
Abstract

We investigate tools that can enrich the process of querying
databases by enabling the inclusion of more human focused
considerations.  We show how to include soft conditions with the
use of fuzzy sets.  We describe some more sophisticated techniques
for aggregating the satisfactions of the individual conditions
based on the inclusion of importances and the use of the OWA
operator.  We discuss a method for aggregating the individual
satisfactions that can model a lexicographic relation between the
individual requirements.  We look at querying databases in which
the information in the database can have some probabilistic
uncertainty.

1. INTRODUCTION

Database structures play a pervasive role in underlying
many of our most prominent websites, as a result the
intelligent retrieval of information from databases is an
important task.  The use of soft concepts often allows us to
model human cognitive concepts.  Here we focus on providing
a framework for retrieving information from database structures
via soft querying [1-4].  A query can be seen as a collection of
requirements and an imperative for combining an object's
satisfaction to the individual requirements to get the object's
overall satisfaction to the query.  We describe some fuzzy set
based methods  that enable the inclusion of soft human focused
concepts in the construction of a query [5-8].  Here we also
describe sophisticated techniques for aggregating the
satisfactions of the individual conditions to obtain an object's
overall satisfaction to a query.  The inclusion of importances
and the use of the OWA operator are some tools that provide
this facility.  Here we also discuss a method for aggregating
the individual satisfaction's which can model a lexicographic
relation between the individual requirements.  In addition we
look at databases in which the information can have some
probabilistic uncertainty

2. STANDARD DATABASE QUERYING

A database  consists of a collection of attributes, Vj, j = 1

to r and a domain Xj for each attribute.  Associated with a

database is a collection of objects Di, the objects in the

database.  Each Di is an r tuple, (di1, di2, ..., dir).  Here

dij � � Xj is the value of attribute Vj for object Di.

A query Q is of a collection of q pairs.  Each pair Pk =

(VQ(k), FQ(k)) consists of an attribute VQ(k) and an

associated property for that attribute FQ(k).  Here Q(k)

indicates the index of the attribute in the kth pair.  Thus if

Q(k) = i then the attribute in the kth pair is Vi.  In addition to

the collection of pairs a query contains information regarding

the relationship between the pairs.  We denote this information

as Agg.  

The querying process consists of testing each object Di to

see if it satisfies the query.  The process of testing an object

consists of two steps.  The first is the determination of the

satisfaction of each of the pairs by the object.  We denote this

as Tr(Pk|Di) or more simple as tik.  The second step is to

calculate the overall satisfaction of Di to the query Q,

Sat(Q/Di), by combining the individual tik, guided by the

instructions contained in Agg.  Here then Sat(Q/Di) =

Agg(ti1, ..., tiq) = Ti
The calculation of tik, Tr[Pk|Di] is based on determining

whether the condition FQ(k) is satisfied based on diQ(k), the

value of VQ(k) for the ith object Di.  In the standard

environment FQ(k) is represented as a crisp subset of XQ(k)
indicating the desired values of VQ(k).  The determination of

satisfaction, Tr[Pk|Di], is based on whether diQ(k) � FQ(k).

The system returns the value tik = 1 if diQ(k) � FQ(k) and tik
= 0 if diQ(k) � FQ(k).  Using the notation FQ(k)(diQ(k)) to

indicate membership of diQ(k) in FQ(k) we get tik =

FQ(k)(diQ(k)).  Thus in this case each of the values tik � {0,

1} where 0 indicates false, not satisfied, and 1 indicates true,

satisfied.

In this binary environment the aggregation process is
constructed as a well formed logical statement consisting of
conjunctions, disjunctions , negations and implications.  The
overall satisfaction Sat(Q|Di) is equal to the truth-value of this
well-formed formula.  The calculation of this truth-value
involves the use of Min, Max and Negation.  For example the
requirement that all pairs in Q are satisfied is expressed as Ti =
Mink = 1 to r[tik].  The requirement that any of the conditions
need be satisfied is expressed as Ti = Maxk = 1 to r[tik].  We
note this is a binary environment, Ti � {0, 1}, and hence we
have two categories of objects, those which satisfy the query
and those that do not.
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3. Soft database querying
An extension of the querying process involves the use of soft

or flexible queries [6, 8].  This idea extends the process of

querying standard databases in a number of ways.  The most

fundamental is to allow the search criteria, the FQ(k), to be

expressed as fuzzy subsets of the domain XQ(k).  This allows

one to represent imprecise non-crisply bounded concepts.  In

this case the determination of the satisfaction of a criteria Pk =

(VQ(k), FQ(k)) by an object Di, tik, again equals the

membership grade of diQ(k) in FQ(k), tik = FQ(k)(diQ(k)).

However in this case tik � [0, 1], it takes a value in the unit

interval rather than simply in the binary set {0, 1}.  An

important implication of this is that the overall satisfaction of

the element Di will also lie in the unit interval.  This will

allow for a richer and more discriminating ordering of the

elements in regard to their satisfaction to the query then

simply satisfied or not, here we get a degree of satisfaction.

