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Abstract 
Graphical models and general purpose inference 

algorithms are powerful tools for moving from impera-
tive towards declarative specification of machine 
learning problems. Although graphical models define 
the principle information necessary to adapt inference 
algorithms to specific probabilistic models, entirely 
model-driven development is not yet possible. Howev-
er, generating executable code from graphical models 
could have several advantages. It could reduce the 
skills necessary to implement probabilistic models and 
may speed up development processes. Both advantages 
address pressing industry needs. They come along with 
increased supply of data scientist labor, the demand of 
which cannot be fulfilled at the moment. To explore the 
opportunities of model-driven big data analytics, I 
review the main modeling languages used in machine 
learning as well as inference algorithms and corre-
sponding software implementations. Gaps hampering 
direct code generation from graphical models are 
identified and closed by proposing an initial conceptu-
alization of a domain-specific modeling language. 
 

1. Motivation 

Data Scientist is the term for a new type of analysts 
possessing both the business knowledge to understand 
the problems companies are faced with as well as the 
technical skills to generate decision-relevant infor-
mation from large-scale datasets. In times in which big 
data is on everyone’s lips, the data scientist is a popular 
job description. Some even call it the sexiest job of the 
21st century [1]. 

Business intelligence (BI) has traditionally been 
concerned with topics such as gathering, storing, and 
integrating data from various sources to make them 
available through data warehouses [2]. This data may 
be used purely for reporting or ad-hoc querying, but 
also for more advanced analytics [3]. The former is 
supported by technologies such as online analytical 

processing (OLAP) while for the latter, probabilistic 
analysis techniques can be used with great success. 

In the context of big data, much research focusses 
on technological aspects such as coping with petabyte-
scale datasets. Various approaches to accomplish this 
are discussed in the literature [4], with the MapReduce 
paradigm being the most well-known [5]. Yet even 
more important than having the technology to process 
data is hiring talented people capable to make sense of 
it. Data alone is worthless without analysis. Demand 
for data scientists is way ahead of supply [6]. 

One reason why data scientists are that hard to find 
can be found by considering the skillset they have to 
possess. The machine learning and data mining com-
munities have developed a long list of different algo-
rithms for tackling all sorts of analysis problems. 
Among the most popular examples are k-means for 
clustering and support vector machines for classifica-
tion [7]. Sophisticated software tools such as WEKA 
[8], SAS, or SPSS provide ready-to-use implementa-
tions of many algorithms, making them easy to apply. 
In any application though, it is the data scientist’s task 
to find a mapping between these algorithms and the 
particular problem at hand. The challenge is that there 
is not necessarily an exact fit. Hence, a combination of 
different techniques might be most appropriate. In 
other cases, custom modifications might be necessary. 

Even worse, an analyst needs deep understanding 
of both the domain and the various technical algo-
rithms to successfully do an analysis — a rare combi-
nation [9]. Only domain experts can tell which ques-
tions are worth asking and which peculiarities of a 
problem can be exploited to fine-tune models [6]. Only 
a technical expert is capable of implementing them. 

Hence, applied data analysis by means of standard 
tools is a much more creative design process than its 
name might suggest. Consequently, the machine learn-
ing community has put considerable efforts into devel-
oping a theory of designing customizable algorithms 
instead of proving a set of black-box procedures. Prob-
abilistic graphical models are one piece of the puzzle. 
They constitute a versatile tool for representing proba-
bilistic models, either standard ones (e.g., regression) 
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or entirely customized models. Algorithms adapting 
flexibly to varying model structures are the other piece. 
They allow deriving concrete implementations from a 
single theory [10]. 

That being said, implementing an algorithm specif-
ic to a given graphical model in software is still a de-
manding and effortful task. Fortunately, there is soft-
ware shielding users from these complex issues. An 
example is Infer.NET [11], a library providing facili-
ties for probabilistic model specification via an appli-
cation programming interface (API). After choosing 
one of the available algorithms, the library takes over 
and executes it on the model. This way of implement-
ing data analytics techniques is called a model-based 
approach to machine learning [12]. 

