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Abstract 
Land use and cover change (LUCC) research is 

important to support insightful management of 
Earth’s land use to avoid irreversible damage. 
However, LUCC is a complex process that relates the 
interaction between natural and social systems at 
different temporal and spatial scales. Nevertheless, 
the representation of different interaction patterns 
through agent-based modeling and multi-agent 
systems can contribute to decision support for 
sustainability that are essential to a better 
understanding of real environmental problems, 
including social, economic and physical aspects. 
Thus, this article presents the use of a Multi-agent 
System for Environmental Simulation (MASE) for 
exploring potential impacts of land use policies. 
MASE is a freeware multi-agent model system to 
simulate LUCC dynamics that is illustrated with the 
Brazilian Cerrado case. Considering the 
experimental results, we consider that MASE 
represents an interesting alternative for LUCC 
decision support. 
 

1. Introduction  

Land Use and Cover Change (LUCC) processes 
are amongst the most pervasive and important 
sources of recent alterations of the Earth’s land 

surface [1]. It might be defined as a complex process 
caused by the interaction between natural and social 
systems at different temporal and spatial scales [2]. 
LUCC research aims to support insightful 
management of land resources in order to avoid
irreversible damage [3].

Agricultural systems are a broader general type of 
LUCC problem, since they involve the consideration 
and inter-relationships of food, energy, fiber and 
other ecosystem services. There is a critical need to 
expand or intensify land use to meet increasing 
demand for agricultural production worldwide, while 

preserving ecosystem structure and function. 
Although public opinion strive for zero deforestation, 
there is still much debate around LUCC 
consequences. For some, economic benefits of 
current deforestation and the land uses that replace 
natural vegetation outweigh any environmental 
benefit of standing forests. Governments of different 
countries hope to enter into an agreement that would 
enable the effective formulation of actions and policy 
directions. To aim for environmental sustainability 
while ensuring or maintaining economic development 
is even more concrete in a regional scale. There is a 
real need for an understanding of how relative land 
use/cover policies affect general economic 
productivity and the outcomes for the environment. 
Sustainability may be defined as meeting the needs of 
the present without compromising the ability of 
future generations to meet their own needs [4].
Recent researches reinforced the role of information 
technology on improving environmental 
sustainability in terms of information, representation, 
organization, innovative strategies and evaluation of 
systems that break new ground in environmental 
responsibility [5; 6]. Thus, policy makers and 
governmental planners in the LUCC sector start to 
rely on software, such as simulators, to do analyses of 
land resources and prepare the stakeholder dialogue 
on LUCC management decisions [7].

In this direction, two different agent based 
techniques that can contribute to scenario analysis 
and decision support for sustainability are agent-
based modeling (ABM) [8; 9] and multi-agent system 
(MAS) [10; 11]. The agent representation of different 
interaction patterns is essential for a better 
understanding of real environmental problems, 
including social, economic and physical aspects. 

MAS explicitly represents human decision-
making processes by means of agents, represented as 
autonomous computer entities interacting directly 
with themselves and the environment, in order to 
achieve goals [12]. The use of MAS in LUCC can 
inform policy setting and decision-making processes 
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on the use and management of land resources. The 
simulation results can represent the causal chains and 
feedbacks of LUCC, and thus be used as learning 
instruments for understanding the system dynamics 
and to explore future scenarios by testing the effect of 
land policies [13].

According to Gray et al. [14], software that 
integrates environmental modeling, stakeholder 
knowledge and decision making investigation is 
currently lacking. In order to address this critical 
issue, this paper presents a MAS to model and 
simulate LUCC dynamics. The Multi-agent System 
for Environmental Simulation (MASE) prototype 
effectively illustrates the environmental, economic 
and social dynamics while driven by regional 
management policies. MASE aims to assist analyzing 
LUCC dynamics using technical information to aid 
the decision making process. We performed a case 
study to explore the potential impacts of the recent 
changes in the Brazilian Forest Code and other 
regional land use policies in land use and cover of the 
Cerrado (Brazilian savanna). The results show how 
politics could influence the LUCC dynamics. We 
discuss how stakeholders and decision makers could 
use the framework and analyze different scenarios to 
support sustainability. Our approach is able to 
integrate stakeholder or expert knowledge, empirical 
and process-based spatial explicit models and 
national and regional policies datasets. 

