
Tracking Targets under Uncertainty
Natural Computing Approaches

Silja Meyer-Nieberg, Erik Kropat

Department of Computer Science

Universität der Bundeswehr München

Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

Email: name.surname@unibw.de

Abstract

Tracking or more generally state estimation of dynamic systems are tasks
that appear in many different contexts – for instance in surveillance with
wireless sensor networks. Usually the state-evolution equations are assumed
to be known excepting some parameters. In this case, particle filters and
related approaches have been applied with great success. Very few attempts,
however, have been made so far to address the problem of an unknown state
equation. This paper presents approaches based on natural computing to
solve this difficult and complex situation leading to a new kind of algorithms.
Improvements to the original methods are introduced and investigated. The
tracking quality is examined in simulations and compared to that of particle
filters. The results show the performance of natural computing approaches
are similar to that of particle filters for systems with known state-evolution
equations. The new methods, however, can also be applied in situations with
severe uncertainties.

Keywords

Tracking, evolution strategies, particle swarm optimization, particle filter,
uncertainty, noise

1. Introduction

Tracking and localization tasks appear in various contexts

ranging from civilian to military applications. Examples in-

clude the tracking of air planes in air traffic control and track-

ing tasks with wireless sensor networks. Tracking describes

the problem of inferring the true state (e.g. the position) of a

system by means of noisy sensor measurements and usually

further information on the behavioral type of the system

or target. Thus, estimating the unknown true state requires

two models (see [2]): one describing the behavior, the other

characterizing the measurements. If these are obtainable, they

can be integrated into automated systems which take sensor

measurements e.g. from a wireless sensor network and give an

updated and more accurate estimate of the state or position.

Usually particle filters and related methods are applied with

great success for solving this task. This estimate can then be

used to improve the common operational picture.

But what can be done if we cannot obtain a model for

how the system behaves? Problems like these occur among

others in ballistic target tracking or in the case of hand-held

GPS-receivers [14]. In this case, particle filters cannot be

applied since they require knowledge of the behavior type.

This paper presents a new way to address this problem. The

task can be compared to an uncertain search problem - that

is, the method must cope with a dynamic and noisy situation.

Therefore, one way to approach this problem is to make use of

the inherent capabilities of evolutionary algorithms and other

natural computing methods to track the uncertain position of

a moving search point. This in turn leads to new challenges

which will be described later. Several algorithms may be

applicable – after adapting them to the task at hand. The aim is

to provide first analyses of whether these methods can be used

instead of particle filters in automated systems. Therefore, we

focus on the algorithms and their operating principles.
We extend the results from [17], were we provided a

first attempt at using natural computing for tracking. In the

present paper, changes to the algorithms are proposed in order

to cope with the specific task and explored. Additionally,

a new method, particle swarm optimization is considered.

Particle swarms have applied before in the area of tracking.

However, the approaches considered versions developed for

classical static optimization. Since tracking itself is dynamic,

the application of variants introduced for dynamic optimization

problems appears promising. Although we do not propose the

use of natural computing as the main tracking operator in

cases where the target behavior can be modelled quite well,

it is nevertheless interesting to compare the performance of

the natural computing approaches with that of particle filters.

Therefore, the paper provides also a comparison with these

methods.
The paper is organized as follows: It starts with a descrip-

tion of tracking and gives a sketch on particle filters and

on so-called hybrid approaches. Afterwards, particle swarm

optimization and modern evolution strategies are introduced.

The next section gives the main ideas for the new algorithms

which are investigated closer in the experimental section.

Conclusions constitute the last part of the paper.

1.1. Tracking with Particle Filters

In tracking, variants of the general dynamic system

xk+1 = fk+1(xk,�εk+1)

zk+1 = hk+1(xk+1, �ωk+1) (1)

are considered [2]. System (1) describes the evolution of the

state variables xk and the sequence of the measurements

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.150

1162

zk, k ≥ 1. The state variables are the “true” position of

the target. Unfortunately, only noisy measurements zk are

available from which the positions have to be estimated. The

random variables �εk and �ωk denote measurement and process

noise, respectively, and are assumed to be independent.

Tracking applications may focus on several tasks: Of-

ten the posterior density p(xk|z1;k), with p(xk|z1;k) :=
p(xk|z1, . . . , zk), is required which allows statistical estimates

of interesting characteristics. In many cases, it is sufficient to

derive some statistical moments - for instance the mean of

the target position. The non-linear functions fk, hk, k ≥ 1,

are assumed to be known. Only a few approaches consider

the possibility of unknown or uncertain parameters, e.g. [9],

or allow model changes. The problem of estimating unknown

parameters together with unknown state variables is known as

dual estimation and can be approached in two ways: either

by augmenting the state space with the uncertain parameters

or by using two particle filters concurrently. Section 1.2 lists

further methods from natural computing.

Following a Bayesian approach, the posterior density is

obtained in two steps: a prediction and an update step. The

prediction step obtains the density of the present target position

given all previous measurements

p(xk|z1;k−1) =

∫
p(xk|xk−1)p(xk−1|z1;k−1)dxk−1. (2)

Once new measurements arrive, the update of the posterior

reads

p(xk|z1;k) = p(xk|z1;k−1)p(zk|xk)

p(zk|z1;k−1)
(3)

with

p(zk|z1;k−1) :=

∫
p(zk|xk)p(xk|z1;k−1)dxk. (4)

Unfortunately, exact analytical solutions for (3) can only

be obtained under quite restrictive assumptions. Otherwise

approximations must be used. Among them is the well-known

particle filter which is described shortly in the following. For

a more detailed description, see e.g. [2, 6]. It can be shown

that (3) can be approximated by

p(xk|z1;k) ≈
Ns∑
i=1

wi,kδ(xk − xi,k) (5)

with Ns particles xi,k. The sum converges to the density for

Ns → ∞. The symbol δ(u) denotes the Dirac delta function

and the wi,k are positive weights summing up to one.

