated to improve the estimates for
lower and upper bounds of f�. When the gap between the
two diminishes to δ, the solution that achieves the best lower
bound is guaranteed to be δ-optimal.

Remark 2. (Computational complexity.) Albeit near-optimal,
the BB algorithm may exhibit the combinatorial complexity
in the worst case. In general its computational complexity
is very difficult to characterize. Numerical tests also show
that the runtime for the BB algorithm could be intractable
for large systems. Fortunately, the runtime for the BB method
can be greatly reduced by using parallel computing resources,

Algorithm 2 (BB): Input NP , {y�}, {a�}, and the threshold
δ. Output a δ-optimal solution w� of (13).

Set i = 1, and compute all the dot-product vectors c�k =
yT
� ak, for any k, � ∈ E .

Set w = 0, and compute L1 = LB(w) as well as U1 =
UB(w).

Initialize S ← {(w, L1, U1)}.

while Ui − Li ≥ δ{need to split} do
Let (w̄, L̄, Ū) be one triplet of S with the largest upper
bound and

∑
n w̄n < NP ; and set S = S\(w̄, L̄, Ū).

if
∑

n w̄n = NP − 1 {only one more bus needed} then
Use Algorithm 1 to find the best bus location n1, and
set w̄n1

= 1.

Compute l = LB(w̄), and augment the list S ← S ∪
{(w̄, l, l)}.

else
Use Algorithm 1 to find the first bus ν to split.
Form the pair of candidate solutions w(0) and w(1)

from splitting on bus ν of w̄, e.g., w(0)
ν = 0 and w

(1)
ν =

1.
Compute their respective upper (lower) bounds u(0)

and u(1) (l(0) and l(1)).
Augment the list S = S ∪ {(w(k), l(k), u(k)} for k ∈
{0, 1} only if u(k) ≥ Li.

end if

Update i ← i + 1, and the bounds Li and Ui to be the
respective maxima of all the triplets in S.

end while

Let (w�, L�, U�) with the largest lower bound in S, and
update w� as the greedy solution with NP total PMU
devices.

which is beyond the scope of this paper. Interested readers
are referred to [1], [6] for more details. It is also possible to
limit the runntime by setting a budget on the total number of
iterations in practice.

5. Numerical examples

This section simulates the proposed PMU placement algo-
rithms numerically using several IEEE benchmark test systems
in [15]. The software toolbox MATPOWER [25] is used
throughout to generate the pertinent AC power flows under
one basic load profile, as well as the pertinent phasor angle
data y� for every � ∈ E . It is worthy pointing out that since
the simulated tests are generated based on the AC power flow
model, the experimental results here reflect the performance
for the actual power systems. The reference bus is assumed to
be equipped with the PMU for providing the relative angel
reference, and thus it is not included in N . All the three
algorithms presented in this paper, namely the approximation
based on LP, Algorithm 1 (Greedy), and Algorithm 2 (BB),
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have been tested and compared.
All the three algorithms are first tested using the IEEE 14-

bus, RTS 24-bus, and 30-bus systems. The LP approximation
solution is rounded with an indicator vector by selecting its
largest NP entries to be 1. For the BB algorithm, the threshold
δ is chosen to be small enough (∼ 10−3) to yield the global
optimum solution to (13). The weights α� are scaled to be
proportional to the pre-event real power flow on line �. Fig. 2
plots the weighted success rate in (12) versus the budget NP .

As depicted in Fig. 2, the success rate attained by the LP
approximation could be quite bad for some cases, especially
if NP is at the medium range (around N/2). This is expected
since the LP formulation fails to account for the binary con-
straint of the original placement problem. Most interestingly,
the greedy heuristic is extremely competitive as compared to
the global optimum, almost identical for the 24-bus system.
This is surprising since the greedy algorithm has a much
more attractive computational complexity. The success rate
function exhibits the shape of ’diminishing marginal return’
property, thus it is very likely that it can be approximated to
a submodular function. This would explain the near-optimal
performance of the greedy heuristic method.

It is also observed that when NP is small (less than N/2),
the performance improvement with one additional PMU device
is much higher compared to a larger NP . Even with around
half of buses equipped with PMUs (NP ∼ N/2), the line
outage identification performance is very close to perfect at
more than 80% of success rate. After that, additional PMU
devices do not seem to benefit with much improvement in the
performance. This again verifies the observations in existing
works the best reward is attained with 30% to 50% percent of
PMU coverage at typical power systems; see e.g., [24].