We note the evaluation of the overall satisfaction to a query Q

whose Agg operator is based on a well formed logical formula

can be implemented in this framework.  In particular

conjuncting the satisfactions to two criteria pairs Pk1
 and Pk2

is implemented by Min(tik1
, tik2

).  Disjuncting the

satisfactions to two criteria pairs Pk1
 and Pk2

 is implemented

by Max(tik1
, tik2

).  The negation of the satisfaction to Pki
 is

implemented as 1�–�tik1
.

A second benefit obtained by using flexible queries is the
allowance for more sophisticated formulations for the operator
Agg used to determine the overall satisfaction to the query [6].
Let us look at some of these extensions.

A first class of extensions is a generalization of the
operations used for implementing the "anding" and "oring"
operator.  Assume P1 and P2 are two conditions whose
satisfaction for Di are ti1 and ti2.  Classically the "anding" of
the satisfactions to these two criteria has been implemented
using the Min operator: P1 and P2 � Min(ti1, ti2).  The
"oring" of the satisfactions to these two criteria has been
implemented using the Max operator: P1 or P2 � Max(ti1,
ti2).  The t-norm operator is a generalization of the "anding"
operator [9], it provides a class of cointensive operators that
can be used to implement the conjunction.  We recall a t-norm
is a binary operator T:�[0,�1]�� �[0, 1] � [0, 1] having the
properties: symmetry, associativity, monotonicity and has one
as the identity. Notable examples of t-norm in addition to the
Min are TP(a, b) = a b and TL(a,�b)�=�Max(0, a + b - 1).
Since for any t-norm T we have T(a, b) � Min(a, b) then using
other t-norms increases the penalty for not completely
satisfying the conditions.

The t-conorm operator provides a generalization of the
oring operator.  A t-conorm is a mapping S: [0, 1] � [0, 1] �

[0, 1] which has the same first three properties of the t-norm
binary, condition four is replaced by S(0, a) = a, zero as
Identity.  In addition to the Max other notable examples of t-
co-norm are SP(a, b) = a + b - ab and TL(a, b) = Min(a + b,
1).  We note for any t–norm S we have S(a, b) � Max(a, b).

Another extension to the standard situation is the
inclusion of importances associated with the conditions [10,
11].  Here we assume each of the q conditions Pk has an
associated importance weight wk � [0,�1].  The methodology
for including importances depends on the aggregation
relationship between the criteria, it is different for "anding" and
"oring".

Assume for object Di we have that tik � [0, 1] as its
degree of satisfaction to Pk.  Consider first the case in which
we desire an "anding" of the Pk.  That is our aggregation
imperative is expressed as

(P1, w1) and (P2, w2) ..... and (Pq, wq).

In this case the weighted aggregation results in an overall the

satisfaction Min(h1, ..., hq) where hk�= Max((1 - wk), tik)

[12].  

 It is interesting to observe the standard situation is
obtained when all wk = 1.  In this case we get Mink[tik].  We
can also observe that since Max((1 - wk), tik) � tik then
Mink[Max((1 - wk), tik)] � Mink[tik].  Thus the use of
importances is effectively to reduce the requirements, we are
easing the difficulty.  We also observe that more generally we
can replace Min with any t-norm T and Max with any

t–conorm S thus we can use 
k=1

q

T [S((1 - wk), tik)] [10].

Consider now the case where we have an "oring" of the

criteria.  Thus here our aggregation imperative is (P1, w1) or

(P2, w2) or (P3, w3) or, ..., (Pq, wq).  In this case the

weighted aggregation and the satisfaction is Max(g1, g2, ...,

gq) where gk = Min(wk, tik) [10, 13].  

 We observe the standard situation is obtained when all wk
= 1.  In this case we get Maxk[tik].  We can also observe that
since Min(wk, tik) � tik then Maxk[Min(wk, tik)] �
Maxk[tik].  Thus the use of importances reduces the influence
of individual criteria..  We also observe that more generally we
can replace Min with any t-norm T and Max with any

t–conorm S thus we can use 
k=1

q

S [T(wk, tik)].

An interesting observation can be made with respect to the
weighted "anding" and "oring" observations.  In the case of the
weighted oring, increasing the weights associated with the
criteria can only result in an increase in the overall satisfaction
while in the case of the "anding" increasing the weights can
only result in a decrease in the satisfaction.  More formally if
we let wk and 

 
�wk be two pairs of weights such that 

 
�wk � wk

and let gk = T(wk, tik) and let 
 
�gk  = T(

 
�wk , tik) then for any

t–conorm S, we have S(g1, ..., gq) � S(
 
�g1 , ...,

 
�gq ).  On the

other hand if we let hk = S((1�–�wk), � tik) and 
 

�hk = S((1-
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�wk ), tik) then for any t-norm T, T(h1, ..., hq) � T(

 

�h1 ,

...,
 

�hq ).

We can make the following observation about the

weighted "oring" aggregation in the case of the using S =

Max.  In this case our overall aggregation is Max(g1, ..., gq)

where gk�=�T(wk, � tik) for a t-norm T.  We further observe

that if wk < 1 then for any T and tik we have gk < 1.  From

this we can conclude that in the case of the weighted "or"

aggregation using S = Max we can never get an overall

satisfaction of one unless at least one at the criteria conditions

has importance of one.  We note this is a necessary but not

sufficient condition for getting an overall satisfaction of one.