The usage of a weighted density approximation is based on

the following: Assume that there exists a density p(x) from

which it is difficult to sample but that another density τ(x)
can be found that is easy to evaluate and fulfills p(x) ∝ τ(x).
Still another density is required which allows to draw samples

without difficulties. Using this importance density q(x), p(x)
can be approximated by

p(x) ≈
Ns∑
i=1

τ(xi)

q(xi)
δ(x− xi) (6)

Algorithm 1:
A Generic Particle Filter (SIS)
PFk :={(xi,k)i=1,...,Ns , (wi,k)i=1,...,Ns}
For i = 1, . . . , Ns

Draw xi,k+1 ∼ q(x|xi,k, zk+1)
Determine the weights

Determine the sum of the weights
For i = 1, . . . , Ns

Normalize the weights
Test whether resampling is necessary
If TRUE

RESAMPLE
PFk+1 :={(xi,k+1)i=1,...,Ns , (wi,k+1)i=1,...,Ns}

Figure 1. A generic particle filter. The description follows
[2].

with the points xi drawn from q(x). In the case of parti-

cle filters, a general importance density would be given by

q(xi,1;k|zi,1;k). This generic importance density leads using

some assumptions (see [2]) finally to the general weight update

equation

wi,k = wi,k−1
p(zk|xi,k)p(xi,k|xi,k−1)

q(xi,k|xi,k−1, zk)
(7)

with q(xi,k|xi,k−1, zk) to be defined. Since the performance

of the particle filter depends strongly on the importance

density its good choice is critical. Often, the transition density

q(xk|xi,k, zk) = p(xk|xi,k) is used, but this may lead to

problems.

A common problem in particle filters is the so-called

degeneracy problem, a kind of diversity loss of the population.

After some time, typically only few particles will have larger

weights – the majority of the particles does not contribute

much to the density approximation. Therefore, the estimate

is based on very few particles. According to [2] two general

countermeasures exists: Choosing the proposal density very

carefully helps to circumvent the problem whereas resampling

the particles if the weight distribution becomes too uneven is

another very common technique. Figure 1 shows a generic

particle filter.

Several approaches exist which differ in the preconditions

they make. Without resampling, the particle filter can be

termed sequential importance sampling (SIS). A variant of SIS

is for instance sampling importance resampling (SIR) which

uses the importance density described above and resamples in

every time step k. Further approaches include bootstrap filters

[10] or convolution particle filters [9].

In this paper, we assume that the functions describing the

evolution of the non-measurable state variables are unknown.

Therefore, it is not possible to compute the transition density

p(xk|xk−1) explicitly. Only the measurements can be taken

into account to derive and predict the target position. It should

be noted that particle filters have strong similarities with

1163

evolutionary algorithms (EAs) or particle swarm optimiza-

tion, or more generally estimation of distribution algorithms

(EDAs), which are used in optimization and search. The main

difference is that EAs predefine a search distribution which is

then adapted by selection and updated emulating principals

from natural evolution. That is, they have their own state

evolution equation which provided that it is possible to guide

the search would allow the use of the approaches when the

state equations are unknown. Before describing some of the

approaches in more detail, we give a review on previous uses

of natural computing in the area of tracking.

1.2. Hybrid Particle Filters and Dealing with Un-
known Parameters

Natural computing is usually used together with particle

filters resulting in so-called hybrid approaches that combine

characteristics of several methods. Johansson and Lehmann

[14] addressed the problem of dual estimation in which both

the object position and its evolution have to be inferred. In their

approach, they assumed that the model contained unknown

parameters which had to be determined. Furthermore, ground

truth was unavailable. To solve the problem, they combined

a particle filter with an evolution strategy, a CMA-ES [12]

for determining the unknown parameters. That is, a two-step

process was applied with the ES completing the state equations

and a bootstrap particle filter estimating the target position.

The performance of the system was found to be good. For

the optimization process, however, it was assumed that the

target position can be extrapolated from previous positions

which could potentially be problematic in other applications

areas. Pengpai et al. [18] assumed that some parameters

appearing in the state evolution and observation equation are

unknown. They introduced a dual particle filter based on

particle weight estimation by running two particle filters in

sequence. However, the approach needs ground truth data for

training. Yang [22] used a combination between particle filter,

i.e., auxiliary particle filtering and particle swarm optimization

[8] for dual estimation demonstrating the general ability of the

new algorithm to track the state variables.

Hybrids between evolutionary algorithms and particle filters

were not only considered for dual estimation. A series of

papers by Uosaki et al., see e.g. [21], addresses combinations

between evolution strategies and particle filters. To overcome

the degeneracy problem they transferred the selection principle

of evolution strategies and selected the particles with the

largest weights. They obtained good results although not as

good as those reached by the best particle filter.

1.3. Particle Swarm Optimization

Particle swarm optimization (PSO) is usually used for con-

tinuous search spaces. It is built after the swarming behavior

of birds or fishes. In its simpliest form, the particles move

through the search space by updating their velocity vector

which indicates direction and extend of the movement. The

update considers information of the swarm and of the search

history. Usually, there are three main components

vt+1
k = ωvt

k + c1r1 · (xk − x̂Nk
) + c2r2 · (xk − x̂k) (8)

with · denoting componentwise multiplication. The first term

ωvt
k is the old velocity which is included as a momentum term

to safeguard against abrupt changes and to enable the swarm to

leave the boundaries of the initial region. The second xk−x̂Nk

is called the social component. The social component gives the

particle the tendency to move towards the current best member

xNk
of the swarm or in its neighborhood.