To demonstrate that our proposed algorithms specifically
target the identification performance, we also compare with
the one under the max-min error criterion in [24]. For line
outage identification purpose, it is suggested in [24] to place
NP = 9 PMU devices at buses {5, 8, 9, 14, 21, 22, 24, 26, 29}.
Under this setup, the achievable success rate is only 0.4130,
much smaller compared to 0.7028 for the BB and 0.6474 for
the greedy method in our work. This speaks for the importance
of directly optimizing the success rate.

Although the BB algorithm can yield the (near-) optimal
solution, it is also much more computationally demanding. It is
observed that the number of iterations needed for convergence
is highest when NP is in around N/3 ∼ N/2. For example,
the upper and lower bounds per iteration are plotted in Fig.
3 for placing 9 PMU devices in the 30-bus system. It takes
around 4×104 iterations for the two bounds to approach each
other, which is the largest number of iterations required among
all choices of NP in this test case. However, if one zooms in
to the region of the first 500 iterations, the global optimum is
actually attained at a very early stage (around 400 iterations).
It takes almost all the computation time to improve the upper
bound. This implies a satisfactory performance should be
achieved even if the computation resource is limited and the
BB algorithm has a budget on the total number of iterations.
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Fig. 2. The achievable detection success rate versus the
number of PMU devices NP using the LP, greedy, and BB
algorithms, for (a) IEEE 14-bus system; (b) IEEE RTS 24-
bus system; and (c) IEEE 30-bus system.
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Fig. 3. The upper and lower bounds attained by the
BB algorithm versus the iteration index with the 30-bus
system and NP = 9.

Further investigations on accelerating the BB algorithm will
be an important research topic.

To test on larger systems, numerical results using the IEEE
57-bus and 118-bus cases are included. Fig. 4 plots the
corresponding success rate attained by the greedy and LP
methods. Similar observations also hold regarding the trade-
off between the identification performance and the number of
PMU devices. We plan to evaluate all proposed algorithms on
more complicated test systems.

To conclude this section, we would like to report the runtime
comparisons for all the test cases, as listed in Table 1. All
algorithms are run using the MATLAB� R2011b software,
on a Windows computer with a 3.10GHz CPU. The runtime
for the LP approximation is averaged over all choices of
NP ∈ [1, N ], while the greedy method’s runtime is reported
for NP = N since its solutions are nested. As for the BB
algorithm, the worst-case runtime is listed for the NP value
with the maximum number of iterations to converge. The
greedy Algorithm 1 clearly outperforms the rest in runtime,
and scales gracefully with the number of buses. The BB
algorithm witnesses a dramatical increase in its runtime when
the number of PMUs is in the medium range. The LP based
solution is relatively fast in terms of time, but fails to be
attractive in performance as shown earlier. The performance
and runtime comparisons recommend the greedy method to be
a competitive solution to the PMU placement problem. The BB
algorithm can be used to trade-off more computational time for
a near-optimal performance, especially considering that this is
implemented in the planning phase and can afford a larger
time scale and more demanding computational requirements.
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Fig. 4. The achievable detection success rate versus the
number of PMU devices NP using the LP and greedy
algorithms, for (a) IEEE 57-bus system; and (b) IEEE 118-
bus system.

TABLE 1. Runtime comparisons for all test cases.

LP Greedy BB (worst-case NP )

14-bus 0.25 sec 0.0015 sec 23.6 sec (NP = 7)
24-bus 0.80 sec 0.0046 sec 1.5 hour (NP = 10)
30-bus 1.15 sec 0.0059 sec 5.0 hour (NP = 9)
57-bus 15.0 sec 0.025 sec ∼
118-bus ∼ 0.15 sec ∼

6. Discussions

6.1. Power flow model

The AC nonlinear power flow model has been used in
the paper for developing the PMU placement algorithms.
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Although the linearized DC power flow model is the basis
to show the sparse overcomplete framework that models the
multiple line outages in Section 2, it is used for neither
formulating the PMU placement problem for providing the
numerical results later on. The formulated problem (10) relies
on the phasor angle difference vector y� with line � in outage,
which is obtained from the AC flow model such as in the
typical contingency analysis. The simulated tests in Section
5 also follow this setting, and thus the plotted success rate
curves all correspond to the actual performance metrics under
the realistic AC power flow model.

6.2. Modeling assumptions

Although some modeling assumptions have been suggested
to simplify the problem formulation in Section 2, they will not
significantly affect the generalizable property of the proposed
problem statement and algorithms.