 This paper is organized as follows: Section 2 
recalls basic concepts on MAS, modeling, simulation 
and comparison framework to decision-making; 
while Section 3 explains MASE. Section 4 reports the 
LUCC study case and Section 5 discus the results and 
their implication to environmental management. 
Section 6 summarizes the findings and suggests 
future research issues. 

2. Background 

The MASE design framework draws upon three 
distinct but related theoretical and practical uses of 
MAS through the role of modeling and simulation. A 
comparison framework is also presented, 
highlighting, in particular, decision-making 
processes.  

2.1. Multi-agent system 

The MAS discipline is related to the distributed 
artificial intelligence area in Computer Science. A 
MAS is interested in the behavior and management 
of agents, which work together in groups or 
individually in an independent way [15]. An agent 

can be viewed as an entity that is situated in some 
environment, being capable of autonomous actions in 
this environment in order to meet its design 
objectives. In addition, an intelligent agent 
communicates with other agents in a distributed 
environment using a cooperative or competitive 
relationship approach [16]. 

Agents are autonomous entities. They are forced 
to coordinate their activities to avoid negative 
interactions exploiting synergic potentials. That is 
where the real potential of this technology becomes 
unleashed [17]. An important reason for growing 
success of multi-agent technology is its potential to 
cope with high complexity problems in dynamic and 
distributed environments due to their flexible and 
adaptive behavior [18]. MAS had been used to solve 
many problems with their features, mainly complex 
and real-life problems.  

2.2. Modeling and Simulation 

There are some clear differences between 
modeling and simulation. A model is intended to 
provide a precise and unambiguous description of a 
designated part of reality, written in a certain 
language, which can be formal or natural [19]. 
Environmental models are usually complex and 
might be addressed in a quantitative or qualitative 
approach. Quantitative models intend to replicate the 
behavior and interaction of key elements and 
processes of the natural systems under study. 
Qualitative or conceptual models aspire to 
undercover the causality chains and feedbacks among 
the elements. 

The objectives of modeling in the environmental 
context are described by [14] as: (i) problem 
clarification and enhanced communication among 
scientists, managers, and other stakeholders; (ii)
policy screening to eliminate options that are most 
likely incapable of doing much good, because of 
inadequate scale or type of impact; and (iii)
identification of key knowledge gaps that make 
model predictions suspect. 

Simulation tools use models for automated 
calculation and visualization of scenario outcomes 
[20]. Simulation is a central aspect of decision 
support for it provides information on the likely 
outcomes of alternatives from which policy makers 
and governmental planners can ground their 
decisions. Reynolds and Schmoldt [21] emphasize 
the visualization output of a simulation tool as the 
main feature to provide decision support. It could 
ultimately contribute to help stakeholders and 
decision makers arrive at reasoned and reasonable 
decisions about forest resource management. 
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Together, modeling and simulation have the 
potential to increase the intelligence and efficacy of 
environmental management. ABM and simulation 
has been proved particularly beneficial to decision-
making [22]. 

  
2.3. Comparison framework to decision-
making 

Agarwal et al. [23] developed a detailed study of 
models and tools that involve human interactions and 
environment after analyzing tendencies and 
methodologies. As a result, they present a review and 
assessment of scale and complexity considering three 
dimensions: space, time and human decision-making. 
Space and time provide a common setting in which 
all biophysical and human processes operate. Most 
models also incorporate human processes, referred to 
as the human decision-making dimension. According 
to this study, the ultimate goal for modeling the 
dynamics between man and the environment involves 
high complexity in those three dimensions. 

The modeling and simulation frameworks show a 
lot more convergence when comparing temporal and 
spatial dimensions of the models. The main 
characteristic that set them apart is how to 
incorporate decision-making in them. To discuss 
human decision-making, the authors parameterize the 
complexity of a model using an index with six levels, 
in order to represent the choices of how decisions are 
made and how these decisions influence the next step 
of the simulation (Table 1). The MASE system was 
designed to achieve the sixth level of human 
decision-making complexity, as described in the next 
sections. 

3. MASE 

MASE is a MAS for environmental simulation 
based on a hybrid modeling technique. MASE 
enables modeling and simulations of LUCC 
dynamics using a configurable user model and both 
top-down and bottom-up structures [13].  