A corresponding result can be obtained in the case of the
weighted "anding" aggregation in the case of using T = Min.
Recall the definition hk = S(

 
�wk , tik) for any t-conorm S,

from this we can observe that if wk < 1, then 
 
�wk  > 0 and

hence for any S and tik we have hk � 
 
�wk  > 0.  Since our

overall aggregation is Min(h1, ..., hq) we can conclude that in
this case of weighted "anding" aggregation we can not get an
overall satisfaction of zero unless at least one of the criteria
conditions has importance weight of one.

An interesting formulation for the weighted "oring"
aggregation occurs when we use S(a,�b)�= Min(a + b, 1) and
T(a, b) = a b.  In this case (P1, w1) or (P2, w2) or ...or (Pq,

wq) evaluates to Min( wktik, 1
k=1

q

� ).  Thus here we take a

simple weighted sum and then bound it by the value one.
A correspondingly interesting formulation for the

weighted "anding" can be had if we use T(a, b) = Max(a + b -
1, 0) and S( a , b) = a + b - ab.  In this case

T(g1, ..., gq) = 1 - Min[ wk tik
k=1

q

� , 1]

The OWA operator [14] can provide a useful formulation
for the aggregation process in flexible querying of databases.
We recall the OWA operator is aggregation operator F: In � I
so that F(a1, ..., an) = �j� wjbj where bj is the jth largest of
the ai and wj are collection of n weights such that wj � [0, 1]
and �j� wj = 1.  We note that if � is an index function so �(j)
is the index of the jth largest ai, then bj = a�(j) and hence
F(a1, ..., an) = �j� wj a�(j).  It is common to refer to the
collection of wj using an n vector W whose jth component is
wj, in this case we refer to W as the OWA weighting vector.

We observe that if w1= 1 and wj = 0 for j � 1 then
F(a1,�..., an) = Maxi[ai].  If wn = 1 and wj = 0 for j � n then
F(a1, ..., an) = Mini[a].  If wj = 1/n for all the j then F(a1, ...,

an) = 
1

n
�i ai.  The OWA operator is a mean operator, it is

monotonic, symmetric and bounded, It is also idempotent
The OWA operator can be very directly used in flexible

querying.  Assume we have a query with n component pairs,

Pk = (VQ(k), FQ(k)) where FQ(k) is a fuzzy subset over the

domain of VQ(k).  As in the preceding for any object Di we

can obtain tik = FQ(k)(diQ(k)).  We can then provide an

aggregation of these using the OWA operator, F(ti1, ti2, ...,

tin).  Essentially this provides a kind an average of the

individual satisfactions.  We can denote this OWAW(Di).

Different choices of the OWA weights will result in different

types of aggregation.  If we use the weights such that w1 = 1

then we get Maxk[tik] which is essentially an "oring" of the

components.  If we use a weighting vector W such that wn = 1

we get Mink[tik] which is an "anding" of the conditions.  If wj
= 1/n then we are taking a simple average of the criteria

satisfactions.

Using quantifiers and particularly linguistic quantifiers we
can use the OWA operator to provide a very rich class of
aggregation operators [15].  A quantifier or proportion can be
seen as a value in the unit interval.  In [16] Zadeh generalized
the concept of quantifier by introducing the concept of
linguistic quantifiers.  Examples of these linguistic quantifiers
are: most, about half, all, few and more then � percent.  Zadeh
[16] suggested that one can represented these linguistic
quantifiers as fuzzy subsets of the unit interval.  This if R is a
linguistic quantifier we can represent it as a fuzzy subset R of
the unit interval so that for any y � I, R(y) is the degree to
which the proportion y satisfies the concept R.  An important
class of quantifiers are regular monotonic quantifiers.  These
quantifiers have the properties: R(0) = 0, R(1) = 1 and R(x) �
R(y) for x > y.  Thus for these quantifiers the satisfaction
increases as the proportion increases.  Examples of these are
"at least p", "most", "some", "all" and "at least one".  In [15]
Yager showed how to use the fuzzy subsets associated with
these quantifiers to generate the weights of an OWA operator.
In particular he suggested we obtain the weights as

wj = R(
j

n
) - R(

j�1

n
).

It can be shown if R is regular monotonic then the weights
sum to one and lie in the unit interval.

Using these ideas we can obtain a quantifier guided

approach to flexible querying.  We can express a query as

collection of n pairs, Pk = (VQ(k), FQ(k)) and an aggregation

imperative in terms of a linguistic quantifier R describing the

proportion of these pairs we require to be satisfied.  We then

express this quantifier R as a fuzzy subset of the unit interval,

R.  Using this R we obtain a collection of OWA weights, wj

= R(
j

n
) - R(

j�1

n
) for j = 1 to n.  Once having these weights

we can evaluate the satisfaction of each element Di as

OWAR(Di).  In [17] we showed how to extend this to the case

importance weighted criteria.

4. Lexicographic formulated queries
In the database query structure presented here we impose a

priority ordering on the conditions composing the query.  In
this approach conditions higher in priority ordering play a
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more important role in determining the overall satisfaction of
an object to the query in the same way that letters in earlier
positions a play in determining the alphabetical order.  The
technique we shall develop will be called a LEXicographic
Aggregation (LEXA) query and it will make use of the
prioritized aggregation operator introduced in [18-20].  This
approach will allow us to model different query imperatives
than in the preceding.

