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Abstract—Market designs for reserve capacity in power sys-
tems face new challenges in terms of demand side participation
(DSP) and renewable energy in-feed. In order to enhance power
system flexibility and to reduce the amounts required of reserve
capacity two key issues have to be tackled: First, financial incen-
tives for DSP to participate in Ancillary Service markets. Second,
incentives for intermittent sources and demand to adhere to their
forecasted in-feed schedule. Therefore, we consider the public
good aspect of reliable electricity supply and treat deviations from
the schedule in in-feed or consumption as negative externalities
in electricity market operation. Our contributions are twofold:
First, we present a novel methodology which incorporates the
individual evaluation of reserves via a suitable cost allocation
framework and therefore enhances DSP to ensure operational
security. Second, we provide a framework to establish market-
based adaptive in-feed premiums for renewable energy sources
and to assess investments in DSP and distributed storage in order
to reduce the amount of reserve capacity procured by the System
Operator. A simulation study shows that our approach leads to
a Pareto-efficient reduction in the amount of procured reserves
and hence social costs.

Index Terms—Electricity Markets, Ancillary Service Market
design, Pareto Efficiency, Public Good Economics.

I. INTRODUCTION

Ancillary Service (AS) markets contribute via one-sided
auctions for reserve capacity to the reliability of the sys-
tem, essentially at whatever costs. AS-market designs gain
importance for two reasons: First, fluctuating energy in-feed
in large scale will increase balancing requirements [1], [2].
Second, fluctuating energy in-feed in remote areas, in addition
to market-based energy flows, may increase the occurrence of
contingency conditions.

The definitions of ancillary service products differ across
AS-markets (see also [3] and [4]). Throughout the paper,
we use the terminology of non-event driven and event-driven
reserve capacity. Non-event driven reserve capacity, i.e. regu-
lating reserves and ramping services, ensures frequency con-
tainment in normal operation. Event-driven reserve capacity,
i.e. contingency reserves, compensates power plant outages or
line outages and contribute to frequency restoration in case of
major disruptions.

However, even though the requirements on event and non-
event driven reserves will increase, the costs of procured
reserves and renewable energy in-feed are allocated merely
on administrative rules, i.e. system-wide socialization. This
decreases financial incentives for demand response programs

and market-based integration of renewable energy in-feed.
Economic theory suggests to price contingency services like
reliable electricity supply based on the individual valuation of
it. Further, the allocation of costs of procured non-event driven
services is in general not based on costs-by-cause principles.
Currently some market participants have few or no obligations
to satisfy an announced schedule. Costs of holding reserve
capacity caused by these market participants due to balancing
requirements are then socialized.

The main objective of this paper is to propose an AS-market
framework which comprises:

1) A market-based allocation of the procurement costs for
event-driven reserves. For this purpose, we assume the
existence of an elastic demand curves for event-driven
reserves (see also [5] and [6]) and the incorporation of
locational prices (see also [7]). The elasticity of demand
for reserve capacity represents an individual valuation of
reliable electricity supply. The auction design for event-
driven reserves requires a special economic methodology
since reliability in power systems can be seen as a kind
of public good with aspects of non-rivalry and non-
excludeability (see also [8]).

2) An efficient procurement and cost allocation of non-
event driven reserves via the assessment of the sys-
temwide costs that are incured by holding reserves
versus the costs of avoiding reserve requirements. This
approach is similar to the economic theory of pricing the
economic activity of one market participant who nega-
tively influences the economic goals of another one and
therefore distorts the market outcome (see also [9]). We
assume that distorting market participants are primarily
characterized by fluctuating in-feed or demand.

According to the rules by European Network of Transmission
System Operators for Electricity (ENTSO-E), the demand for
non-event driven and event driven reserves depends on the
forecasted load level or the largest blocks in operation in
the control areas [10]. Some European system operators also
consider load uncertainty and renewable in-feed deviations via
fixed quantiles from an empiric distribution function derived
from historic forecast errors for non-event reserve capacity
determination [11]. However, the reserve demand determined
is inelastic, and the procurement costs do not refer to the
individual valuation of it, or to the degree of utilization of the
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grid. For example, ref. [12], [13], [14] determine an elastic
demand for spinning reserves via a cost/benefit analysis. All
approaches did no analysis about the proper cost allocation
of procured reserve capacity Ref. [15] and [16] address the
allocation of costs for procured event and non-event driven
reserves. The established metric for cost assignment is based
on the analysis of historic data. Ref. [17] determines the
system costs of adding wind generation whereby the results
show that the benefits are highly sensitive to how much of the
inherent variability of wind generation is mitigated.

Our contributions are twofold: First, we provide a methodol-
ogy to procure event-driven reserves and allocate the costs ac-
cording to the individual valuation of it. The market framework
may serve as a basis for further development of financial incen-
tives and contract designs. Second, we provide a methodology
to allocate the costs of non-event driven reserve capacity. This
approach also enhances the development of respective DSP
programs and the market-based implementation of renewable
energy in-feed. We assess in a simulation study our market
framework in terms of the procured amounts of reserves, costs
imposed on market participants and the effect of strategic
behavior of generators.

The structure of the paper is as follows: In Section II, we
highlight the model which comprises the clearing for event-
driven reserves and non-event driven reserves. In Section III
we highlight special issues with regards to the implementation
of the model. In Section IV we present the simulation frame-
work. In Section V we proceed with results of a simulation
study. In Section VI we conclude and give a future outlook.