MASE was defined using a two-fold 
methodological approach in order to form a solid 
backbone based on: (i) the systematic and structured 
empirical characterization of the model [24]; and (ii) 
the conceptual structure definition according to the 
agent-based model documentation protocol - 
Overview, Design concepts and Details (ODD) [25].
For a complete description of MASE multi-agent 
model system for land-use change simulation, see 
[26].

Considering MAS methodologies, we adopted 
TROPOS [27], which allows incorporating system 
requirements to the ODD protocol for documenting 
MAS. The TROPOS diagrams are not included in 
this paper, since the development of MASE is not the 
focus, but the methodological aspects involved in the 
definition of the model that can be replicated in other 
LUCC simulation packages. 

The empirical characterization and the conceptual 
structure of the model were defined by a group of 
ecologists from the University of Brasilia (UnB) and 
from the Brazilian Institute of Environment and 
Renewable Natural Resources (IBAMA). The
motivation behind this group was to forge the MASE 
system by its potential users: researches and land-use 
decision makers.  

For the definition of MASE architecture, different 
classes and sub-classes of agents were defined (see 
Table 2). Each agent class is related to the definition 
of entities responsible for specific decision-making, 
execution of actions, perceiving the environment and 
the execution of the time-steps in the simulation. Six 
classes of agents were created at MASE prototype. 

Table 1. Six levels of human decision-making 
complexity (Adapted from [23]) 

Level Description

1 No human decision-making (HDM) — only 
biophysical variables in the model

2 HDM assumed to be related determinately 
to population size, change, density

3

HDM as a probability function depending 
on socioeconomic and/or biophysical 
variables beyond population variables 
without feedback from the environment to 
the choice function

4

HDM as a probability function depending 
on socioeconomic and/or biophysical 
variables beyond population variables with
feedback from the environment to the 
choice function

5

One type of agent whose decisions are 
modeled overtly in regard to choices made 
about variables that affect other processes 
and outcomes

6

Multiple types of agents whose decisions 
are modeled overtly in regard to choices 
made about variables that affect other 
processes and outcomes; the model might 
also be able to handle changes in the shape 
of domains as time steps are processed or 
interaction between decision-making agents 
at multiple human decision-making scales
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Figure 1. Three-layer MASE architecture (Adapted from [26]) 

The main actions performed by each of these 
classes are summarized as follows:  

(i) GRID Manager (GRIDM): Promote interface 
parameterizations defined by users; Manage start, 
pause and end of agents; Receive agents state for the 
visualization; and Promote agents state visualization 
for the user. 

(ii) Spatial Manager (SM): Set the instances of 
cells to simulate; Get orders from GRIDM and 
replicates to cells; Receive the states of cells and 
replicates to GRIDM.  

(iii) Transformer Manager (TM): Set the instances
of TA for simulation; Get orders from GRIDM and 
replicates for TA; Receive TA states and replicates to 
GRIDM (iv) Cell Agent (CA): Receive tasks from 
SM; Inform state to SM agent; Begin land/vegetation 
recovering or stop it; Signal whether or not TA 
occupies land. 

(v) Transformer Agent (TA): Receive tasks from 
TM; Inform state to TM agent; Request position 
change to TM agent; Moving from one cell to 
another; Explore the cell; Identify if cell has 
exhausted its ability to be exploited. 

(vi) Conservative Agent (CoA): Perceive the state 
of a cell; Receive tasks from TM; Receive messages; 
Wait on exploration; Recover the vegetation of a cell; 
Identify if a cell must be preserved. 

All the classes can be expanded or new instances 
of these classes can be created, as the modeling of 
different behaviors of agents are found necessary. 
Linked to each class of agents there are images with 
the spatial domain to the native class, for example, 
the map of urban areas are associated with urban 
agents, forming a specific level of simulation. 