While such frameworks greatly reduce the com-
plexity of implementing machine learning approaches, 
the full potential is not yet leveraged. Modeling is done 
programmatically via calls to an API. With probabilis-
tic models being represented graphically anyways, it is 
easily conceivable to do the same thing entirely via 
visual notations. Not only may this further boost 
productivity. It may also facilitate collaboration in 
teams of technical and domain experts. 

Software engineers in the field of model-driven en-
gineering (MDE) have long acknowledged the useful-
ness of visual notations for designing software sys-
tems. Numerous frameworks have been developed 
[13]. Their common theme is that (1) a domain-specific 
modeling language (DSML) is used to express func-
tionality in terms of the domain under analysis and that 
(2) a transformation engine generates executable code 
[14]. Most importantly, these techniques avoid errors 
made when programming manually and allow specify-
ing functionality declaratively instead of imperatively. 
Although empirical research is costly and therefore 
scarce, DSMLs proved to increase productivity in 
several empirical studies [15], [16]. 

Consequently, the aim of this paper is to explore 
the opportunities of defining a DSML for probabilistic 
modeling. The design goal is to allow for entirely visu-
al specification from which executable code can be 
generated that fits models to data. What I present in 
this paper is a first conceptualization of such a lan-
guage. It synthesizes various modeling constructs pre-
sented in machine learning literature and extends them 
with the information necessary to derive executable 
code. This information is identified by studying the 
Infer.NET API. The ultimate goal of this research is to 
make the process of analyzing big data both easier and 
more efficient, thereby helping to close the gap be-
tween supply and demand of data scientists. 

The DSML I propose is not domain specific with 
respect to an industry or a particular analytical class. 

Rather, it is specific to the domain of doing inference 
in probabilistic models with no or partial observations. 

To establish a background on graphical models, I 
review probabilistic modeling languages, the algo-
rithms they can be used with, and corresponding soft-
ware packages in Section 2. Section 3 reflects graph-
ical models against the backdrop of MDE. The DSML 
for probabilistic models together with an outline of 
how code generation can be accomplished are dis-
cussed in Section 4. Finally, Section 5 concludes and 
outlines future research.  

2. Graphical Models 

2.1 The Purpose of Graphical Models 

Graphical models are a tool to describe probabilis-
tic models visually. The main ingredients of these 
models are random variables. A graphical model de-
scribes the joint distribution over all the variables it 
contains [17]. Consider the simple example illustrated 
in Figure 1. The graph represents a probability distribu-
tion �(�, �, �) over a set of three random variables 
{�, �, �}. The purpose of graphical models is to sup-
port a user in asking questions about random variables, 
very much in the way a database answers questions 
about the data it stores [18]. For instance, a user might 
want to know the distribution over variable A only, i.e., 
with B and C marginalized out. 

Figure 1. Simple directed graphical model with 
three variables 

To illustrate how graphical models can help an-
swering these questions, consider an example in which 
all variables A, B, and C are discrete and can assume 
six different values (1 to 6). For each variable, the 
probabilities of this happening may depend on all other 
variables. The question we are seeking an answer to
shall be: what is the distribution �(�)? 

Given the joint distribution �(�, �, �) this question 
is easy to answer. Simply marginalize out B and C, i.e., 
sum over all the possible combinations of values B and 
C can assume: �(�) = ∑ �(�, �, �)�,� . As B and C 

A

C

B

P(A,B,C) = P(A|C)·P(C|B)·P(B)
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can assume values from 1 to 6, there are 6	 = 36 such 
combinations. While this solution works for toy prob-
lems it soon becomes intractable when models have 
not three but thousands of variables. 