Here again we shall consider a query Q to consist of a

collection of q pairs Pk and an aggregation imperative.  Each

pair as in the preceding is of the form (VQ(k), FQ(k)) where

VQ(k) indicates an attribute name and FQ(k) is a fuzzy subset

of the domain of VQ(k) denoting the desired values for VQ(k).

Again for each object Di = (di1, ..., diq) we can obtain the

values tik� = � FQ(k)(dik), the satisfaction of the pair Pk by Di.

Here we will consider an aggregation imperative in the spirit

of a lexicographic ordering.  This aggregation imperative

requires an ordering of the Pk indicating their priority in

formulating the overall satisfaction to the query.  While our

lexicographic aggregation query framework will work in the

flexible environment we shall initially consider its

performance in the binary situation.

We now describe the basic binary LEXA query.  In this
case it is assumed that the tik are binary either 1 or 0, Pk is
satisfied by Di or not.  In the following we shall assume there
are m elements in the database, Di for i = 1 to m.  As we
subsequently see the output of a LEXA query is an ordering of
the elements in Di according to their satisfaction to
lexicographic query.

A lexicographic aggregation query assumes a linear
priority among the criteria, the Pk, with respect to their
importance.  For simplicity we shall assume that the Pk have
been indexed according to this priority ordering:

P1 > P2 > ... > Pq.
The following algorithm describes the process for forming the
ordered list L

1) Initiate: k = 1, D = {Di | i = 1 to m}, list L   
empty
2) Set F = �

3) Test all elements Di � D with respect Pk and
place all those for which tik = 0 in F.

4) Place all elements in F tied at the top available
level of L.

5) Set D = D - F
6) If D = � Stop
7) Set k = k + 1
8) If k > q

a) Place all remaining elements in D tied as
top level of L

b) Stop
9) Go to step 2

The result of this is the list L which is an ordered list of the
satisfactions of the elements in D to the lexicographic query
Q.  We note the higher up the list the better the satisfaction.

There is another way we can generate the satisfaction
ordering of the elements in D under the priority ordering
P1�>�... > Pq.  For each Di, starting from P1 and preceding
in increasing order find the first index k for which tik = 0.
Assign Di a score Si where

Si = q if Di meets no failures
Si = k - 1 otherwise

Using this method each Di gets a score Si � {0, 1, ..., q}.  If
we order the elements by their value for Si we get L.  We note
that Si is the number of criteria Di satisfied before it meets
failure.  This method for evaluating the score of satisfaction of
an element Di to a LEXA query is more useful then the
preceding as it provides a score is addition to an ordering.

It is interesting to note there is only one situation in
which an element Di can attain the maximal score Si = q, if all
tik = 1.  On the other hand there are many ways Di can get the
minimal score of Si = 0.  In particular any Di which has ti1 =
0 will have Si = 0 regardless of the values of tik for k 	 1.

We further observe that since 0 � Si � q we can provide a

kind of normalization by defining Gi =
Si
q

.  Here we are

getting a value in the unit interval.
We shall introduce a more general implementation of the

lexicographic aggregation type query that will be appropriate

for the case where the tik are values from [0, 1] rather then

being binary values from {0, 1}.  In this environment for each

element Di we shall obtain a score Gi indicating its

satisfaction to our LEXA query.

Again here we have a query Q consisting of q condition

pairs, Pk = (VQ(k), FQ(k)).  In addition we have a priority

ordering over the pairs guiding the lexicographic aggregation,

P1 > P2 > P3 ... > Pq.

Assume for object Di we have tik = FQ(k)(dik) as the degree to

which Di satisfies Pk.  Our procedure for determining Gi is to

calculate

Gi = wiktik
k=1

q

�

Where  the wik are determined as follows.
1) Set ui1 = 1

2)  uik = ti( j�1)
j= 2

k

�    for k = 2 to q

3) wik = 
1

q
 uik

The important observation here is that the wik is proportional

to the product of the satisfactions of the higher priority

conditions.  We note that we can express uik = uik-1Hik-1.  

We can make some observations.  For k1 < k2 we always

have wik1
 � wik2

.  Thus a lower priority condition can't have

a bigger weight than one that is higher.

We observe that if tik1
 = 0 then wik2

 = 0 for all k2 > k1
We can show that Gi = 1 if and only tik = 1 for all k.
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We also observe that Gi = 0 iff ti1 = 0.  It is important to
emphasize that this is independent of the satisfaction to the
other criteria.  Zero satisfaction to the highest priority criterion
means zero overall satisfaction, there is no possibility for
compensation by other criteria.

Let us look at this process for the binary case to see that
it correctly generalizes the evaluation in the binary case we
presented earlier.  Consider the list of satisfactions:  ti1, ti2,
..., tiq which here we assume are either one or zero.  Assume
tik is the first one of these that is zero, hence tij = 1 for
j�<�k.  In this case we get that uij = 1 for j � k and ujk = 0
for j > k.  
Hence

Gi = wijtij =
1

q
uijtij =

j=1

q

�
j=1

q

�
1

q
tij

j=1

q

�

Furthermore since tij = 1 for j < k and tij = 0 for j = k we get

Gi = 
1

q
tij =

j=1

k

�
1

q
1 =

j=1

k�1

�
k � 1

q

as desired.  In the special case where all tij = 1 then all uij = 1

and all wij = 
1

q
 and hence Gi = 

q

q
 = 1.