One of the paramount definitions during a MAS 
project is the environment characterization. We have 
used the classical environment characteristics 
proposed by [28] and [16]. Although our approach 
deals with real environment (i.e., the geographical 
area over which the changes occur in coverage and 
use of land), the simulation grid by the agents 
perceptions is partially observable, stochastic, 
sequential, dynamic, continuous, multiagent and 
competitive, where several restrictions are necessary 
to be made in order to deal with computable model 
simulations. To the case study presented in Section 4, 
the environment has the following characteristics:  
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Table 2. MASE agent classes and types 
(Adapted from [26]) 

Agent 
Class

Type of 
Agent

Nº of 
instances

GRID 
Manager

Goal-based 1

Spatial 
Manager

Goal-based 1

Transformer 
Manager

Goal-based 1

Cell Agent Reflexive agent 
with internal state

Set by the 
user

Transformer 
Agent

Reflexive agent 
with internal state

Set by the 
user

Conservative 
Agent

Reflexive agent 
with internal state

Set by the 
user

(i) Partially Observable: each agent has a 
restricted field of perception related to the grid cells 
neighborhood (i.e., adjacent cells). 

(ii) Deterministic: the next state of the 
environment is determined by current state and the 
actions taken by the agent. 

(iii) Episodic: time is not treated continuously.
There are atomic time-steps that are considered for 
the simulation execution. 

(iv) Static: the environment does not change 
while an agent is acting. 

(v) Discrete: the possible transitions are defined 
by a finite-state machine (FSM); 

(vi) Multi-agent: a set of agents with different 
roles and behaviors are used in the system. 

(vii) Competitive: agents have interests that are 
competing, while the grid of resources is limited and 
has to be shared by agents. 

Figure 1 presents the defined three-layer 
architecture for the MASE prototype system. The 
hierarchical arrangement of the agents into layers 
aims to organize the coordination of agents, 
cooperation and conflict resolution. For this reason, 
agents of higher levels have greater control over 
agents at lower levels. The user interface layer allows 
the configuration of the simulation model and 
presents the simulation results. All user-supplied 
configuration settings are translated into the 
Extensible Markup Language (XML) files and loaded 
into MASE, in order to start the action of agents, 
linking them to the other simulation layers. Through 
the user interface layer, user can configure which 
agents will be part of the simulation, adding 
behaviors to agents from a library available. User can 
also associate specific FSM to agents in order to 
define their behaviors. Moreover, additional rules as 
guidelines for global simulation are available at this 

stage. The flexibility of configuration extends to the 
creation of the number of agents that compose each 
class, which interact in the space defined by the user 
simulation layer of each respective class. 

The control layer uses the previously defined 
rules and settings to produce the simulation, where 
the logical simulation mechanisms are defined. At 
this layer, there is some layers overlapping, since the 
storage of the intermediate results is shared. The 
physical layer is responsible for loading the actual 
images and provides image attributes to agents in 
synchronized approach in order to guarantee threads 
safety and avoid image inconsistence. 

As a spatially explicit model implementation, 
MASE can receive a set of input images defined by 
the user to simulate land changes. The space is 
represented through a grid in which each unit, or cell, 
is represented by a computational agent. It is a 
different concept from cellular automata, where each 
cell in the grid has a finite number of states and 
changes over time according to a fixed rule. The 
MAS allows each cell to know its own state and 
change according to the action of a TA and according 
to its perceptions of the simulation environment. As 
TAs may have different behaviors, neighbor cells 
might be under unique land use constraint at the same 
time step. 

The development of MASE prototype was 
performed using the Java Agent Development 
Framework (JADE), version 4.0, a middleware for 
developing and executing applications based on 
intelligent agents, developed in Java [29]. For the 
image manipulations, we used the open source 
ImageJ Lybrary [30]. The agent interaction protocol 
used in MASE allows the simulations of cooperative 
and competitive agent relations. MASE is a free 
software developed in the UnB that aims to assist the 
decision making process by the use of environmental 
simulations. However, it is a prototype related to a 
running project. The software is available online for 
free download at: https://sourceforge.net/p/mase-unb. 

4. Implications for land use policies: a 
study case in the Brazilian Cerrado 

Recent alterations in the Brazilian Forestry Code 
has brought much debate in land use policies and its 
effects on the environment. Effective legal reserve 
requirements for rural properties are 80% in the 
Legal Amazon, but only 20% in all other regions, 
such as the Brazilian Cerrado biome. 