II. MARKET-BASED PROCUREMENT AND COST

ALLOCATION OF RESERVE CAPACITY

Fig. (1) shows the setup of the proposed framework. Similar
to [12], we proceed first with a unit commitment with flexible
demand and without reserve power considerations. Through
the unit commitment we achieve the locational marginal prices
or energy traded and are able to calculate the lost opportunity
costs of reserve provision in the course of the co-optimization.
Subsequent, a co-optimization of energy and reserve capacity
is done. The rewards may be further used as a feedback to
simulate strategic behavior of market participants.

A. Unit Commitment with Elastic Demand

We model DSP of consumer j and time instant t, by using
a constant elasticity of demand function with of the form,

Qj,t = Aj,t(pj,t)ε
j,t

, (1)

where Qj,t is the procured quantity, Aj,t represents an operat-
ing point, pj,t is the price of electricity and εj,t is the elasticity
of demand, which is defined by:

ε =
dQj,t

dpj,t
pj,t

Qj,t
. (2)

We solve the fitting problem for a piecewise linear representa-
tion of a nonlinear data curve with a variable partition space by
applying an approach proposed by [18]. The energy market is
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Fig. 1: Proposed framework: Demand units have beside their energy bids
(Biden) also the opportunity to bid a demand for reliable electricity supply
(Bidres). Further, they announce their costs of reducing non-event based
imbalances (BidCostsL,dev

). Conventional generation units bid energy and
reserve capacity (Biden,res). Intermittent energy sources announce their
costs of keeping the forecasted schedule (BidCostsG,dev

). The unit commit-
ment gives nodal prices λp,t to assess the lost opportunity costs of reserve
provision in the co-optimization.

modeled by a unit-commitment problem with piecewise-linear
offer-curves from the generators (see also [19] and [20]):

max .

T∑
t=1

{
−

NG∑
i=1

(ui,tCi,t
noload + Ci,t

Start)+

NL∑
j=1

K∑
k=1

MBj,k,t
En,segP

j,k,t
En,seg −

NG∑
i=1

S∑
s=1

MCi,s,t
En,segP

i,s,t
En,seg)

} (3)

subject to

g(x, u)g(x, u)g(x, u) = 000,

h(x, u)h(x, u)h(x, u) ≤ 000,
(4)

where i, s, t denotes segment s of generator i at time t, and
j, k, t denotes segment k of load j at time t. Ci

noload are the
costs of insufficient loading of a power plant and C

i,t
Start are

the start-up costs. P j,k,t
En,seg and P

i,s,t
En,seg are the demand and

generation in line segment k and s respectively. MB
j,k,t
En,seg

and MC
i,s,t
En,seg are the segment-wise marginal benefit/cost

of consuming/producing electric energy at the line segment
respectively. g(x, u)g(x, u)g(x, u) and h(x, u)h(x, u)h(x, u) are constraints, which are
necessary to fulfill energy balance, start-up and shut-down
times of generators, ramping limits of generators, and limits
in terms of generation and demand capacity. xxx and uuu denote
additional continuous and binary variables.

B. Event-driven Reserve Demand and Cost Allocation

1) Elastic Event-driven Reserve Demand: The individual
demand for event-based reserves is decoupled from the amount
of energy consumed (see also [21]). Elastic demand curves for
non-event driven reserves have also already been derived by
[12], [13], [14] and [22]. For example, Ref. [12] established
a demand curve for spinning reserves via the concept of
Expected Energy not Served (EENS) and a constant Value
of Lost Load (VOLL). The EENS results from the generation
schedule with the corresponding Capacity Outage Probability
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Fig. 2: Market clearing for public and private goods and constant marginal
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The demand curves D1 and D2 are added horizontally (D∗∗res) to achieve an
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Fig. 3: Preference revelation via Clarke-Groves-Mechanism: (a) Starting from
the case of no preference for the public good Q1, the individual consumer has
to pay the marginal compensation of

∫Q∗

Q1 SS = ABC for the provision of
the public good. The welfare is marked by ACD. (b) In case of mispresentation
of preferences the consumer looses welfare of GCH.

Table (COPT) [23]. Ref. [13] established an elastic demand
curve by taking into account the probabilistic nature of contin-
gencies and their impact with regards to different cost factors,
i.e. costs of frequency deviations, costs associated to automatic
load shedding and the costs associated with deviations over the
scheduled power exchange.

For the application in our approach, the analysis done in
these works has to be adapted to represent locational demand
(node or area-wise) for event-driven reserves based on the gen-
eration schedule achieved from the unit commitment problem,
which is out of the scope of this paper and part of future
research. Instead, we assume that the demand functions are
similar to equation (1). The operating points and the elasticities
of the demand curves are subject to the effort of the system
operator or utility to arrange interruptible load contracts (see
also [24]), the flexibility of industrial processes etc..