First, the OMP algorithm is deemed as the identification
method in this paper since it achieves the best success rate as
the ES method in an extremely fast fashion. Albeit optimal,
the ES cannot cope with the real-time monitoring efficiency
in the case of multiple line outages, because its computational
time grows exponentially with the number of outage lines.
The OMP method is an extremely attractive alternative to the
ES, with the complexity only linear in the number of outage
lines. This suggests that the PMU placement method should
be developed based on the metric related to the OMP detection
method, which also provides an analytical characterization for
the event of successful detection.

Second, the single line outage assumption is not so limited
as it seems. Extensive numerical results in [26] demonstrated
that the success rate for double line outages is very close
to that of single line outages. As shown in (5), the phase
angel difference vector θ̃ is a linear combination of the
signature vectors corresponding to the outage lines. If the
related signature vectors {a�}�∈Ẽ are almost orthogonal, then
the multiple line-outage problem can just be decomposed into
multiple single line-outage ones. In this sense, the weighted
success rate as defined in (9) is able to capture the case of
multiple line outages. The weak coupling is very likely for
large-scale systems and if the number of line outages |Ẽ | is
very small. This provides this intuitive explanation on the
validity of the single line outage assumption.

Third, the framework in this paper can be easily generalized
to multiple operating points under various load profile condi-
tions. Suppose the number of operating points of interest is D
in total. In general, the value D can be relatively small, or we
can restrain to only the heavily loaded cases during which line
outages are more likely to emerge. For each operating point
d, the corresponding phase angle difference vector y�(d) can
be obtained per outage line �, as performed routinely in power
system contingency analysis. The optimization metric in (9)

can be accordingly modified as

f(NP ) :=

D∑
d=1

∑
�∈E

α�11{y
T
�,P (d)a�,P ≥ |y

T
�,P (d)ak,P |}.

(20)

This slight modification of the objective function neither com-
plicates the problem formulation nor changes the developed
algorithms. Hence, it is possible to generalize the framework
of the fixed operating point to account for various loading
conditions in the system, which we will leave as our future
work. .

6.3. A hybrid greedy-BB method

Finally, we would like to offer a hybrid algorithm that can
potentially combine the attractive complexity of the greedy
method and the BB’s performance optimality. As emphasized
earlier, the greedy method is shown to be satisfactory numer-
ically, but it is still not clear how to assert its performance
guarantee. Since the PMU placement problem (13) is a non-
convex MINLP, it is generally very hard to solve and has
to rely on a specifically designed BB method. The trade-
off of the BB solution is obviously the rapidly growing
complexity, especially if the number of PMUs is around half
of the total number of buses. This motivates us to consider to
adopt the BB iterations by reducing the number of locations
from N to NG through performing the fast greedy procedure.
Specifically, based on the values N and NP we can design
the input to the greedy algorithm, namely the number of
PMUs NG ∈ [NP , N ]. The purpose is to drive the ratio
NP /NG away from 1/3 ∼ 1/2 such that there are much
fewer combinations when picking NP locations from NG

buses. With the satisfactory performance of the greedy method,
it is reasonable to presume that the chosen NG buses can
capture the best NP locations, while picking the locations
from NG buses will be more computationally efficient. This
hybrid method can be thought of as using the greedy to provide
a warm start for the BB iterations. Exploring this potential
hybrid method is a very exciting future research direction.

7. Conclusions and future research

This paper presents the PMU placement problem for line
outage identification, an important power system monitor-
ing task. Using the OMP based identification algorithm, the
weighted rate of correct detection is explicitly formulated as
the objective for optimal PMU placement under the budget
of available devices. This discrete set optimization problem is
first reformulated as an LP using convex relaxation technique
and an approximate objective function. The LP approximation
is efficiently solvable, and provides an upper bound estimate
for the optimal value of the original problem. To directly
tackle the set constraint, a greedy heuristic method has been
developed with the complexity growing only linearly in the
number of PMU devices. Furthermore, the BB algorithm has
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been adopted which can achieve a δ-optimal solution to the
PMU placement problem. Numerical tests greatly advocate the
greedy heuristic method, which can be very competitive to the
optimal performance at a relatively affordable complexity.

Future research directions include extensive simulations for
more complicated scenarios such as diverse load profiles and
higher system uncertainties. It is also of great interest to further
reduce the complexity for the BB algorithm to make it more
attainable for large-scale systems, possibly by a more accurate
upper bound estimate and the hybrid method.
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