The remedy comes in form of conditional inde-
pendencies that can be exploited to speed up the com-
putations. Using the product rule of probability1, we 
can rewrite ∑ �(�, �, �)�,� = ∑ �(�|�, �) ⋅�,�
�(�|�) ⋅ �(�) which brings no immediate gain. In-
specting the formula in Figure 1 though we see that 
�(�, �, �) factorizes to �(�|�) ⋅ �(�|�) ⋅ �(�), 
which means that A is conditionally independent of B 
given C. This is also reflected in the graph visualizing 
the distribution. There is no arc from B to A. As a 
consequence, we can change the order of summing and 
multiplying when computing �(�): 

�(�) =� �(�|�, �) ⋅ �(�|�) ⋅ �(�)
�,�

= � �(�|�) ⋅ �(�|�) ⋅ �(�)
�,�

= � �(�|�) ⋅� �(�|�) ⋅ �(�)
��

The effect of this change is that we no longer com-
pute a single sum with 6	 terms but two individual 
sums with only 6 ⋅ 2 terms. Thus, this computation is 
three times as fast as the original one. 

While only discrete variables have been used in the 
example above, the theory is more general than that 
[19]. Random variables may equally well have differ-
ent domains and different distributions (e.g., real val-
ues and Gaussians). A wide range of stochastic models 
can be expressed in this way. Conditional independen-
cies encoded in a graph’s structure allow answering 
questions regarding marginal distributions by doing a 
series of local computations. 

While traditional machine learning techniques es-
timate parameters of models, the Bayesian paradigm is 
gaining widespread popularity in recent times. In 
Bayesian models a parameter is equipped with a distri-
bution (the prior), i.e., is treated as a random variable. 
The goal is not to estimate a particular value for the 
parameter but to infer a distribution over values after
observing training data (the posterior). Key selling 
arguments include making uncertainty in parameter 
estimates explicit (in form of variance in the posterior) 
and enabling an analyst to specify domain knowledge 
not reflected in the data (by modifying the prior) [20]. 

As a consequence, the only two things needed in 
the toolbox of a Bayesian are a modeling language to 
express distributions as graphs and a so called infer-
ence algorithm, i.e., an algorithm processing these 

1 The product rule of probability says that �(�, 
) = �(�|
) ⋅ �(
).

graphs to answer questions regarding conditional mar-
ginal distributions (for this reason, graphical models 
are most popular among Bayesians [21]). The upcom-
ing two subsections are devoted to introduce these two 
types of tools. 

2.2 Modeling Languages 

Common to all graphical models is that they are 
used to represent conditional independencies between 
sets of random variables. Also, they are all graphs, i.e., 
they consist of vertices and edges. Apart from that, 
different classes of graphical models exist. Most rele-
vant in this context are directed graphical models, 
undirected graphical models, and factor graphs [19]. 

It is worth noting that graphical models are not as 
standardized as the Unified Modeling Language 
(UML) [22] for software engineering or the Business 
Process Model and Notation (BPMN) [23] for business 
process modeling. Different authors may thus use dif-
ferent modeling constructs. My treatment follows 
Bishops introduction to this topic [19], but some exten-
sions from other literature are integrated as well. 

Table 1. Constructs of directed graphical models 

Construct Symbol Meaning

Latent varia-
ble

Defines a random 
variable.

Observed 
variable

Defines a random 
variable clamped to 

an observation.

Parameter Defines a parameter 
of the model.

Dependency 
relationship

Indicates that the 
distribution of one 

random variable de-
pends on another 

variable or parameter.

Plate Defines an area that is 
repeated N times.

Gate

Depending on a ran-
dom variable, it se-

lects different parts of 
the model with re-

spect to the random 
variable’s value.

N

T F
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Directed graphical models represent a joint distri-
bution by breaking it down into local pieces. All con-
structs introduced in the following are presented in 
Table 1. The main building blocks are random varia-
bles, denoted by circles. They are connected by di-
rected arcs which specify the dependency relationships 
among them. A variable’s conditional distribution 
depends on all its parent variables but no others.  The 
joint distribution emerges when all conditional distri-
butions are multiplied. In the example of Figure 1 
variable B has no parent. Hence, the corresponding 
distribution �(�) is independent of A and C. Variable 
A though has a parent and so the corresponding distri-
bution �(�|�) depends on it. 