2) Cost Allocation of Procured Reserves: We aggregate the
individual demand curves for reserves as shown in Fig. (2a),
which differs from the known market aggregated demand (Fig.
(2b)) for private goods like energy. The established market
clearing for event-based reserves is called Lindahl equilibrium,
contains a Pareto efficient cost allocation in case of linear costs
for procured ancillary services, and has a Nash-equlibrium (see
also [8] and [25]). The Lindahl equilibrium is used to establish

prices for the generation units. However, there exist incentives
for a mispresentation of event-driven reserve requirements by
the demand side in order save costs. This gaming behavior may
lead to operational security problem, as insufficient reserves
are procured. Therefore, we propose a separate market clearing
mechanism for the demand side based on the Clarke-Groves
mechanism [26], which is illustrated in Fig. (3a) and (3b):
Assume the demand curves for event-driven reserves of M

individuals are aggregated to D∗. The demand curve DM−1

represents the sum of demand curves excluding individual M
with demand DM . If individual M has no preferences for
reserve capacity he would have to pay no price and stays
at point A. If the individual demands a certain amount of
reserve capacity, e.g. Q1Q2, then he has to pay a marginal
compensation of

∫ Q2

Q1
SS for the additional costs he causes

to the other individuals. The largest possible surplus for the
individual comprises the area ACD. In Fig. (3b) it is shown
that the individual loses the surplus GCH in case of stating
a too low demand for event-driven reserves, DMM . In total
we solve M + 1 optimization problems in order to establish
market clearing prices for the generators to engage loads to
reveal their reliability preferences truthfully.

The mechanism guarantees an efficient allocation according
to the Samuelson rule [27], but no overall efficient allocation.
Demand units may pay more for procured reserves than
necessary. This excess has to be redistributed again, which
probably lowers the efficiency of the algorithm in terms of
preference revelation. An appropriate redistribution algorithm
is beyond the scope of this paper. However, this approach
may serve as a market-based alternative compared with cost
socialization.

C. Non-event Reserve Requirements and Cost Allocation

1) Chance Constrained Determination of Non-event Re-
serve Requirements: The sources of non-event driven reserve
requirements are fluctuating energy in-feed (W ) and demand
units (L). Therefore, the total production/demand P

L,W
total can

be decomposed into,

PL,W,t
total = PL,W,t

f + P̃L,W,t (5)

where P
L,W,t
f is the hourly forecasted production and P̃L,W,t

is a random deviation from it, which varies between zero and
P̃L,W,t
max depending on the effort of the producer W or consumer

L to reduce fluctuations at time t. We use chance-constraints
to determine probabilistic up and down reserve power levels
R̃Up,t

req and R̃Dn,t
req , which guarantee the netting of the negative

imbalances (xt
neg

.
= P̃L,W,t < 0) and positive imbalances

(xt
pos

.
= P̃L,W,t > 0) of wind in-feed and demand at every

time instant t with a probability 1− γ:

P(xt
neg ≤ R̃Up,t

req ) ≥ (1− γ), (6)

P(xt
pos ≤ R̃Dn,t

req ) ≥ (1− γ), . (7)

Further, we assume a symmetric band for up and down non-
event reserve capacity R̃t

req , which is determined by

˜R
t

req = [ ˜R
Up

req,t,
˜R
Dn

req,t]
+
. (8)
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Fig. 4: Cost allocation for non-event driven reserves: (a) In case of an
equilibrium point (Zopt, P̃

L,W,t
opt ) and competitive market conditions, the total

cost TC = Cabate + Csys is a minimum. In case of competitive markets,
the producer will reveal his true marginal costs. (b) In case several producers
of externalities (wind in-feed and demand) which influence the amount of
non-event driven reserves, Zopt is shared according to the stated marginal
abatement curves (Z1 and Z2). Therefore preference revelation incentives
will be necessary.

2) Cost Allocation: The output of fluctuating power can be
reduced to a social optimal outcome if the marginal costs of
avoiding imbalances are equal to the marginal system costs of
balancing them (Fig. (4a), see also [9]). The system costs, Csys

of non-event based reserve capacity, are the costs of reserves
procured by the system operator. These costs are in contrast
to the costs that a fluctuating in-feed facility/demand unit has,
Cabate, if they would try to abate random deviations from the
schedule. In equilibrium the sum of these costs,

TC = Cabate + Csys, (9)

is minimized. The ”clearing price”, Zopt, may be interpreted
as a tax on fluctuating in-feed/demand. We assume that the
marginal costs for avoiding imbalances from the schedule are
of the form:

MC
w/d,t
abate = (

P
w/d,t
abate

Bw/d,t
)

1

ηw/d,t , (10)

where Bw/d,t is a positive factor and ηw/d,t is the elasticity of
supply for abating deviations and P

w/d,t
abate is the abated amount

of fluctuating in-feed source w, and demand unit d at time
instant t.

Clearly, only the resulting fluctuations of several injections
are relevant for the deployment of reserve energy. We therefore
propose as shown in Fig. (4b) an extension to the concept
presented in Fig. (4a). Similar to the concept of the Lindahl
equilibrium, this framework requires truthful revelation of
the abatement costs. In case of renewable energy in-feed,
the cost share resulting from the proposed cost allocation
mechanism may be used to transform in-feed tariffs into in-
feed premiums. These premiums give renewable energy-in
feed units the incentive to invest in measures which reduce
deviations from the schedule. In case of demand units, the
cost share may be used to adapt grid tariffs and to establish
financial incentives for demand side participation.

Finally, the proposed framework may not only be valid
for e.g. regulation reserves, but can be expanded for the
determination of the social optimal ramping of demand and
renewable in-feed, which is part of future research.