As discussed in [18] the approach we suggested can be
extended to the case when the ordering among the pairs is a
weak ordering, we allow ties among the conditions pairs with
respect to their priority.  Here we shall denote a condition pair
as P(k, j) where all pairs with the same k value are tied in the
priority ordering.  The j value is just an indexing
distinguishing among the tied pairs.  Thus here we are
assuming the priority ordering is such that for k1 < k2 that
P(k1, j) > P(k2, � i ) and P(k1, � j ) = P(k1, i) for all j and i.  We
let nk denote the number of pairs with k in the first term, thus
n1 is the number of conditions with the highest priority.  We

shall also let n = nk
k=1

q

� .

Here we let ti(k, j) denote the satisfaction of the object Di
to the condition pair P(k, j).  In this case we obtain the value
Gi as

Gi = wik ( ti( j,r) )
r =1

nk

�
k=1

q

�

Again it is a weighted sum of the satisfaction to each of
the pairs.  We emphasize that each pair with the same k has
the same weight wik.  The procedure we use to obtain the
weights is similar to the earlier one except in the first step:

1. Calculate: Hij = Max
r =1 to n j

[ti( j,r) ]

(It is the satisfaction value of the least satisfied pair at the j
level)

2.  ui1 = 1

uik =  Hi( j�1)
j=1

k

�   for k = 2 to q

3. wik = 
1

n
uik

Let us see how this plays out in the pure binary case

where all ti(k, r) � {0, 1}.  Let b be the k value at which we

meet the first condition for which ti(k, r) = 0.  In this case we

have that Hij = 1 for j < b and Hij = 0 for j = 0.  Here then

while ui1 = 1 we have for k = 2 to q that uik� = � Hi( j�1)
j=1

n

� .

From the above we get that

uik = 1  2 � k � b
uik = 0 k > b

Thus we get wik = 
1

n
 for k = 1 to b and wik = 0 for k > b.

From this we get Gi = wik ( ti(k,r) )
r =1

nk

�
k=1

q

�  = 
1

n
( ti(k,r))
r=1

nk

�
k=1

b

�

For all k < b all the elements have ti(k,r) = 1 hence

Gi = 
1

n
( nk + ti(b,r))

r =1

nb

�
k=1

b�1

�

We note at least one element in the second term is zero.  We
see that the numerator of Gi is equal to the number of
elements in the priority classes higher than the first class
where we meet failure plus all the pairs satisfied in the class
that we meet failure.  An alternative expression of this
numerator is the sum of all satisfied pairs in priority classes
up to and including the class when we meet our first failure.

We here point to related work by Chomicki [22-26] on
preferences  in databases  and the on bipolar queries  by Dubois
and Prade [27, 28] and Zadrozny and Kacprzyk [29, 30]

5. Querying probabilistic databases
In the preceding we have discussed several different paradigms

for formulating questions to databases.  In particular we

considered a query to be a collection of q condition pairs, Pk =

(VQ(k), � FQ(k)), and an agenda for aggregating the

satisfactions to these pairs by a database element Di.  We added

flexibility by allowing FQ(k) to be a fuzzy subset of the

domain XQ(k) of VQ(k).  In this flexible case we obtained the

degree of satisfaction of Pk by Di to be

tik� = � FQ(k)(xiQ(k)) � [0, 1] where xiQ(k) is the value of

VQ(k) for Di.  Thus tik is the degree to which FQ(k) is true

given the value of VQ(k) for Di is xiQ(k).  We now shall

consider the situation in which the value of VQ(k) for Di,

xiQ(k), is random.  More specifically if the domain

XQ(k)�=�{yQ(k)1, yQ(k)2, ..., yQ(k)rQ(k)
} then the

knowledge of the value of VQ(k) for object Di, xiQ(k), is best

expressed as a probability distribution PiQ(k) where

Prob(xiQ(k) = yQ(k)j) = pj/iQ(k).  In the special case where
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Pj/qQ(k) = 1 for some j then we have the preceding situation

in which xiQ(k) is exactly yQ(k)j.
Initially in the following discussion we shall assume all

the Q(k) are distinct.  We shall subsequently consider the case
where a query can involve multiple occurrences of the same
attribute.

The approach we shall follow in this probabilistic

situation is in the spirit of the possible words approach used in

[31-39].  We shall associate with every Di a collection Z of q

tuples.  In particular Z = XQ(1) � XQ(2) � ..... � XQ(q).

That is each element z � Z is of the form z�=�(z1, � z2, ..., zq)

where zk � XQ(k).  For each object Di in the database we now

associate a probability distribution P Di  over the space Z so

that the probability of z, PDi(z)�=� Prob(xiQ(k) = zk )
k=1

q

� .

