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Abstract
CARMA is a decision-support system for manag-

ing grasshopper infestations which uses an approach
called approximate-model-based adaptation whereby
case-based reasoning (CBR) provides an approximate
solution and model-based reasoning adapts this approx-
imation into a precise solution. CARMA’s predictive
accuracy on a set of known cases confirmed the abil-
ity of the technique. The evaluation was not expanded
beyond the initial set of known cases due to the human
effort involved in constructing such cases. We provide an
overview of CARMA, and detail initial attempts to estab-
lish a process for the automatic evaluation of such sys-
tems in order to identify potential gaps in predictive cov-
erage using Monte Carlo methods. We propose that any
generated situation which produces large adjustments in
prediction during adaptation suggests a potential gap in
the predictive ability of a CBR system. This represents
an extension of prior CBR work which considers only the
matching stage when evaluating predictive coverage.

1. Introduction

CARMA, short for CAse-based Rangeland grasshop-

per Management Advisor, is a decision-support system

for managing grasshopper infestations that has been suc-

cessfully used since 1996 ([4, 8]). CARMA employs a

variety of artificially-intelligent (AI) techniques to pro-

vide advice about the most environmentally and eco-

nomically effective responses to grasshopper infesta-

tions. In the process, CARMA illustrates an approach to

providing advice concerning the behavior of a complex

biological system by leveraging multiple, individually

incomplete, knowledge sources ([7]) including the in-

troduction of a technique known as approximate-model-

based adaptation1 which integrates case-based reason-

ing (CBR) ([1, 14]) with model-based reasoning (MBR)

for the purpose of prediction within complex physical

systems.

CARMA was designed with usability as a primary

goal with the intention being to present an interface so

intuitive that it completely eliminates the need for a user

manual. Recent “non-biased” survey results ([12]) using

a modified online form of the desirability toolkit ([3])

suggest that the approach employed in CARMA’s inter-

face is a success. In 2003 CARMA was expanded to

include a prototype cropland grasshopper advising mod-

ule ([9]) in order to handle situations when grasshopper

populations build up at the rangeland-cropland interface

and spread into cropland such as small grains. Further-

more, the graphical user interface (GUI) has been con-

verted to Java in a manner which illustrates a technique

for integrating an artificially-intelligent Lisp reasoner

with a Java GUI ([10]). The implementation follows a

philosophy called platform freedom which emphasizes

freedom from both platform dependence and software

costs, and in the process demonstrates an approach to

creating a web-capable Lisp application with an appeal-

ing GUI.

Initially focused on rangeland grasshoppers within

the state of Wyoming, CARMA’s capabilities were ex-

tended to support the development and implementation

of more environmentally friendly and sustainable strate-

gies, and to support advising in nine additional west-

ern U.S. states: Colorado, Idaho, Montana, Nebraska,

New Mexico, North Dakota, Oregon, South Dakota, and

Utah. In addition, CARMA has been presented to pest

managers in all 17 western states in which grasshoppers

present economic problems. The most recent version of

CARMA, 5.051 is available free of charge for noncom-

mercial purposes and can be downloaded and installed

1Approximate-model-based adaptation is defined and contrasted

with perfect-model-based adaptation by [5].
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from http://carma.unk.edu or run as a Java Web Start ap-

plication.

Given CARMA’s longevity and role within the

grasshopper infestation advising domain, we are always

on the lookout for ways to move CARMA forward (e.g.,

by bringing it to new platforms or making enhance-

ments). Recently, we began to look at CARMA’s cover-

age of problem space through the combination of cases

and the model (for adaptation). The cases themselves

had been manually gathered over the course of several

months based on responses to questionnaires sent to 20

entomologists recognized for their work in the area of

grasshopper management and ecology. The cases are

meant to be representative of the most common infesta-

tion scenarios [6], but not an exhaustive coverage of all

potential scenarios (especially given the effort required

to manual acquire such cases).

The accuracy of the predictive approach used within

CARMA (i.e., approximate-model-based adaptation)

had been previously confirmed through leave-one-out

testing on a set of known cases [6]. In this testing, a

known case is removed from the system, the system is

trained on the remaining cases, and finally the system

produces a prediction for the removed case. It is the

presence of the model, in combination with the remain-

ing cases, which allow CARMA to fill in the newly cre-

ated gap in the case library caused by removing the case.