D. Energy and Reserve Co-Optimization

Co-optimization is proven to be the most efficient form of
energy and reserve power scheduling (see also [28], [29]).

The objective function includes start-up and no-loading costs
of a power plant, the market clearing for energy, event-driven
up and down reserves, the minimization of Lost Opportunity
Costs of the generators, the minimization of procurement costs
of non-event driven reserves and the minimization of the costs
to abate fluctuations.

max .

T∑
t=1

{
−

NG∑
i=1

(ui,tCi
noload + C

i,t
Start)

NL∑
j=1

K∑
k=1

MB
j,k,t
En,segP

L,j,k,t
En,seg −

NG∑
i=1

S∑
s=1

MC
i,s,t
En,segP

i,s,t
En,seg+

Z∑
z=1

MB
z,t
evtup,seg

P
z,t
evtup,seg

−

NG∑
i=1

S∑
s=1

MC
i,s,t
evtup,seg

P
i,s,t
evtup,seg

−

Y∑
y=1

MB
y,t
evtdn,seg

P
w,t
evtdn,seg

−

NG∑
i=1

S∑
s=1

MC
i,s,t
evtdn,seg

P
i,s,t
evtdn,seg

−

NG∑
i=1

LOC
i,t
evt,up, −

NG∑
i=1

LOC
i,t
noevt,up−

NG∑
i=1

S∑
s=1

MC
i,s,t
noevtup,seg

P
i,s,t
noevtup,seg

−

NG∑
i=1

S∑
s=1

MC
i,s,t
noevtdn,seg

P
i,s,t
noevtdn,seg

−

NW∑
w=1

Q∑
q=1

MC
w,q,t
abateseg

P
w,q,t
abateseg

−

ND∑
d=1

R∑
r=1

MC
d,r,t
abateseg

P
d,r,t
abateseg

}

(11)
subject to

g(x, u)g(x, u)g(x, u) = 000,

h(x, u)h(x, u)h(x, u) ≤ 000,
(12)

where i, s, t denotes segment s of generator i at time t, and
j, k, t denotes segment k of load j at time t. MB

j,k,t
En,seg,

MB
z,t
(non)evtup/dn,seg

are the marginal benefit function for

energy and (non-)event driven up/down-reserves. MC
i,s,t
En,seg ,

MC
i,s,t
(non)evtup/dn,seg

are the marginal costs of providing en-
ergy and (non-)event driven up/down-reserves respectively.
LOC

i,t
evt,up, and LOC

i,t
nonevt,up, are the lost opportunity costs

of generators in case of provision of event-driven or non-
event driven reserve capacity. MC

L,j,r,t
abate are the marginal

costs of avoiding non-event driven imbalances. z, w, r and
q refer to the segments of the respective cost/benefit func-
tion. P

i,s,t
En,seg , P

z,t
evtup,seg

, P
y,t
evtdn,seg

and P
w/d,q/r,t
abate,seg state the

energy production of generators, demand for event-driven up
and down reserves, and the avoided amounts of fluctuating
consumption/in-feed by the respective producers or load serv-
ing entities. The constraints g(x, u)g(x, u)g(x, u) and h(x, u)h(x, u)h(x, u) represent
energy balance, start-up and shut down times, ramping limits
of generators and capacity limits of generators and demand.
xxx and uuu denote additional continuous and binary variables. A
complete formulation of the constraints and the nomenclature
is given in the appendix. The shown formulation has to
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be adapted for the Groves-Clarke mechanism accordingly.
For non-event driven reserves we assume that the marginal
costs for reducing deviations from the schedule are revealed
truthfully.

III. IMPLEMENTATION OF STRATEGIC BEHAVIOR AND

CHANCE-CONSTRAINED OPTIMIZATION

A. Strategic Behavior of Market Participants

The last part of the assessment is done with regards to
the influence of strategic behavior by the market participants.
The generation units aim to maximize profits and may exploit
market power either through low liquidity in the auction for
reserves or through highly loaded and congested networks via
a markup on the stated marginal cost curves. We incorporate
these behavior in the model via an approximate dynamic
programming approach: Q-learning. The Q-learning algorithm
is a mapping of the reward/cost gained from a specific action
and is used in a proper exploration/exploitation strategy to
minimize reward of an action through a learning process. The
rule for the update process of the Q-value is [30], [31]:

Qτ
a(k + 1)−Qτ

a(k) = α(rτa(k + 1)−Qτ
a(k)), (13)

where a refers to the action chosen, rτa to the resulting
cost/reward and k to the learning round per time period τ .
The considered time periods are shown in Fig. (5).. As a
variant of this approach we use continuous Q-learning [32]
and implement a separate learning sequence for every decision
variable. Generators influence the markup on the marginal cost
bids for energy, event-driven and non-event driven reserves.

B. Solving Chance Constraints

The chance constraints are implemented with the scenario
approach of [33] using the Markov-Chain-Monte-Carlo sce-
nario generation of [34]. The main idea of [33] is to consider
only a finite number of instances (scenarios) of the uncertain
parameter, and then solve a corresponding linear program.
Ref. [33] provides a lower bound for the number of scenarios
that should be extracted to provide the desired probabilistic
guarantees with high confidence. Following [35] the number of
samples that one needs to generate is Ns ≥

2
ε

(
Nd+log 1

β+1
)
,

where ε ∈ (0, 1) is a violation parameter, β ∈ (0, 1) is a con-
fidence level, and Nd is the number of decision variables. By
generating then Ns samples, the solution of the corresponding
problem will violate the chance constraint with probability at
most ε, with confidence at least 1−β. The considered approach

assumes as an approximation that the considered time periods
do not have correlation in the uncertainty.