This component is combined with stochastic influences c1r1
enforcing exploration. At this point, the swarm resembles a

multi-point stochastic hillclimber. Ignoring the old velocities,

all members of the swarm would move towards the current

best solution. However, a particle also considers information

from its own search history. The cognitive component xk− x̂k

gives the particle the tendency to return to the best point it

has found so far. Again, stochastic influences are present.

The PSO described above is the original form of the so-

called global best PSO since the best individual is determined

using all swarm members. There are also types of PSO which

consider local neighborhoods. Particle swarm optimization is

quite efficient operating with swarm sizes of 10-30 individuals.

Over the years, a lot of variants have been developed. The

reader is referred to [8] for an overview. We will consider

the global best PSO in this paper which uses the so-called

constriction coefficient

vt+1
k = χ

(
vt
k + c1r1 · (xk − x̂Nk

) + c2r2 · (xk − x̂k)
)
. (9)

It is easy to see that (8) and (9) can be transformed into

each other by choosing the constants appropriately. It has

been shown that PSO is able to track moving targets provided

the change takes place in the space defined by the particles.

There are specialized PSO approaches which aim at keeping

up the diversity of the population enabling a better tracking

capability. In this paper, one of these approaches, charged

swarms, is implemented. In charged swarms, a part of the

population is considered to carry a charge Qk similar to the

electric load in electron models. Since charged particles repell

each other when their distance becomes too small, the swarm

cannot collapse into a single point. The particle repulsion

follows

akm =

⎧⎪⎨
⎪⎩

QkQm

‖xk−xm‖2
xk−xm

‖xk−xm‖ if dmin ≤ ‖xk − xm‖ ≤ di
QkQm

d2
min

xk−xm

‖xk−xm‖ if ‖xk − xm‖ ≤ dmin

0 otherwise

ak =
∑
m �=k

akm. (10)

For each charged particle k the velocity update then changes

to

vt+1
k = χ

(
vt
k + c1r1 · (xk − x̂Nk

) +

c2r2 · (xk − x̂k) + ak

)
. (11)

1164

Since the charged swarm is already adapted to deal with

dynamic optimization, we do not propose further changes to

the algorithm.

1.4. Evolution Strategies

Evolutionary algorithms (EAs) [7] are population-based

stochastic search and optimization algorithms. As direct search

methods, they do require only weak preconditions on the

function to be optimized and can be applied when only point-

wise function evaluation is possible.

An evolutionary algorithm starts with an initial population.

The individuals are either drawn randomly from the permissi-

ble search space or are initialized according to previous infor-

mation. Each individual represents a candidate solution for the

search or optimization problem. A subset of the population is

selected as so-called parents in order to create new solutions.

Creating new individuals encompasses usually two processes:

recombination and mutation. Recombination combines traits

from two or more parents, whereas mutations are random

perturbations. After the offspring have been created, survivor

selection is performed to determine the next parent population.

Evolutionary algorithms differ in the ways they represent

the solutions and implement selection, recombination, and

mutation.

Evolution strategies (ESs) [19, 20, 4] are a variant of evolu-

tionary algorithms that is predominantly applied in continuous

search spaces. Mutation is the main search operator. This

is in contrast to genetic algorithms which operate predomi-

nantly by recombination. Evolution strategies are commonly

notated as (μ/ρ, λ)-ESs. The parameter μ gives the size of

the parent population, whereas λ stands for the size of the

offspring population. If recombination is used, ρ parents enter

the recombination result. Recombination is usually performed

by calculating the weighted mean of the parents which is

referred to as intermediate recombination. Other forms exist

[4]. The result is then mutated – usually by adding a normally

distributed random variable with zero mean and covariance

matrix σ2C. Afterwards, the individuals are evaluated using

the function to be optimized or a derived function which allows

an easy ranking of the population.

Two main types of ESs can be distinguished: ES with

“plus”-selection and ES with “comma”-selection. Evolution

strategies with “plus”-selection choose the μ-best offspring

and parents to form the next parent population, where ESs

with “comma”-selection discard the old parent population

completely. For continuous search spaces, “comma”-selection

is usually recommended [4]. An important topic in evolu-

tion strategies is the continuous adaptation of the covariance

matrix. Evolution strategies with ill-adapted parameters show

slow convergence or are unable to find the optimal state at all.

Therefore, methods for adapting the scale factor σ or the full

covariance matrix have received a lot of attention (see [15])

– cumulating in evolution strategies with covariance matrix

adaptation.

1.5. Updating the Covariance Matrix

First, the update of the covariance matrix is addressed.

In evolution strategies two types exist: one used by the

covariance matrix adaptation evolution strategy (CMA-ES)

[13, 12] which considers past information from the search and

an alternative used by the covariance matrix self-adaptation
evolution strategy (CMSA-ES) [5] focuses on present infor-

mation from the population.

The covariance matrix update of the CMA-ES is explained

first. The CMA-ES uses weighted intermediate recombination,

computing the weighted centroid of the μ best individuals

of the population. This mean m(g) is used for creating all

offspring by adding a random vector drawn from a normal

distribution with covariance matrix (σ(g))2C(g), i.e., the actual

covariance matrix consists of a general scaling factor (step-

size) and the matrix denoting the directions. Following usual

notation in evolution strategies this matrix C(g) will be re-

ferred to as covariance matrix in the following.

The basis for the CMA update is the common estimate of the

covariance matrix using the newly created population. Instead

of considering the whole population for building the estimates,

though, it introduces a bias towards good search regions by

taking only the μ best individuals into account. Furthermore,

it does not estimate the mean anew but uses the centroid m(g).