Given a sufficient coverage of feature space by the case

library, the system should be able to properly solve new

cases. This evaluation of CARMA’s predictive ability

was not expanded beyond the set of known cases, other

than ad hoc usage of the system by experts (which did

not discover any gaps), due to the human effort involved

in constructing and evaluating potential new test cases.

Our current research seeks a way to broaden this prior

evaluation to new cases to determine if there are any ar-

eas in problem space not properly handled by CARMA,

and to eventually fine tune CARMA if any gaps are

found.

This paper provides an overview of CARMA and

its problem domain. It then details initial attempts

to establish a process for the automatic evaluation of

such a CBR system which uses adaptation (in this in-

stance approximate-model-based adaptation) in order to

identify potential gaps in predictive coverage. Monte

Carlo methods are employed to quickly construct novel

cases/situations which are then fed into the system. We

propose that any new case which differs only minimally

from a prior case in the case library, but which leads to

a large difference in prediction through the adaptation

process suggests a potential gap in the predictive ability

of the system, and for which manual inspection may be

necessary.

Sections 2 through 4 describe the problem domain

and CARMA’s evolving role as a decision support tool

in the world of sustainable grasshopper pest manage-

ment. Section 5 details CARMA’s problem-solving

approach as modeled after domain experts, as well

as an overview of approximate-model-based adapta-

tion in CARMA. Our proposed approach to evaluating

approximate-model-based adaptation in CARMA is de-

scribed in section 6 along with the results and a discus-

sion. We include potential future work in section 7 fol-

lowed by the conclusion.

Figure 1. Hopper band of early instar
nymphs of the Clearwing grasshopper
Camnula pellucida, one of the most impor-
tant agricultural grasshopper pests in the
western U.S. Photo: A. Latchininsky.

2. Grasshoppers as economic pests

Competing with humans, livestock and wildlife for

forage and crops, grasshoppers (Orthoptera: Acrididae)

are a serious economic problem in 17 U.S. states west

of the Mississippi. They are estimated to destroy an-

nually about 25% of the available rangeland forage in

the U.S., at an inflation adjusted cost of US$1 billion

([13]). Currently, the only efficient strategy to deal with

a grasshopper outbreak (Figure 1) consists in the use of

insecticide applications. During the 1986-88 outbreaks,

20 million acres of western rangeland were treated with

1.3 million gallons of insecticides at a cost of US$75

million. Besides their high economic cost, large-scale

insecticidal programs that “blanket” grasshopper infes-
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tations may be detrimental to the environment ([21]) and

can even aggravate grasshopper outbreaks over the long-

term ([17]).

3. CARMA: grasshopper decision support

CARMA provides the end-user with advice regard-

ing grasshopper population management options in an

economically and environmentally sound fashion. His-

torically, rangeland infestations were considered treat-

able when grasshoppers occurred at densities of eight or

more grasshoppers per square yard. While this treatment

threshold was thought to make sense from a protection-

ist point of view (i.e., protect the existing forage at all

costs so as not to risk forage shortages), it did not al-

ways make economic sense ([18]). CARMA conducts

detailed analysis of infestations looking at a number of

factors including grasshopper densities as well as range

productivity in order to provide an economic analysis of

an infestation. In cases where treatment costs will out-

weigh the estimated value of forage saved by treatment,

CARMA advises a “no treatment” option, which pro-

vides the greatest environmental savings of all.

4. CARMA and sustainable pest manage-
ment

In addition to conventional, blanket applications of

broad-spectrum insecticides like malathion and car-

baryl, CARMA considers an option called Reduced

Agent and Area Treatments (RAATs) ([19]). In fact,

CARMA was instrumental in developing the RAATs

strategy. RAATs is a method of integrated pest man-

agement (IPM) for rangeland grasshoppers in which the

rate of insecticide is reduced from conventional levels

as untreated swaths (refuges) are alternated with treated

swaths. RAATs works both through chemical control,

meaning grasshoppers are killed in treated swaths and

as they move out of untreated swaths, and conservation

biological control, which allows predators and parasites

preserved in untreated swaths to suppress grasshoppers.