If a model is to be fitted to data, training data must 
be part of it. This is done by making a distinction be-
tween latent and observed variables. The latter are 
shaded grey to visualize the difference. It is said that 
such a variable is clamped to a value. 

Another necessity is to express parameters of the 
model which is done using small black circles. Similar 
to observed random variables they have constant val-
ues. Like variables, they may be sources of arcs as a 
random variable’s distribution may depend on them.
However, they do not have a distribution themselves. 

As models may consist of huge numbers of random 
variables, syntactic sugar is useful to express structural 
analogies. This is achieved with the plate notation. A
plate is an area within the model that is repeated a 
number of times. This way, one can for instance repeat 
a part of the model for each point in the training data. 

Figure 2. Graphical model for polynomial re-
gression (adapted from [19], Figure 8.7) 

A similar construct developed by Minka and Winn 
[24] can be used to describe mixture models in a com-
pact way. It is called a gate and can be used to switch 
on and off different parts of a model depending on a 
(discrete) random variable. Each value of this random
variable is associated with an area in the model. The 
entire model is a mixture of all areas weighted with the 
respective mixing probabilities. 

Consider the example of Bayesian polynomial re-
gression adapted from Bishop [19]. It illustrates the use 
of all these constructs (c.f. Figure 2). 

A set of training data consisting of N pairs of real 
variables (��, ��) is given. The task is to predict �′
using a new data point �′. To explain the data, the goal 
is to fit a polynomial �(�, �) of order k with coeffi-
cient vector � = (��, … , ��)�. To account for the un-
certainty associated with this explanation, a Gaussian 
noise model defines the likelihood function 
�(�|�, �, �	) = ∏ �(��|�(��, �), �	)���� . To keep 
things simple, �	 is assumed to be known. Following 
the Bayesian approach, we also want to account for 
uncertainty regarding the polynomial f itself. Hence, 
variance in its parameters is formalized using a zero-
centered, multivariate Gaussian prior �(�|α) =
�(�|0,  !�") with known precision  . A typical ques-
tion could now be to infer the predictive distribution 
�(�′|�#, �, �,  , �	) to reason about likely values of �′
given �′, the training data, and the model specification. 

Another question could be assessing the quality of 
this model. A Bayesian way of doing so is to compute 
model evidence, i.e., the likelihood of the model with 
all random variables marginalized out [25]. The higher 
the evidence, the better is the model. Hence, this quan-
tity can be used to compare models. To represent this, 
a gate has been added in Figure 2 to switch between 
the regression model and an empty model using a Ber-
noulli random variable b. Model evidence is computed 
by inferring the posterior over b [24].  

Undirected graphs are another class of graphical 
models. The most obvious difference to directed 
graphs is that edges are undirected. A more important 
difference is that the set of conditional independencies 
that can be encoded is not the same. As a consequence, 
some models expressed in one language cannot be 
converted to the other notation [19]. Apart from undi-
rected arrows, the modeling language is the same. 

Factor graphs are a third notation for distributions. 
As discussed above, graphical models describe how a 
joint distribution can be decomposed into factors. Fac-
tor graphs are an explicit representation of this factori-
zation [19]. Their basic constructs are listed in Table 2.
However, they are not restricted to only these three. 
Apart from directed dependencies, any constructs used 
in the directed graphical models may be used too. 

xn

yn

α

σ2

θ

y´
x´

N

T

Fb
p

761



Table 2. Basic constructs of factor graphs 

Construct Symbol Meaning

Variable Defines a random variable.

Factor Correspond to factors of the 
joint distribution.

Relationship
Indicates which random 

variables are part of which 
factor. 