Following [13],

y
(g+1)
m:λ :=

1

σ(g)

(
x
(g+1)
m:λ −m(g)

)
m = 1, . . . , μ

are determined with xm:λ denoting the mth best off the λ
particle according to the fitness ranking. The rank-μ update

the obtains the covariance matrix as

C(g+1)
μ :=

μ∑
m=1

wmy
(g+1)
m:λ (y

(g+1)
m:λ)T (12)

To derive reliable estimates larger population sizes are usually

necessary which is detrimental with regard to the algorithm’s

speed. Therefore, past information, that is, past covariance

matrizes are usually also considered

C(g+1) := (1− cμ)C
(g) + cμC

(g+1)
μ (13)

with parameter 0 ≤ cμ ≤ 1 determining the effective time-

horizon. In CMA-ES it has been found that an enhance of

the general search direction in the covariance matrix is usual

beneficial. For this, the concepts of the evolutionary path
and the rank-one-update are introduced. As its name already

suggests, an evolutionary path considers the path in the search

space the population has taken so far. It is defined by the

trajectory of the weighted means. With

v(g+1) :=
m(g+1) −m(g)

σ(g)

the path is given as a combination of the old path and the new

step

p(g+1)
c := (1− cc)p

(g)
c +

√
cc(2− cc)μeffv

(g+1). (14)

1165

For more details on the parameters see e.g. [12, 13]. The

evolutionary path gives a general search direction that the ES

has taken in the immediate past. In order to bias the covariance

matrix accordingly, the rank-one-update is used

C
(g+1)
1 := p(g+1)

c (p(g+1)
c)T. (15)

A normal distribution with C
(g+1)
1 leads towards a one-

dimensional distribution on the line defined by p
(g+1)
c . To-

gether the components constitute the covariance update of the

CMA-ES

C(g+1) := (1− c1 − cμ)C
(g) + c1C

(g+1)
1

+cμC
(g+1)
μ . (16)

The CMA-ES is one of the most powerful evolution strategies.

However, as pointed out in [5], its performance does not scale

very well with the population size. The CMSA-ES [5] updates

the covariance matrix differently by considering

u
(g+1)
m:λ :=

1

σ
(g+1)
m

(
x
(g)
m:λ − x(g)

p

)
(17)

with x
(g)
p the base vector of the mutation leading to x

(g+1)
m:λ .

Using (weighted) recombination, Eq. (17) equals the rank-μ
update of the CMA-ES. The covariance update then reads

C(g+1) := (1− 1

cτ
)C(g) +

1

cτ

μ∑
m=1

wmu
(g+1)
m:λ (u

(g+1)
m:λ)T (18)

with the weights usually set to wm = 1/μ. See [5] for

information on the free parameter cτ .

1.6. Updating the Step-Size

The CMA-ES uses the so-called cumulative step-size adap-
tation (CSA) to adapt the scaling parameter (also called step-
size, mutation strength, or step-length). To this end, the CSA

[12] determines again an evolutionary path by summing up

the movement of the population centers

p(g+1)
σ = (1− cσ)p

(g)
σ +√

cσ(2− cσ)μeff(C
(g))−

1
2v(g+1) (19)

and eliminating the influence of the covariance matrix and

the step length. For a detailed description of the parameters

see [12]. The length of the path is important. If the path

length is short, several movement of the centers counteract

each other which is an indication that the step-size is too

large and shall be reduced. If one the other hand, the ES takes

several steps in approximately the same direction, progress

and algorithm speed would be improved, if the ES could

make larger changes. Therefore, long path lengths are seen

as an indicator for a required increase of the step length.

Ideally, the CSA should result in uncorrelated steps. After

some calculations, see [12], it can be seen that the ideal

situation is given by standard normally distributed steps, which

leads to

ln(σ(g+1)) = ln(σ(g)) +

cσ
dσ

(‖p(g+1)
σ ‖ − μχn

μχn

)
(20)

as the CSA-rule. The parameter μχn
in (20) stands for the

mean of the χ-distribution with n degrees of freedom. If a

random variable follows a χ2
n distribution, its square root is

χ-distributed. The degrees of freedom coincide with the search

space dimension. However, it can be shown that the original

CSA encounter problems in large noise regimes resulting in

a loss of step-size control and premature convergence. There-

fore, uncertainty handling procedures and other safeguards are

recommended.
An alternative approach for adapting the step-size is self-

adaptation first introduced in [19] and developed further in

[20]. It subjects the strategy parameters of the mutation to

evolution. In other words, the scaling parameter or in its

full form, the whole covariance matrix, undergoes recombina-

tion, mutation, and indirect selection processes. The working

principle is based on an indirect stochastic linkage between

good individuals and appropriate parameters: On average good

parameters should lead to better offspring than too large or

too small values or misleading directions. As stated, self-

adaptation has been developed to adapt the whole covariance

matrix. However, it is used nowadays mainly to adapt the

step-size or a diagonal covariance matrix. In the case of the

mutation strength, usually a log-normal distribution

σ
(g)
l = σbaseexp(τN (0, 1)) (21)

is used for mutation. The parameter τ is called the learning
rate. The variable σbase is either the parental mutation strength

or the result of recombination. For the step-size, it is possible

to apply the same type of recombination as for the positions

although different forms – for instance a multiplicative combi-

nation – could be used instead. The self-adaptation of the step-

size is referred to as σ-self-adaptation (σSA) in the remainder

of the paper. The newly created mutation strength is then

used directly in the mutation of the offspring. If the offspring

is sufficiently good, it is passed to the next generation. The

baseline σbase is either the mutation strength of the parent

or if recombination is used the recombination result. Self-

adaptation with recombination has been shown to be “robust”

against noise [3] and is used in the CMSA-ES as update rule

for the scaling factor. In [5] it was found that the CMSA-ES

performs comparably to the CMA-ES for smaller populations

but is less computational expensive for larger population sizes.