Less insecticide in the environment lowers the risk to na-

tive species (including fish and wildlife), water quality,

and humans. The untreated swaths provide a refuge for

organisms with lower mobility than grasshoppers, and

even those organisms that move into the treated swaths

will be largely unaffected unless they feed on the fo-

liage. The untreated swaths harbor species essential to

rangeland ecosystems, including bio-control agents of

grasshoppers and weeds. Low densities of surviving

grasshoppers allow predators and parasites in the un-

treated refuges to re-colonize and thereby reestablish

natural regulation of grasshopper populations. For these

reasons, RAATs programs also may sustain higher den-

sities of birds than blanket applications. This IPM ap-

proach (RAATs) can reduce the cost of control and the

amount of insecticide applied to our rangelands from 50

to 75% ([16]). In 2003, the RAATs strategy was applied

to 400,000 acres in Wyoming which saved half a million

US dollars for local agriculturists. In 2010, during the

worst grasshopper outbreak in 50 years, almost 6 million

acres were protected in Wyoming with RAATs. The cost

of the entire control program delivered by both, private

and federal pest managers, was 7.4 million US dollars

[20]. Had ranchers used the traditional, blanket applica-

tion of insecticides at conventional high rates, the cost of

control would have been over 20 million US dollars. The

RAATs treatments effectively reduced pest densities be-

low the economic level and allowed Wyoming agricul-

turists to save about 13 million US dollars in 2010, sur-

vive the unprecedented pest outbreak and maintain the

viability of their operations.

The contribution that CARMA has played and con-

tinues to play in supporting the development and im-

plementation of sustainable pest management strategies

such as RAATs is detailed in [11]. RAATs became the

preferred option in the USDA-APHIS Environmental

Impact Statement when grasshopper control is required

([21]). CARMA is the only pest management software

that includes RAATs as an option and an open-ended

capacity for user-based treatment updates.

5. CARMA models the experts

CARMA is modeled after grasshopper pest manage-

ment experts and interacts with users through the same

sort of guided consultation employed by experts. The

user is queried for information as needed in order to sat-

isfy goals in an internal goal structure with the top-level

goal being a completed consultation (or treatment rec-

ommendation). Much of the user input is used to con-

struct an infestation case. Figure 2 shows an input win-

dow that asks the user to provide the grasshopper types

present in their infestation.

5.1. Grasshopper infestation advising
task

Briefly, the main steps in a consultation (as modeled

after experts) are:

1. Determine the relevant facts of the infestation case

from information provided by the user by means of

heuristic rules.
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Figure 2. CARMA’s grasshopper type elic-
itation window.

2. Predict the proportion of available forage that will

be consumed by each distinct grasshopper popula-

tion using approximate-model-based adaptation.

3. Compare total grasshopper consumption with the

proportion of available forage needed by livestock

to determine if competition for forage will occur.

4. If the predicted forage consumption will lead to

economic loss, determine which possible treatment

options are excluded in the current situation.

5. Provide an economic analysis for each viable treat-

ment option and recommend the treatment or treat-

ments that are most economical.

For a detailed description of the rangeland grasshop-

per infestation advising task and the implementation of

the consultation process within CARMA, the reader is

referred to [8]. Approximate-model-based adaptation

from step 2 is most relevant to the later experiment and

is thus described in greater detail in the following sub-

section.

5.2. Approximate-model-based adapta-
tion

Our protocol analysis indicated that entomologists

estimate forage consumption by comparing new cases

to prototypical infestation scenarios. These prototypi-

cal cases differ from conventional cases in two impor-

tant respects. First, the prototypical cases are not ex-

pressed in terms of observable features (e.g., “When-

ever I take a step, I see six grasshoppers with brightly

colored wings fly”), but rather in terms of abstract de-

rived features (e.g., “Approximately nine nymphal over-

wintering grasshoppers in the adult phase per square

yard”). Second, the prototypical cases are extended in

time, representing the history of a particular grasshop-

per population over its lifespan. Each prototypical case

is therefore represented by a “snapshot” at a particular,

representative point in time selected by the entomolo-

gist. In general, this representative point is one at which

the grasshoppers are at a developmental phase in which

treatment is feasible.

CARMA begins a consultation by eliciting informa-

tion to determine the relevant features of a new case.