IV. TEST SYSTEM AND SIMULATION FRAMEWORK

A. Test-System

In the simulation study we compare three different market
designs:

1) MA1: The market clearing for event-based reserves is
done via an elastic demand curve. The demand of non-
event based reserves is inelastic and fixed, but the deter-
mination is done via chance-constrained optimization.

2) MA2: The market clearing for event-based reserves is
done via an elastic demand curve. The market clearing
for non-event based reserves is done based on the cost
comparison proposed in Section II-C2.

3) MB : The scheduled amount of reserves is based on func-
tions similar to current market operations. The amount
of non-event reserve demand is based on the ENTSOE-
Formular [10]:

Pnonev =
√

a · P en
max + b2 − b, (14)

whereby a = 10 are b = 150 predefined parameters
and P en

max is the scheduled peak demand. Additionally,
we assumed that 20% of the hourly wind forecast are
hedged by non-event driven reserves. The amount of
event-driven reserves is based on the largest unit online
at a certain time instant.

We modified the IEEE-RTS Test system [36], [37]. For compu-
tational reasons, we aggregated similar generators at the same
node and the same cost characteristic. For the simulation study
we used two system settings:
• Simstrat: We assume no grid and a small number of

demand units. The generation units may act strategically.
In case of strategic behavior, the node-wise grouped
generators further aggregated in terms of the techni-
cal/economic characteristics to reduce the computational
effort. The total number of strategically acting generators
is seven. The time horizon for the simulations is 24 hours.

• Simnostrat: We incorporate a grid and assume no sepa-
rate loads at the busses 2, 3, 4, 5 and 16. However, the
demand of these loads is distributed over the other busses.
Due to computational effort we reduced the time horizon
to 18 hours. We added a wind-powered generation unit
at bus 16.

The model data for the elasticity of demand for energy and
reliability are shown in the appendix as well as the assumed
possible changes for the elasticity of supply through strategic
behavior of the generators. Fig. (6) shows the considered
aggregated load profile and wind-infeed scenario. In case of
simulation framework Sim1 we assumed the in-feed sce-
nario Wind1. In case of simulation framework Sim2 we
assumed the in-feed scenario Wind2. Uncertainty in demand
is modeled via a zero-mean gaussian distribution function and
standard deviation of 2% of the hourly load. We used real-
world data for the short-term uncertainty of wind-energy in-
feed.
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Fig. 7: Payments by the demand side due to the Groves-Clarke mechanism
in case of low elasticity of demand for event-driven reserves. Loadup

2/−0.25
refers to the payment in case of 2 loads and an assumed elasticity of demand
for non-event up-reserves of −0.25 (other variables correspond respectively).
The payments decrease with the number of participants. Payments for up-
reserves are substantially higher than for down reserves.

V. SIMULATION RESULTS

A. Groves-Clarke Tax for Valuing the Demand of Reliability

We assume market design MA2 and the simulation model
Simstrat. Generators do not act strategically and we share
the total demand equally between two and three demand
units. Further, we assume different elasticities of demand
for event-based reserve capacity. Fig. (7) and (8) show the
payments based on the proposed Groves-Clarke mechanism in
case of two and three demand units respectively. Clearly the
individual’s cost share decreases with the number of market
participants. This also indicates to a known problem of the
mechanism with regards incentive compatibility in case of
a large number of consumers. However, the payments may
also only attribute to aggregated load serving entities. Fig. (8)
highlights the impact of increased elasticity of demand for
event-driven reserves. Further, in case of down-reserves the
payments mainly occurs at times of low demand.

B. Price and Quantity Impact of Proposed Frameworks in
Competitive Market Environment

1) Effect of Elasticity of Event-based Reserve Demand
Curve: In this simulation study we assess the market de-
signs MA1 and MA2 and assume the simulation framework
Simnostrat. Fig. (9) shows the averaged market clearing prices
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Fig. 9: Average prices [mon.Unit/MWh] for energy (Energy), event-driven
up-reserves (Upevent) and non-event driven up-reserves (Upnoevent) assum-
ing market design MA1 and system setup Simnostrat. Higher elasticity of
demand leads to a price reduction for all products.

for energy, event driven up reserves and non-event driven up-
reserves in case of MA1. A higher elasticity of demand for
event-driven reserves reduces significantly the price for it and
hence also for energy and non-event driven reserves through
higher spare capacity.

Fig. (10) and (11) compare the market designs Design A1
and Design A2 in terms of procured amounts of event-based
and non-event driven reserves also in case of higher and lower
elasticity of demand for event-based reserves. Due to the
assumed data for demand and supply, the procured amounts of
non-event-based reserves is higher in both market design. This
may change likely assuming a low valuation of event-driven
reserves, which is justified through it’s very low probabilities
of occurrence and the inability of the customer to deal with
rare events. However, we find that if fluctuating in-feed or
demand units have higher balance responsibility as in MA2,
the amount of procured non-event based reserves decreases.