2. Natural Computing for Model-Free Tracking

This paper assumes that the state evolution equations are

unknown and ground truth is unavailable. Therefore, tracking

can only take the measurements and the observation equation

into account

zk = hk(xk, �ωk) (22)

1166

leading to the question how this information can be ultilized

to guide the search. We assume that the density p(zk|x)
is obtainable at least approximately for zk given, since this

density is used as the fitness function

fk(x) = p(zk|x) (23)

for maximization or a derived measure with the same opti-

mizer. Since zk is the result of a noisy measurement, it appears

as unfavourable to carry out the optimization of (23) to the end.

2.1. Coping with Noisy and Misleading Information

Information from the search so far is valuable to avoid

moving towards false optima provided the true positional

changes of the state variables are not too large and that

no stark behavioral changes occur. It should be possible to

recover the target movement to some extend by considering

the search process of the algorithm. The maximizer of (23)

provides an (inaccurate) estimate of the target position. The

dynamic nature of the tracking task should be beneficial in

itself. One the one hand, the reoccurring changes of the

situation safeguard the population against converging towards

a potential false optimizer and against loosing the population

diversity to some extend. On the other hand, as the population

tries to follow the target, the algorithm keeps statistics of the

search process and is influenced by previous measurements.

Therefore, it builds an implicit model of the target behavior.

However, if the optimization run of the algorithm has sufficient

time, it will concentrate on the optimizer of (23). It is possible

to safeguard against this behavior by allowing only a few

generations per se – even if no new measurement has arrived.

This parameter must be tuned to the specific task. Another

measure that may be taken is the introduction of artificial

noise. As shown in [16], noise may sometimes be helpful in

optimization since it may keep the algorithm from completing

a subtask thus enabling the continued following of the overall

goal. A similar reasoning can be applied here. It is not the

goal to complete the optimization of (23) since the optimizer

is misleading and its fulfillment would go hand in hand with

a shrinkage of the population spread. Instead we want to use

the fitness as a rough target to guide the search and maintain

sufficient diversity. Artificial noise

f̃k(x) = p(zk|x) + ε (24)

with ε ∼ σεN (0, 1) may be helpful. This is the standard

additive noise model in evolution strategies with σε called the

noise strength. The noise strength must be adapted carefully to

the task. Whether articifial noise has a positive effect depends

on the convergence behavior of the ES. The noise term will

have an effect if the values of the true function are small.

Therefore, we will consider a minimzation problem which is

derived from (24) in order to assess the effects of artificial

noise.

2.2. Evolutionary Particle Filters

The application of an ES to (23) is similar to using the

density of a normal distribution as importance and transition

density and substituting the resampling phase by rank selection

based of the likelihood p(z|x). Therefore, in principle, evolu-

tion strategies and also particle swarms can be seen as special

cases of particle filters. The following section introduces the

evolutionary particle filters (EPFs) which are ESs that are

adapted to tracking. This paper only considers EPFs with

recombination notated as EPFrec. While non-recombinative

strategies are possible, the first investigations in [17] showed

that intermediate recombination should be preferred.

2.2.1. Recombination. Recombination can be realized in sev-

eral ways. The first decision is whether to use static or dynamic

weights. In ES, static weights

(wm)m=1,...,μ, with

μ∑
i=m

wm = 1

are common, either using equal weights wm = 1/μ or follow-

ing [12] in setting wm = ln((μ + 1)/2) − ln(m) and giving

more weight to higher ranked individuals without considering

the actual fitness differences. This is in contrast to typical

particle filters which use a fitness dependent relative weight.

However, as the investigations in [17] revealed using fitness

dependent weights leads to instabilities. Therefore, constant

weights are applied. Since the CMSA-ES usually operates with

equal weights, we keep this setting for the EPFrec-CMSA,

whereas the EPSrec-CMA will use unequal weights. Figure 2

sums up the main parts of the algorithms. Please note that the

generation counter g is not related to the time index k.

2.2.2. Preserving the Diversity. New measurements can ar-

rive during optimization leading to a dynamic optimization

problem. In the case of evolution strategies, problems may

appear if the magnitude of the change is very large which will

lead to a longer adaptation times if the scaling factors have

become too small. This will occur especially if measurements

are taken infrequently. We propose two main approaches: a) no

changes to the scaling factor in the assumption that in general

convergence of the ES will take longer than the appearance

of new measurements (this can be forced by limiting the

search time of the ES) or b) transferring a concept stem-

ming from particle swarm optimization. Aside from charged

swarms, quantum particles have been introduced for dynamic

optimization. This concept has not be carried over to evolution

strategies until now although it appears helpful. Quantum

particles are particles that do not move according to the usual

rules. Instead they are created randomly around the population

center. Usually, they are assumed to be normally distributed.

If the population starts to converge into a single point, they

keep up the diversity. Thus, they still enable searching up to a

certain extend and serve as attractors for further development if

they find better solutions than previously known. The concept

has to be adapted in order to use them in evolution strategies.

1167

If d denotes the index of a quantum individual, the individual

is created as

xd = m+ σq
�N (0,Cq). (25)

The generation index has been left out for clarity. The step-

size and the covariance matrix are kept constant. In case,

the resultant is selected for the next parent population, it

is treated as a normal individual and takes part in the re-

combination processes and adaptation mechanisms. Selected

quantum particles pull the mean of the population towards

themselves enabling at least a gradual move out of the previous

focus area. Additionally, there are influences on the step-size

and covariance matrix. Since quantum particles increase the

computational effort, they are only applied if the diversity

provided by the usual mutation is low. As a measure we use

the scaling parameter together with the squared root of the

maximal eigenvalue of the covariance matrix since this can be

seen as a representative of the effective step sizes.