CARMA can then employ approximate-model-based

adaptation whereby the causal model assists case-based

reasoning in four different ways: case factoring; tem-

poral projection; featural adaptation; and critical-period

adjustment. The assumption underlying approximate-

model-based adaptation is that the causal models associ-

ated with a biological or other partially understood sys-

tems may be accurate in the neighborhood of a case,

even if the models are insufficient for accurate predic-

tion throughout the entire feature space.

1. Factoring Cases into Subcases. CARMA’s con-

sumption prediction module first splits the over-

all population into subcases of grasshoppers with

distinct overwintering types (i.e., overwintering as

nymphs or eggs), since forage consumption by

those that overwinter as nymphs is much different

from consumption by those that overwinter as eggs.

2. Temporal Projection. Before performing case

matching and adaptation in order to predict the for-

age loss of a subcase, CARMA retrieves all proto-

typical cases whose life history (i.e., overwintering

type) matches that of the subcase, and projects the

prototypical cases forwards or backwards to align

their average developmental phases with that of the

new subcase.

3. Featural Adaptation. The consumption predicted

by the best matching prototypical case is modified

to account for any featural differences between it

and the subcase. This adaptation is based on the

influence of each feature on consumption as repre-

sented by featural adaptation weights.

4. Critical-Period Adjustment. Consumption is only

damaging if it occurs during the critical forage

growing period of a rangeland habitat. The for-

age loss predicted by a prototypical case must be

modified if the proportion of the lifespan of the

grasshoppers overlapping the critical period differs
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significantly in the new case from the proportion in

the prototypical case.

For a more complete description of approximate-

model-based adaptation in CARMA, see [6].

6. Evaluating approximate-model-based
adaptation within CARMA

Prior case-based reasoning research suggests that the

predictive coverage of a CBR system can be evaluated

based on how well new cases match existing cases in

the case library [15]. Their experiments involved using

a Monte Carlo approach to randomly create new cases,

and then calculating how closely they match. New cases

which are sufficiently distant from existing cases are

candidates for addition to the case library in order to im-

prove coverage of problem space. Given a close match,

they consider the problem solved. However, for CBR

systems which use adaptation to generate a final solu-

tion, the adaptation stage must also be considered when

evaluating the system. Because CARMA uses adapta-

tion (through approximate-model-based adaptation), it

represents an initial test bed for trying out potential eval-

uation ideas.

6.1. Generating random cases

Table 1 illustrates the relevant features present in

cases within CARMA, and the range of values possible

in the random cases generated in our experiment. Some

of the features are qualitative (e.g., precipitation), while

others are numeric (e.g., grasshopper density). Two of

the features (location and overwintering type) were fixed

at one potential value in order to reduce complexity for

this experiment. For example, location was set at “La

Grange, Wyoming” because the CARMA’s cases them-

selves are centered at “La Grange” – CARMA’s model

would otherwise adjust for any differences in location

between a new case and a prototypical case. In addition,

the overwintering type was set to “egg” because that is

the type of most interest (the “nymphal” overwintering

type is somewhat of a special case).

Because the timing of average developmental phase

of the grasshoppers is related to the climate for the loca-

tion (which is generally related to the date for the loca-

tion) – a linear regression between date and phase was

developed from the prototypical cases, and the random

date for the new case is fed into the formula to produce

the phase.

The range of possible feeding type values is as fol-

lows: (mixed 100%, grass 0%), (mixed 99%, grass 1%),

Number Range of values

Low end High end

Date 92 May 1 July 31

Location 1 La Grange, WY

Overwinter type 1 egg

Feeding types 101 mixed 100% mixed 0%

grass 0% grass 100%

Average phase 6 2.0 7.0

Density (gh/yd2) 40 1 40

Precipitation 3 wet dry

Temperatures 3 cool hot

Infest. history 5 low high

Range value 5 low high

Table 1. Random case production.

..., (mixed 0%, grass 100%) where the percentage of

mixed feeders is equal to 100 minus the number of grass

feeders. Note that the average development phase of the

grasshoppers is actually a real value, but for this table

we will assume integer values 2 through 7. With this

assumption, for this experiment there are 501, 768, 000
different points (i.e., random cases) possible in feature

space. Even with the simplifying assumptions (includ-

ing the fixed location), the problem space is too com-

plex to explore exhaustively in any reasonable amount

of time.