2) Effect of Elasticity of Supply Curve to avoid Imbalances:
We assess different elasticities in the supply of deviation
abatement by fixing the demand curve for event-based re-
serves. We change the elasticities for loads or wind in-feed
separately. As shown in Fig. (12), we find in our simulation
study that investments or adaptive in-feed premiums which
enhance balancing effort for renewable in-feed have a higher
impact than similar measures on the demand side. For a
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Fig. 10: Average scheduled amounts of event-driven up-reserves in case of
MA1 and MA2 and system setup Simnostrat. Red dots refer to amount of
reserves scheduled with regards to MB .
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Fig. 11: Average scheduled amounts of non-event driven up-reserves in case
of MA1 and MA2 and system setup Simnostrat. Red dots refer to amount
of reserves scheduled with regards to MB .

comprehensive analysis the specific abatement cost curves
have to be known.

C. Social Welfare Impact of the Proposed Framework in
Presence of Strategic Behavior of Generators

In this part of the study we assumed that the system is
aggregated to one load and there exist no grid constraints.
We test the effectiveness of demand side elasticity for event-
driven reserves in terms of average bidding markup for re-
serve capacity (including event-driven and non-event driven
reserves). The results in Fig. (13) show that (a) the bidding
markup is generally higher in times of low demand, (b) the
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markup decreased with the introduction of elastic event-driven
demand and (c) the markup may further decreases through the
introduction of a Pareto-efficient clearing for non-event reserve
capacity.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a methodology to integrate
renewable energy in-feed and DSP on market-based principles.
We have shown that one of the key factors is the cost
allocation of event-driven and non-event driven reserves based
on economic principles, either through the consideration of the
value of reliable of electricity supply for the customer, or via
the cost allocation based on cost-by-cause principles.

First, we find that the introduction of elastic demand for
event-based reserves can reduce market power and leads to an
amount of procured reserves which is economically efficient.
Costs incured on consumers are efficiently distributed accord-
ing to the Samuelson rule. However, since power system’s
are clearly an critical infrastructure, security margins may
be involved. How these security margins offset market-based
decision processes on the value of reliable electricity supply
is point of future research.

Second, we find with regards to non-event reserve require-
ments that a determination of the requirements based on
the proposed cost analysis leads to a reduction of required
reserves. Further, financial incentives for renewable-energy in-
feed and demand units to adhere to the forecasted schedule are
created.

Future research includes the determination of the demand
and supply curves with respect to event-based reserve re-
quirement and the avoidance of non-event based imbalances.
Further, the proposed market design framework will be more
elaborated, especially the costs allocation of non-event based
reserves requirements. Finally, the impact of dispersed renew-
able energy in-feed versus the concentrated in-feed in our
study has to be assessed. This study may then be augmented
with transmission security consideration.
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APPENDIX

A. Definition of Optimization Constraints
Numbers and Indices
NG, NL, NW Number of generators, loads, and wind farms
NBr , NB , ND Number of lines, nodes, supply curves of

loads to abate deviations
S, K, Z, Y , Q, R Number of segments of piecewise lin-

ear cost/benefit curve for generators, loads,
event-based up reserves, event-based down
reserves, wind farms (abating deviations) and
loads (abating deviations),

i, j, s, k, z, y Indices for generators, loads, segments of
marginal cost curve of generator, marginal
benefit curves of energy, event-driven up-
reserves, event-driven down reserves,

w, d, q, r Indices for supply curves for deviation abate-
ment of wind farms/demand units, segment
of supply curves for deviation abatement of
wind farms/demand units.

MG, ML, MW Generator, Load, wind farm connectivity
matrix (”1” where it’s connected, [NB ×

NG/NL/NW ]),

Parameters
Ci,t

start/C
i,t
noLoad Start-up costs / No load costs of generation

unit i at time t [mon.Unit/MW],
˜Rt
req Required amount of non-event driven reserve

capacity [MW],
M Large constant,
Pw,t
f Forcasted wind in-feed of unit w at time t,

P i,t
max/P

i,t
min Max./Minimal generation of unit i at time t,

P j,t
En,max/P

j,t
En,min Max./Minimal consumption of load j at time

t,
P i,t
Rup/Rdn,max Maximal ramping up/down [MW/h] of unit i

at time t,
MCi,s,t

En,seg Marginal cost of energy production of gener-
ator i in segm. s at time t,

MBj,k,t
En,seg Marginal benefit of energy consumption of

demand j in segm. k at time t,
MCi,s,t

evtup/dn,seg Marginal cost of event-driven reserve produc-
tion of generator i in segm. s at time t,

MCi,s,t
nonevtup/dn,seg Marginal cost of non-event driven production

of generator i in segm. s at time t,
MB

j,z/y,t
evtup/dn,seg Marginal benefit of event-driven reserves for

demand j in segm. k at time t,
MCw,q,t

abate,seg Marginal cost of supplying abatement of de-
viations of in-feed w in segm. q at time t,