We want to make one comment here.  In the preceding we

assumed all the VQ(k) in a query where distinct.  This is not a

necessary requirement.  However in the case where the we have

a multiple occurrences of the same attribute in the query care

must be taken in the formulation of the possible worlds.  In

the preceding we formulated Z�=�XQ(1)�� � XQ(2)    � XQ(q),

here each element z � Z is of the form z = (z1, z2,   , zq)

where each zk � XQ(k).  In order to understand which happens

when all VQ(k) are not distinct we consider the situation where

Q(1) = Q(2), here then VQ(1) = VQ(2).  Here the associated Z

space has the additional required that for all z � Z, z1 = z2.

Thus any element in Z must have the same value of VQ(1) and

VQ(2).  In addition we must make some modifications in the

calculation of PDi(z).  In particular we must note duplicate the

probabilities and avoid using them twice, thus PDi(z) must be

based on the product of the distinct probabilities and hence we

have

PDi(z) = Prob(xiQ(k) = zk )
k=1 for all
distinct Q(k)

q

�

Another comment we want to make is regarding the
relationship between distinct attribute values.  Implicit in the
preceding has been an assumption of independence between the
probability distribution of distinct attributes.  In some cases
this may not be true.  For example some values of V1 may
not be allowable under V2 while some values for V1 may
mandate a particular value for V2.  Such relationships require
us to modify to possible elements in Z and condition the
probability distribution in known ways.  Nevertheless when
including these special conditions we still end up with a subset
of tuples from Z with associated probabilities, as a result in
the following we shall neglect any special relationships
between the attributes as they don't effect the subsequent
discussion nor the basic ideas of the approach introduced.

We now recall that our query consists of a collection of q
constraints Pk = (VQ(k), FQ(k)) where each FQ(k) is a fuzzy

subset over the space XQ(k).  We now apply these constraints
to the space of possible worlds Z.  In particular we transform
the space Z to F so that each tuple z = (z1,�..., zq) is
transformed to new tuple

F(z) = (FQ(1)(z1), FQ(2)(x2),     , FQ(q)(zq))

We note each element FQ(k)(xk) � [0, 1].  Thus each term in

F(z) is a tuple of q values drawn from the unit interval, F(z) is

a subset the space Iq.  In addition for each element Di in the

database we can associate a probability distribution over the

space F.  In particular for each Di we associate PDi(z) with the

tuple F(z).  Thus now for any element Di we have a

probability distribution on the space F of satisfactions to the

query components.  We note that if two z tuples, z1 and z2,

transform into the same value, F(z1) = F(z2), we represent

these in F with just one, F(z1), and use the sum of the

probabilities z1 and z2
In order to provide an intuitive understanding of the

discussion to follow we shall use the following database to
illustrate our ideas
Example 3. We consider a database with three attributes V1,
V2 and V3.  The domain of these are respectfully:

X1 = {a, b, c}, X2 = {red, blue}, X3 = {10, 20}
Let D be one object in the database and let x1, x2, x3 denote
the values of V1, V2, V3 for this object.  In particular for each
of these, x1, x2, x3, we have a probability distribution

x1: Prob(a) = 0.4, Prob(b) = 0.5 and Prob(c) = 0.1
x2: Prob(red) = 0.7 and Prob(blue) = 0.3
x3: Prob(10) = 0.6 and Prob(20) = 0.4

In this example the set of Z of possible worlds  are
Z = {(a, red, 10), (a, red, 20), (a, blue, 10), (a, blue, 20),
(b,�red, 10), (b, red, 20), (b,�blue, 10), (b, blue, 20), (c, red,
10), (c, red, 20), (c, blue, 10), (c, blue, 20)}.

For the element D we get the probability of each of these
components as shown in Table 1.

Before preceding we want to point out that for any other
object D* in the database the set of possible worlds Z will be
the same, the difference between D and D* will be in the
probabilities associated with the elements in Z.

We now consider our query as consisting of three
components: P1 = (V1, F1), P2 = (V2, � F2) and P3 = (V3, F3)
where each Fk is a fuzzy set over the space Xk defining the
required condition.  Below are the associated fuzzy subsets

F1 = {
1

a
,

0.6

b
,

0.2

c
}, F2 = {

0.8

red
,

1

blue
}, F3 = {

1

10
,

0.2

20
}

We now can apply these constraints to our set Z of
possibilities and also use the probabilities for D and shown the
results in Table 2.

Table 1. Probabilities of Elments in Z

   Element       in       Z      Probability   
(a, red, 10) (0.4) (0.7) (0.6) = 0.167
(a, red, 20) (0.4) (0.7) (0.4) = 0.112
(a, blue, 10) (0.4) (0.3) (0.6) = 0.072
(a, blue, 20) (0.4) (0.3) (0.4) = 0.048
(b, red, 10) (0.5) (0.7) (0.6) = 0.21
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(b, red, 20) (0.5) (0.7) (0.4) = 0.14
(b, blue, 10) (0.5) (0.3) (0.6) = 0.09
(b, blue, 20) (0.5) (0.3) (0.4) = 0.06
(c, red, 10) (0.1) (0.7) (0.6) = 0.042
(c, red, 20) (0.1) (0.7) (0.4) = 0.028
(c, blue, 10) (0.1) (0.3) (0.6) = 0.018
(c, blue, 20) (0.1) (0.3) (0.4) = 0.012