6.2. Experiment & results

Random cases were generated and fed into CARMA

bypassing the user interface. Cases can be randomly

generated and fed through the system at an approximate

rate of 700 cases per minute on a standard laptop. Figure

3 shows the results of this testing with 50 randomly gen-

erated cases. The chart includes the similarity ratio (in

yellow) between the random case and the closest match-

ing case in the case library. The similarity ratio is the

matching difference divided by the maximum possible

case difference – we won’t describe the specifics of the

matching difference as they could vary from one CBR

system to the next, but each CBR system should have

measure of match similarity. The chart also includes the

predictive difference (in red) between the closest match-

ing case and the prediction generated by CARMA for

the random case up to a possible maximum of 100. The

results are sorted by this predictive difference. Because

grasshopper forage consumption is strongly related to

the number of surviving grasshoppers (survival can be

reduced/increased by other factors including disease and

weather conditions), the difference in grasshopper den-

sity (in blue) between the closest case and the random

case is also shown.
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Figure 3. Test results on 50 randomly generated cases.

6.3. Discussion

We consider that the predictive difference between

a new random case and the closest matching case for

a CBR system which uses adaptation might be a better

indicator of potential gaps in the predictive coverage of

the system. If the difference is high, that indicates a case

where a great deal of adaptation has taken place. There

is nothing wrong with that given a perfect adaptation

module. However, it stands to reason that the further the

system has to adapt to account for feature differences,

the more likelihood of error. Given that CARMA’s case

library is quite small, not all new cases will be a close

match and thus adaptation will have greater impact.

Notice that there seems to be little if any relationship

between the similarity/matching ratio and the final pre-

dictive difference. In CARMA, those two components

were trained in isolation (match weights were set using

mutual information gain, and adaptation weights were

tuned using hill climbing), so there is not a strong di-

rect link between them. In the chart, there appears to be

a stronger link between the density and predictive dif-

ferences. Exploring this link further, we found that in

CARMA, although density is ranked relatively high in

terms of importance for matching, its impact is some-

times overridden in matching by the combination of a

stronger overall match of other features (which individ-

ually are not as important as density but when combined

are collectively more important). This leads to a match

with a greater difference in density. Such occurences

don’t indicate that CARMA is necessarily faulty in its

predictions because a new random case with a high den-

sity matched with an existing case with a lower density

will obviously result in a greater amount of adaptation

and thus a greater predictive difference. But, these in-

stances with a higher predictive difference represent a

natural starting point if further (manual) examination

were to take place.

We feel that this approach could have broad applica-

bility to case-based reasoning systems in general where

case matching and solution differences can be measured,

particularly for systems where case library size is lim-

ited.

7. Future work

This work represents a preliminary test of our idea

using CARMA as a test bed. At this point, further

inspection of the specific results would require human

intervention by domain experts. Rather than consume
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their time with cases that may not be problematic, we

hope to further refine our ideas in order to be able to pin-

point with better certainty candidates for manual inspec-

tion. Given the speed of this testing approach, an au-

tomated analysis approach which can more clearly flag

potential problems is necessary, but that has not been

formulated yet. We are currently turning our attention

to data sets in the UCI Machine Learning repository [2].

The data sets are much larger than CARMA’s case li-

brary and we feel that we can gain a better understanding

of our approach, after which we can return our attention

to CARMA. We are also looking at porting CARMA to

mobile devices.

8. Conclusion

CARMA is a decision support system for man-

aging grasshopper infestations that has been success-

fully used since 1996. CARMA’s primary reason

approach, called approximate-model-based adaptation,

utilizes case-based reasoning to provide an approximate

solution and model-based reasoning to adapt this ap-

proximation into a precise solution. CARMA’s predic-

tive accuracy using this approach had been previously

confirmed. The evaluation was not expanded beyond

the initial set of known cases due to the human effort

involved in constructing such cases. This paper detailed

initial attempts to establish a process for the automatic

evaluation of such a system (which uses approximate-

model-based adaptation) in order to identify potential

gaps in predictive coverage by using Monte Carlo meth-

ods to quickly construct novel situations and feed them

into the system. Our work suggests that any new situa-

tion which differs only minimally from a prior case (in

the case library), but which leads to a large difference

in prediction (through the adaptation process) suggests

a potential gap in the predictive ability of the system,

and for which manual inspection may be necessary. Our

work in this area will continue in order to gain a better

understanding of our approach.
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