Even though much of the attention of 
conservationists has focused on rainforests such as 
the Amazon and Atlantic forests, the Cerrado is 
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currently one the most threatened biomes of South 
America due to the rapid expansion of agriculture 
[31]. Soybeans and soy products are amongst the 
largest of Brazils export commodities, and the 
Cerrado support the largest cattle herd in the country 
[32]. The expansion of these activities is driven by a 
series of interconnected socioeconomic factors, often 
encouraged by government policy. Data from The 
Brazilian Institute of Environment and Renewable 
Natural Resources (IBAMA) show a cumulative loss 
of 47.8% of the Cerrado natural vegetation cover 
(around three decades). Experts point out that there is 
a conservation effort far below the real needs of the 
biome. Only 2.2% of the territory occupied by the 
Cerrado is legally protected [32].

The LUCC of Brazilian Federal District Cerrado 
was chosen as a study case for its 68.11% of 5,789 
km² of native vegetation cleared even when 90% of 
its area is protected by law in the form of protected 
areas of strict protection or sustainable use. The input 
of the simulation used two maps: the initial time 
(2002 − t0) and a subsequent time (2008 − t6). The 

maps were obtained by a semi-supervised 
classification technique of LANDSAT ETM satellite 
images performed by The Brazilian Institute of 
Environment and Renewable Natural Resources 
(IBAMA) for the deforestation control of the Cerrado 
(Figure 2). This initial information is input into the 
MASE model. The yellow areas represents the 
anthropic used land, the green areas represents the 
native vegetation and the blue areas represent the 
watercourses. 

The total area of study was divided into cells, in 
which every set of four cells represents one hectare, 
which is represented by a different CA. The physical 
state of the conservation of the cells is monitored and 
it can be influenced by six proximal variables defined 
by the user: (a) railway, (b) highway, (c) water course 
(river); (d) water body (lake); (e) street and (f) 
building. The input of the proximal variables is done 
in form of map layers that might affect the behavior
of CAs and TAs. 

In the simulation process, three different types of 
TAs represent the human factor over the land:
farmers, ranchers and conservative agents. Each one 
has a predefined goal and behavior set by the user. 
The general political aspects are also taken as a 
compelling force in the simulation, translating the 
Federal District Spatial Plane (PDOT) onto an 
influence matrix for the agents who will change the 
use of the land. 

Previous simulations [26] portrayed the business-
as-usual scenario, where the agricultural farmers and 
ranchers behaviors were modelled based mainly on 
the expansion of the agricultural frontiers and up 

scaling production. In this new study case, the 
effective legal requirements for rural properties, 
defined by the Brazilian Forestry Code, were 
specified as one of the agents ‘beliefs’. The activity 

of each LUCC transformer agent was constrained by 
what is regulated by law. Each agent was forced to 
respect the 20% of legal reserve in rural properties. 
The conservative agents are responsible to assure the 
preservation and conservation of the land, according 
to the law. A constant natural regeneration of 
vegetation rate was also defined according to the 
specialists. The set of agent behaviors and model 
parameterization configured a more optimistic 
scenario, where the environmental policies were 
known and followed. 

Figure 2. Land classification maps for the 
Brazilian Federal District, (a) 2002, (b)2008 

5. Results and Discussion 

The simulation results are illustrated in Figures 3-
5. For each run of the simulation, the software was 
set with a variable number of agents, identified as 
Sim X: simulation with X transformation agents.  

In order to compare quantitative and qualitative 
aspects of the multi-agent model proposed we applied 
two scientifically rigorous statistical techniques of 
map comparison to land change models. The first 
method, the RMSE is used to measure the differences 
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between values predicted by the model and the values 
actually observed. 

From the Table 3 it can be observed that the best 
results are obtain with 90 agents. Moreover, all 
results indicate a small difference between the 
images. When comparing the RMSE value of the null 
model to our simulations, it can be seen that for 50 to 
100 agents our results are significantly better. 

 The second method were developed by [33] to 
compare: (i) a reference map of initial time (2002), 
(ii) a reference map of subsequent time (2008), and 
(iii) a prediction map of the subsequent time (2008). 
According to the authors, the three-map comparison 
specify the amount of the predictions accuracy that is 
attributable to land persistence versus land change. 

Table 3. RMSE results comparing the
2008 reference map and the predicted map. 

Sim¹ RMSE Null model 
RMSE 

10 2,1636

2,0659

20 2,1734
30 2,1523
40 2,1591
50 1,9669
60 2,044
70 1,9837
80 1,9714
90 1,9443

100 1,9515
Sim X: simulation with X transformation agents. 