Table 2      .       Probabiities of Transformed Elements   
   Element       in       Z      Transform       F(z)      Probability   
(a, red, 10) (1, 0.8, 1) 0.167
(a, red, 20)  (1, 0.8, 0.2) 0.112
(a, blue, 10)  (1, 1, 1) 0.072
(a, blue, 20)  (1, 1, 0.2) 0.048
(b, red, 10)  (0.6, 0.8, 1) 0.21
(b, red, 20)  (0.6, 0.8, 0.2) 0.14
(b, blue, 10)  (0.6, 1, 1) 0.09
(b, blue, 20) (0.6, 1, 0.2) 0.06
(c, red, 10) (0.2, 0.8, 1) 0.042
(c, red, 20) (0.2, 0.8, 0.2) 0.028
(c, blue, 10) (0.2, 1, 1) 0.018
(c, blue, 20) (0.2, 1, 0.2) 0.012

We now consider the issue of evaluating the query Q for

the object D in the database.  Let us recapitulate the situation.

Associated with D we have a space F of tuples Tj = (F1(z1),

... , Fq(zq)}, each tuple is an element from the space Iq.  That

is each tuple is a collection of q values that the unit interval.

In addition associated with each tuple in F we have a

probability.  Parenthetically we note that the space F of tuples

is the same for each element Di in the database, the only

distinction between the elements in the database are the

probabilities associated with each of the tuples.

At this point we can reformulate more simply.  We have a

subset F 
 Iq with arbitrary element Tj = (tj1, tj2, ..., tjq).

Furthermore for any database element Di we have a probability

distribution over the space F where pij is the probability

associated with the tuple Tj for the database object Di.  We

note that pij
j=1

nz

�  = 1 where nz is the cardinality of the space

Z.

In addition associated with a query is an aggregation
imperative that dictates how we aggregate the satisfactions to
the individual components, in particular Agg(Tj) = Agg(tj1,
tj2, ..., tjq).  After applying the Agg operation to the tuples in
the space F we end up with a collection of scalar values,
Agg(F), consisting of the elements Agg(Tj).  For each Di we
have a probability distribution over the set of Agg(Tj).  In
particular for each Di and each Agg(Tj) we have pij as its
probability.  We now illustrate the preceding with our earlier
example and consider the application of different aggregation
imperatives.  

Example 4 .  We have the collection of 12 tuples and their
associated probabilities.  In Table 3 we consider three
aggregation imperatives the first imperative is an "anding" of
all conditions, here Agg(Tj) = Mink(tjk), the second
imperative is an average of all conditions, Agg(Tj) =

1

q
t jk

j=1

q

� and  the third imperative is an "oring" of all

conditions, here Agg(Tj)�=�Maxk(tjk). .
Table 3      . Aggregated Value of Elements in F   

Tuple in F         Probability   and    Average  oring
T1 = (1, 0.8, 1)  0.167 0.8 0.933 1
T2 = (1, 0.8, 0.2) 0.112 0.2 0.66 1
T3 = (1, 1, 1)  0.072 1  1 1
T4 = (1, 1, 0.2) 0.048 0.2 0.73 1
T5 = (0.6, 0.8, 1) 0.21 0.6  0.9 1
T6 = (0.6, 0.8, 0.2) 0.14 0.2 0.53 0.8
T7 = (0.6, 1, 1) 0.09 0.6  0.866 1
T8 = (0.6, 1, 0.2) 0.06 0.2  0.6 1
T9 = (0.2, 0.8, 1) 0.042 0.2  0.66 1
T10 = (0.2, 0.8, 0.2) 0.028 0.2  0.4 0.8
T11 = (0.2, 1, 1) 0.018 0.2  0.73 1
T12 = (0.2, 1, 0.2) 0.012 0.2  0.466 1

In a similar way we can implement any aggregation
imperative.

Combining the probabilities of tuples with the same
value for their anding we get Table 4.
       Table       4      .       Probabilities       of       “      anded”        Value   

Value Prob
0.2 0.461
0.6 0.3
0.8 0.167
1 0.072

Combining the probabilities of the tuples with the same value
for their oring we get Table 5
              Table       5      .       Probabilities       of       “      ored”        Value

Value Prob
1 0.82
0.8 0.168

Let us now summarize our situation for a query we
obtained a collection Tj of tuples.  Associated with the query
is an aggregation operation that converts Tj into a single value
Agg(Tj) indicating the overall satisfaction of the tuple.  For
simplicity we denote these as Agg(Tj) = aj.  Essentially we
have a collection of degrees of satisfaction, aj, of each possible
world to the query.  Finally for each element Di in the database
we have a probability distribution over the aj.  Thus the
satisfaction of the query by the database object Di is a
probability distribution

a1 pi1
a2 pi2
.............
ar pir.

We emphasize that the set aj, which are the satisfactions of a
possible world to the query, is the same for all Di, the
difference between the Di is reflected in the probability
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distribution over the aj, the probabilities they assign to a
possible world.

A natural question that arises is how to order the Di with
respect to their satisfaction to the query.  Here we look to [40]

for some ideas.  If D and D̂  are two database objects then for
each of these we have a probability distribution over the set A
= {a1, ..., ar}.