MCd,r,t
abate,seg Marginal cost of supplying abatement of de-

viations of demand d in segm. r at time t,
PTDF p

l Power Transfer Distribution Factor Matrix for
lines l by power injection at nodes p,

fmax
l Maximal loading of line l.
λp,t Price at node p at time t (derived from unit

commitment problem),

V ariables
P i,t
En Energy generation [MW] of generation unit i

at time t,
P i,s,t
En Energy generation [MW] in segment s of

generation unit i at time t,
P j,t
En Energy demand [MW] by cons. j at time t,

P j,k,t
En Energy demand [MW] in segment k by con-

sumer j at time t,
P i,t
evtup/dn

Scheduled up/down event-driven reserve ca-
pacity [MW] of unit i at time t,

P i,s,t
evtup/dn

Scheduled up/down event-driven reserve ca-
pacity [MW] in segm. s of unit i at time t,

P t
evtup/dn

Scheduled demand for up/down event-driven
reserve capacity [MW] at time t,

P z,t
evtup/dn

Scheduled demand for up/down event-driven
reserve capacity [MW] in segm. z at time t,

P i,t
nonevtup/dn

Scheduled up/down non-event driven reserve
capacity [MW] of unit i at time t,

P i,s,t
nonevtup/dn

Scheduled up/down non-event driven reserve
capacity [MW] in segm. s of unit i at time t,

Pw,t
abate Scheduled amount of abated fluctuations

[MW] of wind unit w at time t,
Pw,q,t
abate Scheduled amount of abated fluctuations

[MW] in segm. q of wind unit w at time t,
P d,t
abate Scheduled amount of abated fluctuations

[MW] of demand unit d at time t,
P d,r,t
abate Scheduled amount of abated fluctuations

[MW] in segm. r of demand unit d at time t,
R̃t

reqrelax Relaxed required amount of non-event driven
reserve capacity [MW],

ui,t ON/OFF variable of generator i at time t,
vj,t Accepted bid of demand unit j at time t,
ui,t
evtup/dn

Binary variable of generator i at time t to
provide event driven reserves,

ui,t
nonevtup/dn

Binary variable of generator i at time t to
provide non-event driven reserves,

Ei,s,t
G Bound of segment s of generator i at time t,

Ej,k,t
L Bound of segment k of load j at time t,

Hi,s,t
up/dn Spare capacity for event-driven reserves ca-

pacity of segment s, generator i at unit t,
V i,s,t
up/dn Spare capacity for non-event driven reserves

capacity of segment s, generator i at unit t,
LOCi,t

evt/nonevt Lost opportunity costs of gen. i at time t for
event-driven/non-event driven reserves,

LOCi,s,t
evt/nonevt Segment s of lost opportunity costs of gen. i

at time t.

The shown constraints are partially based on the work of
[19] and [38]. The system balance equations for energy and
up/down event-driven reserves are given by:

NG∑
i=1

P
i,t
En −

NL∑
j=1

P
j,t
En +

NW∑
w=1

P
w,t
f = 0, (15)

NG∑
i=1

P
i,t
evtup/dn

− P t
evtup/dn

= 0, (16)

The power balance for non-event driven reserve capacity is
given by:

R̃t
req −

NW∑
w=1

P
w,t
abate −

ND∑
d=1

P
d,t
abate = R̃t

reqrelax, (17)

R̃t
reqrelax −

NG∑
i=1

P
i,t
nonevtup/dn

= 0, (18)

Constraints (19)-(21) state the capacity limits of generators
and demand:

P
G,i,t
En + P

i,t
evtup

+ P
i,t
nonevtup

≤ ui,tP i,t
max, (19)

−P
i,1,t
Enseg

+ P
i,1,t
evtdn,seg

+ P
i,1,t
nonevtdn,seg

≤ −ui,tP
i,t
min, (20)
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vL,j,tP j,t
En,min ≤ PL,j,t

En ≤ vL,j,tP j,t
En,max, (21)

where P
L,j,t
En,min = P

L,j,t
En,max. Constraints (22)-(23) ensure that

the sum of segmentwise power production and consumption
equals the overall generation/consumption:

P
i,t
En/(non)evtup/dn

−

S∑
s=1

P
i,s,t
En/(non)evtseg

= 0, (22)

P
j/1/1,t
En/(non)evtup/dn

−

K/Z/Y∑
k/z/y=1

P
j/1/1,k/z/y,t
En/(non)evtup/dn

= 0, (23)

Constraints (24)-(26) are further segment-wise constraints for
generation and demand:

P
i,s,t
Enseg

+ P
i,s,t
evtup,seg

+ P
i,s,t
nonevtup,seg

≤ ui,t[Ei,s
G − E

i,(s−1)
G ],

(24)

vj,t[Ej,k
L − E

j,(k−1)
L ] ≥ P

j,k,t
Enseg

, (25)

E
j,0
L = 0, (26)

Constraints (27)-(34) are necessary to achieve a correct bid-
ding for non-event driven reserves capacity (see also [19])

u
i,s,t
evt/nonevtup

≥ u
i,(s+1),t
evt/nonevtup

, (27)

M ·MC
j,s,t
evt/nonevtup,segm

≥ u
i,s,t
evt/nonevtup

, (28)

M · u
i,s,t
evt/nonevtup

≥MC
j,s,t
evt/nonevtup,segm

, (29)

M · [1− u
i,(s+1),t
evtup

]−Hi,s,t
up ≥ 0, (30)

M · [1− u
i,(s+1),t
nonevtup

]− V i,s,t
up ≥ 0, (31)

for s = 1, ...(NG,segm − 1) where,

Hi,s,t
up = [Ei,s

G − E
i,(s−1)
G ]− P

i,s,t
Enseg

− P
i,s,t
evtup,seg

, (32)

V i,s,t
up = (33)

[Ei,s
G − E

i,(s−1)
G ]− P

i,s,t
Enseg

− P
i,s,t
evtup,seg

− P
i,s,t
nonevtup,seg

.