According to the authors, the two most important 
components are quantity disagreement (i.e., net 
change) and location disagreement (i.e., swap 
change), which sum to the total disagreement. While 
the quantity disagreement derives from differences 
between the maps in terms of the number of pixels 
for each category, the location disagreement is the 
disagreement that could be resolved by rearranging 
the pixels spatially within one map. If the location 
disagreement can be resolved by swapping the pixels 
over small distances, then it budgets the error as 
“near” location disagreement, otherwise it budgets 
the error as “far” location disagreement. We adopted 
in this paper what [33] suggested for “near” location 

disagreement: the location disagreement that can be 
resolved by swapping within 64-row x 64-column 
clusters of pixels of the raw data (raster data).  

Different applications can be summarized and 
compared using two statistics: the null model 
resolution and the figure of merit. Considering the 
figure of merit, the more accurate applications are the 
ones where the amount of observed net change in the 

reference maps is larger [33]. The simulation results 
indicate the potential of the presented multi-agent 
model system. Considering the accuracy of the 
simulations using MASE, the application results were 
better than the null model (Figure 4), what examines 
both the behavior of the model and the dynamics of 
the landscape. The definition of this null model is a 
prediction of complete persistence, i.e. no change, 
between the initial and the subsequent time, therefore 
the accuracy of the null model is 100% minus the 
amount of observed change. Once again, MASE 
results were consistent and statistically better than 
other similar frameworks, reviewed and compared by 
Pontius [33]. The review of results show that 50% of 
the simulation frameworks are worse than the null 
model [33].

Figure 3. MASE model predictions for the 
Brazilian Federal District, showing (a) 

Observed change 2002-2008, (b) Predicted 
change 2002-2008 
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Figure 4. Observed change, predicted change, and predicted error for each of the 10 runs of the 
simulation with variable TAs.  (According to the [33] methodology).

Figure 5. Sources of percent correct and percent error. According to the [33] methodology.
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The figure of merit is a statistical measurement 
that derives from the information of the bars in 
Figure 5. The figure of merit is the ratio of the 
intersection of the observed change and predicted 
change to the union of the observed change and 
predicted change, which can range from 0% (no 
overlap between observed and predicted change) to 
100% (perfect overlap between observed and 
predicted change, a perfect accurate prediction). 
Figures 3 and 5 show high error rate due to anthropic 
loss, or error due to observed change predicted as 
persistence. This means that natural vegetation would 
actually be preserved in the Forestry Code Regulation 
scenario. Specialist would argue if the 20% were 
enough to pressure the ecosystem services. A 
government planner would be able to see the impacts 
of LUCC policies in the simulation. It is even 
possible  to  extrapolate  the  results  and  investigate 
scenarios with different legal reserve limits to 
investigate the consequences of modifications in the 
Brazilian Forestry Code. The MASE framework 
allows the LUCC manager to configure variables and 
test new possibilities to the future. For this, it is 
possible to exploring potential impacts of land use 
policies and be a supporting tool for decision-
making.  

6. Conclusions 

MASE system is a freeware multi-agent model 
system to simulate LUCC dynamics, using multiple 
agents to represent the interaction between different 
types of agents with autonomy. Considering the 
experimental results presented, we consider the 
multi-agent model system of MASE represents an 
interesting alternative for LUCC decision support. 
The model is done in a spatially explicit, integrated 
and multi-scale manner, being important for the 
projection of alternative pathways for conducting 
experiments that test human understanding of key 
processes in land-use changes.  

The proposed strategy for modeling and 
simulation is a valid tool for the investigation of the 
consequences of environmental policies. To allow 
stakeholders and decision makers to investigate 
alternative scenarios in a MAS built with an 
individual based model is an alternative to raise 
awareness for environmental sustainability. The 
study case provides evidence that stating 
environmental policies does not imply an efficient 
environmental management. While considering the 
biophysical and economic aspect of land use and 
cover changes, a decision maker could benefit from 
our approach by stating environmental political 
issues in an explicit way. 

The present study still has certain limitations. 
Regarding the system interface and usability, some 
improvements are needed to allow its use for a 
broader public. The system scope is restricted to 
LUCC and to allow general environmental modeling 
and simulation, some architectural changes are 
needed.

Future studies should revise the methodology to 
include the above-mentioned limitations, so that a
friendly interface can be applied to any general 
environmental setting. 
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