2.2.3. Update of Covariance and Step-Size. In the case of

the EPFrec, the common ES-update rules for the covariance

matrix are used. Also, for the scaling parameter, both ap-

proaches – the CSA-rule and the σSA-rule – appear applicable,

although the time horizon for the evolutionary path in the

CSA-rule is probably a decisive parameter. The σSA-rule is

used with a small change by ultilizing the median instead

of the mean in the recombination. It must be investigated

whether using quantum particles together with the median type

of recombination leads to significant effects. Since the median

is robust against outliers, it may counteract the impact of the

quantum particle. Therefore, the strategy will switch towards

the mean whenever quantum particles are selected. Since

all methods rely on past information, finding an appropriate

generation time window is important. This paper considers the

performance of systems with short generation time horizons

which will require larger populations. The approaches are

running systems, that is, they are started in the beginning of

the measurements and incorporate new information as soon as

a generation cycle is complete.

The following notation is used in the remainder of the

paper. Let EPFrec-CMSA stand for evolutionary particle filter

with recombination using the update rules of the CMSA-

ES, whereas EPFrec-CMA applies the rules form the CMA-

ES most notably the cumulative search path adaptation. The

quantum variants will be denoted by QEPFrec-CMSA and

QEPFrec-CMA. The first analyses will be carried out with

the CMSA version. The PSO-based approach will be called

particle swarm filter (PSF) in the remainder of the paper.

3. Experimental Setup

The algorithms have several parameters that can and should

normally be tuned for a practical use. The experiments pre-

sented will apply mainly the default values of the PSO, CMA-

ES, and CMSA-ES. An extensive research of the parameter

dependence will be part of future work.

Algorithm 2:
Evolutionary Particle Filter with
Recombination
g=0: Initialize σ(0) = σμ;k−1,

C(0) = Ck−1, x
(0)
m = mk−1, w

(0)
m = wm;k−1,

m = 1, . . . , μ.
Calculate the weights

a) w(g+1)
m =

1

μ
(26)

b) w(g+1)
m = ln

(
μ+ 1

2

)
− ln(m) (27)

REPEAT
Compute the weighted mean

m(g) =

μ∑
m=1

w(g)
m x(g)

m (28)

Create λ particles according to

xl
λ = m(g) + σ(g)N (0,C(g)) (29)

Determine the fitness

f(xl
λ) = p(zk|xl

λ) (30)

Select the μ-best particles
according to the best fitness
values
Determine σ(g+1), C(g+1)

g → g + 1

UNTIL STOP
σμ = σ

(gend)
μ , Ck = C(gend), mk = m(gend),

m = 1, . . . , μ

Figure 2. Evolutionary particle filter (EPFrec) using re-
combination. Note, in case of the CMA statistics of further
parameter have to be kept.

The code for the experiments is based on the matlab-code

purecmaes.m from N. Hansen [11] without improving the

efficiency of the update rules. Therefore, system time will not

be considered as a performance factor in itself. For the particle

filter, we applied the code written by D. A. Alvarez [1].

3.1. Research Questions

The following questions are addressed in our first investi-

gation of the algorithms using two dynamic models:

1) How well do the new variants perform compared to

standard particle filter?

2) Does the introduction of quantum individuals improve

the performance?

3) Is artificial noise helpful in dynamic tracking tasks?

1168

3.2. Performance Measures

Following common practice in particle filter literature, we

use the average root mean squared error (average RMSE)

av. RMSE :=
1

M

M∑
m=1

√√√√ 1

T

T∑
k=1

‖x̂(k,m)− x(k,m)‖2

as performance measure with x̂ denoting the target position

and x the output of the algorithms. The parameter T gives the

measurement duration or the number of measurements for a

experiment. We use M repeats.

3.3. Dynamic Systems

In this paper, two systems are considered to investigate the

algorithms. A one-dimensional system inspired by [21], where

only the step-size adaptation mechanism is explored and a

three-dimensional system which requires the adaptation of the

covariance matrix. In the case of the traditional particle filter,

the systems will be used directly in the algorithm. The first

system is given by

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos(1.2t) +N (0, 10)

zk = sign(xk)
x2
k

20
+N (0, 1) (31)

with maximum of p(zi|x) directly discernible. No covariance

matrix is necessary just step-size adaptation is required. The

second system reads

xk = Fxk−1 + b · �N (0, 10I) with

F =

⎛
⎝ 1 T T 2

2
0 1 T
0 0 1

⎞
⎠ , b =

⎛
⎝

T 3

6
T 2

2
1

⎞
⎠

zk = xk + �N (0, 3I) (32)

with T = 0.25.

3.4. Parameter Settings

We used the following settings for the algorithms. The

EPFrec-CMA applies the standard values taken from [11] with

the exception of the offspring population size λ which was

varied in the experiments. The size of the parent population

was set to μ = λ/2. The EPFrec-CMSA followed the rec-

ommendation of using approximately μ = 0.25λ. Regarding

(18), the parameter was set to cτ = 1/(μN). The learning

rate, see (22) reads τ = 1/
√
10. We are diverting from the

usual recommendation of choosing τ ∝ 1/
√
N since the

dimension of the search space N is quite small and preliminary

experiments revealed instabilities in the step-size adaptation.

We considered three different population sizes λ = 50,

100, and 200 together with four generation times gend =
2, 4, 6, and 20 resulting in twelve different combinations of

parameter values. The PSF applied the following settings for

Figure 3. An exemplary run of the algorithms for System
(31). The population sizes were set to 100 and the gen-
eration time was six. Not shown are the results for the
QEPF-CMA.

the parameters: In the case of the update velocity (11), the

parameters read χ = 0.953, r1 = 2.05, and r2 = 2.05. For the

determination of the particle repulsion dmin = 0.1, di = 0.5,

and Qk = −0.1 were chosen. The number of charged particles

was set 20% of the population. The EPFQ uses μq = μ/2
quantum individuals with a scaling factor of σq = 1 and

covariance matrix Cq = I. The quantum individuals are used

if the measure defined in Section 2.2.2 is smaller than 10 %

of σq .