(34)

Note that if,

Hi,s,t
up

{
> 0 then u

i,(s+1),t
evtup

,

= 0 then u
i,(s+1),t
evtup

,

for s = 1, ...(NG,segm − 1), and if

V i,s,t
up

{
> 0 then u

i,(s+1),t
nonevtup

,

= 0 then u
i,(s+1),t
nonevtup

,

for s = 1, ...(NG,segm − 1). The piecewise linear dn-reserve
offer is given by constraints

u
G,i,s,t
evt/nonevtdn

≥ u
i,(s−1),t
evt/nonevtdn

, (35)

M · [1− u
i,(s−1),t
evtdn

]−H
i,s,t
dn ≥ 0, (36)

M · [1− u
i,(s−1),t
nonevtdn

]− V
i,s,t
dn ≥ 0, (37)

M ·Bid
j,s,t
evt/nonevtdn,segm

≥ u
i,s,t
evt/nonevtdn

, (38)

Bid
j,s,t
evt/nonevtdn,segm

≤M · u
i,s,t
evt/nonevtdn

, (39)

for s = 1, ...(NG,segm − 1), where

H
i,s,t
dn =P

i,s,t
Enseg

− P
i,s,t
evtdn,seg

, (40)

V
i,s,t
dn =P

i,s,t
Enseg

− P
i,s,t
evtdn,seg

− P
i,s,t
nonevtdn,seg

. (41)

Note that if,

H
i,s,t
dn

{
> 0 then u

i,(s−1),t
evtdn

,

= 0 then u
i,(s−1),t
evtdn

,

and

V
i,s,t
dn

{
> 0 then u

i,(s−1),t
nonevtdn

,

= 0 then u
i,(s−1),t
nonevtdn

,

for s = 1, ...(NG,segm − 1).
The lost opportunity costs for event-driven and non-event
driven reserves are given by constraints (42)-(45).

LOCi,t
evt/nonevtseg

−

S∑
s=1

LOCi,s,t
evt/nonevtseg

= 0, (42)

LOC
i,s,t
evt/nonevtseg

= (43)

M ′

G[λ
p,tMGP

i,s,t
evt/nonevtseg

−MGBid
i,s,t
En,segP

i,s,t
evt/nonevtseg

],

(44)

LOC
i,s,t
evt/nonevtseg

≥ 0. (45)

The up and down time limits for a generator are given by
(46)-(50):

uit =

{
1 if t′ ≤ tupi − ui0 and tupi ≥ ui0 ≥ 0,
0 if t′ ≤ tdni + ui0 and −tdni ≤ ui0 ≤ 0,

(46)

with

ui,t
− ui,(t−1)

≤ uG,i,t′′ , (47)

ui,(t−1)
− ui,t

≤ uG,i,t′′′ , (48)

t+ 1 ≤ t′′ ≤ t+ t
up
i − 1 and t = 2...T, (49)

t+ 1 ≤ t′′′ ≤ t+ tdni − 1 and t = 2...T, (50)

The ramping limits of a generator are given by equations (51)-
(56)

P
i,t
En − P

i,(t−1)
En ≤ max[P i,t

Rup,max, P
i,t
min], (51)

P
i,(t−1)
En − P

i,t
En ≤ max[P i,t

Rdn,max, P
i,t
min], (52)

1− ui,t + ui,(t−1)
≤M [1− auxi,t,1], (53)

P
i,t
En − P

i,(t−1)
En − P

i,t
Rup,max ≤Mauxi,t,1, (54)

1 + ui,t
− ui,(t−1)

≤M [1− auxi,t,2], (55)

−P
i,t
En + P

i,(t−1)
En − P

i,t
Rdn,max ≤Mauxi,t,2 (56)

NG∑
i=1

min .[P i,t
max, P

i,t
En + P i,t

Rup,max] ≥

NL∑
j=1

P j,t
En −

NW∑
w=1

Pw,t
f + P t

evtup
+ R̃t

reqrelax,

(57)

2293



NG∑
i=1

min .[P i,t
min, P

i,t
En − P i,t

Rdn,max] ≥

NL∑
j=1

P j,t
En −

NW∑
w=1

Pw,t
f − P t

evtdn − R̃t
reqrelax,

(58)

The transmission constraints are modeled as,

−fmax
l ≤ PTDF

p
l (MG · P

i,t
En −ML · P

j,t
En) ≤ fmax

l . (59)

B. Additional Model Parameters

Table I shows additional parameters used for the respective
simulations.

TABLE I: Additional simulation parameters

Parameter/Time Period 1 - 24 1 - 24
εen −0.25 ηW,w,t 0.15/0.3/0.6

εevt res [−0.25,−0.75] ηL,d,t 0.15/0.3/0.6
A

j,t
en 2 ·

∑
j∈NL

P
j,t
En BW,w,t 5

A
j,t
evt res

1
2
·

∑
j∈NL

P
j,t
En BL,d,t 5

Bid Markup [0%, 20%] γ [20%]
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