P P̂
a1 p1 P̂1

a2 P2 P̂2

aj pj P̂j

ar pr P̂r

In the following for simplicity we shall assume the aj have
been indexed so that they are in increasing order, aj > ak if j >

k.  In the following we shall use the notation D > D̂  if D is a

more satisfying alternative than D̂ .  What is clear is that if pj
= 1 and P̂k  = 1 and j > k than D > D̂ .

One approach to ordering the P and P̂  is to use the
cumulative distribution function, CDF, and the idea of
stochastic dominance [41, 42].

We define CDFP(aj) = pi
i=1

j

� , this the probability that for

object D the actual satisfaction will be less or equal aj.

Similarly we define CDF p̂ (aj) = p̂i
i=1

j

� .  Using this we shall

say D > D̂  if
CDFP(aj) � CDF p̂ (aj) for all j

CDFP(aj) < CDF p̂ (aj) for at least one j

We note that if CDFP(aj) � CDF p̂ (aj) then

pi
i=1

j

� � p̂i
i=1

j

�  this implies

1 � pi
i= j+1

r

� � 1 � p̂i
i= j+1

r

�

which further implies that pi
i= j+1

r

� � p̂i
i= j+1

r

� .  Thus we see

that under this condition object D never has less probability

associated with the higher satisfaction then D̂ .  This provides a

reasonable justification for asserting that D > D̂ .
While the CDF provides a way for ordering the elements

if the conditions are met, usually the condition CDFP(aj) �
CDF p̂ (aj) is not satisfied for all j.  This effectively means

that the use of stochastic dominance does not provide the kind
of general approach necessary to cover all cases.

Another approach to comparing the two database elements
is a scalarization.  Here we associate with each element a

distinct value and then compare these values.  Since these are
scalar values we are able to order them.  One approach to
scalarization is to use the expected value of satisfaction of each

the elements.  Here EV(D) = a j p j
j=1

r

�  and EV( D̂ )

= a j p̂ j
j=1

r

� .  We then say D�> D̂  if EV(D) > EV( D̂ ).  If

EV(D) = EV(D) then we say they are tied.
It is interesting to show that if CDFP(aj) � CDF p̂ (aj) for

all j then EV(D) � EV( D̂ ).  We shall illustrate this for the
case when r = 4, the extension to the more general case of r
will be obvious.  Since we assumed ai > aj for i > j then we
can express

a2 = a1 + �2 �2 > 0
a3 = a2 + �3 �3 > 0
a4 = a3 + �4 �4 > 0

We see

EV(D) = a j p j
j=1

4

�  = a1p1 + (a1 + �2)p2 + (a1 + �2 +

�3)p3 + (a1 + �2 + �3 + �4)p4

EV(D) = a1 p j
j=1

4

�  + �2 p j
j= 2

4

�  + �3 p j
j= 3

4

� + �4 p j
j= 4

4

�

As we have already shown if CDFp(ai) � CDF p̂ (ai) for

all i then p j
j= 4

4

� � p̂ j
j= 4

4

�  for all i.  From this we see that if

CDFP(ai) � CDF p̂ (ai) for all i then EV(D) � EV( D̂ ).

A more general approach to scalarization of the
probabilities of the database elements can be had if we use
some ideas from the OWA aggregation operator.  Here we let
�  � [0, 1] be a measure our optimism.  The more optimistic
the more we are anticipating the higher valued satisfactions to
occur.  Here then if �  = 1 we are always anticipating that ar
will occur.  While if � = 0 we are always anticipating a1 will
occur.

We now associate with a given �  a function f(x) = xq

where q�= 
1 � �

�
 .  We see that if � ��  0 then q � 	 and if

�  � 1 then q � 0 and if � = 1/2 then q = 1.
Using this function we obtain a set of OWA weights as

follows.  Letting Sj = pk
k= i

r

�  we get

wj = f(Sj) - f(Sj + 1)  for j = 1 to rr

Using these weights we obtain EV�(D) = w j a j
j=1

r

� .  We first

see that if �  = 1/2 then q = 1 and hence wj

= pk �

k= j

r

� pk = p j
k= j+1

r

� .  Here we get the usual expected
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value.  We see that if �  � 0, q�= 	, since Sj < 1 for all j >
1 we have (Sj)

	 � 0 for j < 1 and (Si)
� = 1 hence in this case

w1 = 1
wj = 0 for j > 1

From this we obtain EV0(D) = a1, it is the least satisfaction.
If �  � 1, q = 0, wr = 1, if pr > 0 and hence ED1(D) = ar.
Here we see that in using EV� for the extreme optimistic and
pessimistic of � all database elements Dk will have the same
value for EV�(Dk) however for other values 0 < �  < 1 as in
the case of �  = 0.5 each of the Dk will get its own unique
value for EV�(Dk).  Here then choosing �  will determine the
ordering of the Dk.

6. Conclusion
Here we provided a framework for soft querying of

databases.  We described a soft query as a collection of required
conditions and an imperative for combining an objects
satisfaction to individual conditions to get its overall
satisfaction.  We investigated tools that can enrich this process
by enabling the inclusion of more human focused
considerations. We described some more sophisticated
techniques for aggregating the satisfactions of the individual
conditions based on the inclusion of importances and the use
of the OWA operator..  In addition to considering more human
focused aspects of the query we looked at databases in which
the information in the database can have some uncertainty.
We particularly considered probabilistic
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