We use just one realization of the dynamical system in order

to make the results comparable. Otherwise, additional runs

must be performed in order to eliminate the influences. This

will be done in future research. The end time of the simulation

was set to T = 100. We use 30 repeats for each parameter

setting combination in case of System (31) and ten for (32).

In order to assess the effects of noise, we set σ2
ε = 0.25 and

applied f(x) = ‖y − sign(x)x2/20‖2 for the minimization.

The investigations were carried out for (31).

4. Results

This section discusses the results of the experiments. Figure

3 shows an exemplary run of the methods on the first dynamic

system (31). As it can be seen, it is not easy to distinguish

the results for the different approaches. A closer look at the

corresponding box-plots, Fig. (4) reveals differences. Nearly

all approaches have several outliers. In comparison to the

spread of the outliers, the whiskers and the box are quite

narrow. Especially the PSF and the QEPF-CMSA seem to

be affected. The average RMSEs are reported in Tables 1 -

3. Since the QEPF-CMSA is always worse than the original

EPF-CMSA, the results are not reported. Note, the EPF-CMA

and the QEPF-CMA experienced numerical instabilities when

1169

Figure 4. Exemplary box plots for the squared errors on
(31). Shown are the corresponding results for Fig. 3, i.e.,
the results stem from the same run.

λ gend PF EPF-CMSA EPF-CMA QEPF PSF

50 2 2.145 3.552 3.459 3.416 7.016
50 4 2.105 2.701 2.636 2.639 4.127
50 6 2.121 2.468 2.361 2.366 3.332
50 20 2.092 2.598 2.548 7642.005∗ 2.618

100 2 1.968 3.476 3.697 3.683 6.190
100 4 1.961 2.581 2.756 2.762 3.967
100 6 1.969 2.481 2.401 2.41 3.054
100 20 1.96 2.59 2.498 2.497 2.618

200 2 1.889 3.341 4.075 4.078 5.705
200 4 1.891 2.588 3.051 3.069 3.75
200 6 1.917 2.443 2.578 2.588 2.812
200 20 1.879 2.593 2.429 2.422 2.618

Table 1. Average RMSE for the first system (31). ∗

Result caused by one extreme run. Otherwise the
average would be around 2.5-2.6.

optimizing the density function for System (32). Therefore,

a derived measure was used in the optimization. The EPF-

CMSA and the PSF operate on the original function.

The average RMSEs for (31) are given by Table 1. As

it could be expected, the particle filter has the lowest error

since it can explicitly make use of the exact model. The other

approaches are able to come close, however. They show a

dependence on the number of allowed generations until new

measurements arrive. Concerning the CMSA and the CMA

versions, we find that if the population sizes are larger and the

generation time is short, the EPF-CMSA leads to better results

than the EPF-CMA. If the number of allowed generations

is increased, the CMA variant appears preferable. According

to the average RMSE, the quantum version does not have

significant benefits on system (31). While the QEPF-CMA

performs similar to the EPF-CMA and sometimes surpasses

the results, no clear findings emerge. Further research appears

necessary. In the case of the QEPF-CMSA, it is always worse

λ gend PF EPF-CMSA EPF-CMA QEPF PSF

50 2 1.593 3.675 2.978 2.755 7.364
50 4 1.57 2.397 2.578 2.794 5.839
50 6 1.517 2.264 2.445 2.58 3.74
50 20 1.621 2.278 2.372 –∗ 71.06∗∗

100 2 1.446 4.018 36.54 40.78 5.073
100 4 1.447 2.234 17.23 18.45 3.218
100 6 1.435 2.202 10.23 11.65 2.855
100 20 1.426 2.277 7.219 –∗ 19.147

200 2 1.404 4.618 443.9 442.6 4.859
200 4 1.402 2.237 569.3 547.7 2.672
200 6 1.4 2.201 664.8 828.1 2.578
200 20 1.3917 2.284 –∗ –∗ 2.914

Table 2. Average RMSE for the second system (32). ∗

All runs end with extreme errors. ∗∗ possibly caused by
full convergence (possibly too few charged particles for

λ = 50).

λ gend PF EPF-CMSA EPF-CMA QEPF PSF

50 2 1.942 2.659 3.12 3.129 6.79
50 4 1.929 2.522 2.457 2.448 3.469
50 6 1.908 2.574 2.343 2.307 2.91
50 20 1.937 2.681 2.603 2.614 2.757

100 2 1.831 2.677 3.281 3.279 5.960
100 4 1.832 2.529 2.541 2.509 3.171
100 6 1.844 2.558 2.315 2.329 2.898
100 20 1.832 2.675 2.566 2.56 2.756

200 2 1.803 2.602 3.587 3.606 5.475
200 4 1.806 2.52 2.718 2.738 3.019
200 6 1.785 2.574 2.391 2.397 2.856
200 20 1.804 2.663 2.484 2.486 2.761

Table 3. Average RMSE for System (31) using noise.

than the EPF-CMSA. This may be due to the changed σ-

update rule and will also be investigated closer. The charged

PSF does not work well apparently when the generation time is

too short. Interestingly, the number of particles does not have a

strong impact on the performance. Thus, it would be possible

and interesting to use the PSF with smaller populations but

with longer generation times. This will be investigated in more

detail in further work.

System (32) reveals that the CMA-variants may experience

difficulties for larger population sizes. In comparison, the

EPF-CMSA works quite well. Since the CMA versions apply

a different covariance matrix update, a closer look at the

mechanism is required. The PSF should probably operate with

more quantum particles than in the setting used.

For System (31), noise appears to have a beneficial effect for

some constellations as Table 3 shows. While this is promising,

further investigations are necessary since we had to switch to

a minimization task and therefore had to change the function

to be optimized.

5. Conclusions

This paper discusses the application and adaptation of

natural computing approaches for tracking. Tracking repre-

sents a state estimation problem for systems where only

1170

noisy measurements are available and has many important

applications. Usually particle filters and related approaches are

applied. They require a valid model of the system behavior and

provide then an improved estimate of the true state or position.

This model, however, may not always be obtainable. Natural

computing methods may offer a way out. They are similar

to particle filters in many aspects but use their own intrinsic

behavioral model which is adapted according to feedback from

the search process. This ability is the motivation for applying

natural computing to tracking. This paper analyses two dy-

namic systems. The traditional particle filter serves as a com-

parison reference using the behavior models directly, while the

natural computing methods considered only the measurements.

The natural computing methods perform slightly worse than

the particle filter with respect to estimating the true position,

but the quality of the results is at least comparable. Since the

natural computing methods are applicable where particle filters

fail, this is a very promising result motivating further research.

Tracking can be interpreted as a dynamical noisy search task.

Potential challenges for the algorithm include a diversity loss

and therefore the risk of being unable to follow the moving

state. Additionally, a convergence towards a false optimizer

must not occur. Therefore, the natural computing methods

were adapted. The first change introduces the concept of

quantum particles in order to preserve the population diversity.

The other explores the use of artifical noise in order to keep

the algorithms away from deceptive optima.

References

[1] Alvarez, D. A. (2005). Particle filter tutorial.

http://www.mathworks.com/matlabcentral/fileexchange/35468-particle-

filter-tutorial, accessed on 13.06.13.

[2] Arulampalam, M., S. Maskell, N. Gordon, and T. Clapp

(2002). A tutorial on particle filters for online

nonlinear/non-gaussian bayesian tracking. IEEE Transac-
tions on Signal Processing 50(2), 174–188.

[3] Beyer, H.-G. and S. Meyer-Nieberg (2006). Self-

adaptation of evolution strategies under noisy fitness evalua-

tions. Genetic Programming and Evolvable Machines 7(4),

295–328.

[4] Beyer, H.-G. and H.-P. Schwefel (2002). Evolution

strategies: A comprehensive introduction. Natural Com-
puting 1(1), 3–52.

[5] Beyer, H.-G. and B. Sendhoff (2008). Covariance matrix

adaptation revisited - the CMSA evolution strategy -. In

G. Rudolph et al. (Eds.), PPSN, Volume 5199 of Lecture
Notes in Computer Science, pp. 123–132. Springer.

[6] Doucet, A. and A. M. Johansen (2011). A tutorial on

particle filtering and smoothing: Fifteen years later. In

D. Crisan and B. Rozovsky (Eds.), Oxford Handbook of
Nonlinear Filtering. Oxford University Press.

[7] Eiben, A. E. and J. E. Smith (2003). Introduction to Evo-
lutionary Computing. Natural Computing Series. Berlin:

Springer.

[8] Engelbrecht, A. P. (2005). Fundamentals of Computa-
tional Swarm Intelligence. Wiley.

[9] Gauchi, J.-P. and J.-P. Vila (2013). Nonparametric par-

ticle filtering approaches for identification and inference

in nonlinear state-space dynamic systems. Statistics and
Computing 23(4), 523–533.

[10] Gordon, N., D. Salmond, and C. Ewing (1995). Bayesian

state estimation for tracking and guidance using the boot-

strap filter. Journal of Guidance, Control, and Dynam-
ics 18(6), 1434–1443.

[11] Hansen, N. (2005). CMA-ES source code.

http://www.lri.fr/∼hansen/cmaes inmatlab.html, accessed on

26.07.13.

[12] Hansen, N. (2006). The CMA evolution strategy: A

comparing review. In J. Lozano et al. (Eds.), Towards a
new evolutionary computation. Advances in estimation of
distribution algorithms, pp. 75–102. Springer.

[13] Hansen, N. and A. Ostermeier (2001). Completely

derandomized self-adaptation in evolution strategies. Evo-
lutionary Computation 9(2), 159–195.

[14] Johansson, A. and E. Lehmann (2009, aug.). Evolution-

ary optimization of dynamics models in sequential monte

carlo target tracking. Evolutionary Computation, IEEE
Transactions on 13(4), 879 –894.

[15] Meyer-Nieberg, S. and H.-G. Beyer (2007). Self-

adaptation in evolutionary algorithms. In F. Lobo, C. Lima,

and Z. Michalewicz (Eds.), Parameter Setting in Evolution-
ary Algorithms, pp. 47–76. Heidelberg: Springer Verlag.

[16] Meyer-Nieberg, S. and H.-G. Beyer (2008). Why noise

may be good: Additive noise on the sharp ridge. In

M. Keijzer et al. (Eds.), GECCO 2008: Proceedings of
the 10th annual conference on genetic and evolutionary
computation, pp. 511–518. ACM.

[17] Meyer-Nieberg, S., E. Kropat, and S. Pickl (2013).

Evolutionary particle filters. In B. Vitoriano and F. Va-

lente (Eds.), Proceedings of ICORES 2013, pp. 96–102.

SCITEPRESS.

[18] Pengpai, F., S. Li-Fen, W. Bing, and W. Wei (2009).

Particle filter-weight estimation and dual particle filter.

In Intelligent Systems and Applications, 2009. ISA 2009.
International Workshop on, pp. 1–4.

[19] Rechenberg, I. (1973). Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologischen Evo-
lution. Stuttgart: Frommann-Holzboog Verlag.

[20] Schwefel, H.-P. (1981). Numerical Optimization of
Computer Models. Chichester: Wiley.

[21] Uosaki, K. and T. Hatanaka (2005). Evolution strate-

gies based gaussian sum particle filter for nonlinear state

estimation. In The 2005 IEEE Congress on Evolutionary
Computation, Volume 3, pp. 2365 – 2371.

[22] Yang, X. (2012). Particle swarm optimisation particle

filtering for dual estimation. Signal Processing, IET 6(2),

114 –121.

1171