Random variables in factor graphs are again repre-
sented in form of circles, possibly clamped to observed 
values. The factors of a joint distribution are associated 
with factor constructs connected via undirected arcs to 
all variables used in the factors. An example is illus-
trated in Figure 3. The joint distribution is split up into 
two factors �� and �	. As there can be different ways of 
splitting up a joint distribution, there can be different 
factor graphs describing the same joint distribution. 

Figure 3. A factor graph corresponding to the 
directed graphical model of Figure 1. 

2.3 Inference Algorithms 

The goal of inference algorithms is to compute un-
known quantities from those that are known. Given a 
set of latent random variables �$ and a set of observed 
random variables �%, probabilistic inference can be 
described as the problem of computing a distribution 
�(�$|�%) over the latent variables given the observed 
ones [25]. As mentioned above, in a Bayesian ap-
proach in which traditional parameters are treated as 
latent variables, inference can be used to solve a wide 
range of problems such as prediction for new data.  

A number of general purpose algorithms have been 
developed in the past. General purpose refers to the 
fact that these algorithms are not tailored to a specific 
probabilistic model. Instead, they can be adapted to 

different models, and graphical models provide a for-
malism facilitating these adaptions. 

On a broad level, inference algorithms can be clas-
sified into exact and approximate algorithms. Exact are 
all algorithms that always deliver the correct solution. 
Notable examples are the junction tree algorithm [26], 
which works on any kind of graphical model, and the 
sum-product algorithm [27], which can be applied to 
tree-structured factor graph. Problematic about these 
algorithms is that they are often inapplicable to real 
world problems. On the one hand, the sum-product 
algorithm severely restricts a graph’s structure and can 
only be used with a limited number of models. On the 
other hand, the more general junction tree algorithm is 
computationally intractable for all but the simplest 
models [19]. Exact algorithms are also restricted to 
discrete variables or linear Gaussian models [25]. 

Unfortunately, one cannot expect to find an effi-
cient and exact solution for the general case [28].
Hence, there is a huge field of research dealing with 
approximate inference. There are two main types of 
methods: deterministic and stochastic approximations. 

A famous representative of the first type is mean 
field approximation. The idea is to replace the original, 
intractable distribution with an approximate form with 
additional independencies added to ensure tractability.
Minimizing the difference between the original distri-
bution and the approximate form delivers an approxi-
mation that can be used for inference. Variational Mes-
sage Passing (VMP) [29] is a general purpose algo-
rithm doing this on graphical models. Alternatively, the 
Expectation propagation (EP) algorithm [30] can be 
used. The difference compared to VMP is that the 
minimization is done in another way. As approxima-
tions, these algorithms do not necessarily return a cor-
rect solution. They may be far off and do not provide 
an estimate of the approximation’s accuracy. 

Stochastic approximations do not approximate the 
functional form of a distribution but perform sampling 
instead. The idea is that any property of a distribution 
can be approximated by drawing and averaging over a 
sufficiently large number of samples. For virtually all 
models of interest, Markov Chain Monte Carlo 
(MCMC) methods can be used. They construct a mar-
kov chain whose stationary distribution is the one from 
which samples shall be drawn [25]. A popular special 
case of MCMC is Gibbs sampling which can be ap-
plied to a wide range of graphical models [31]. 

A comparison of these inference algorithms is 
found in Table 3. Stochastic inference is better with 
respect to accuracy. It will converge to solutions of any 
accuracy eventually while deterministic algorithms 
may deliver bad results no matter how long they run.
Sampling can also be applied to a wider range of prob-
lems. It can be cumbersome to apply deterministic 

A

C

B

P(A,B,C) = f1·f2

f1 = P(A|C) f2 = P(C|B)·P(B)
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algorithms to more elaborate distributions [32]. They 
score though when it comes to performance. Sampling 
may require long running times until convergence is 
reached. Only for few, very large models, sampling 
may be more efficient [25]. It is also not trivial to con-
figure a sampler and to diagnose convergence. Deter-
ministic methods can be used more easily. 

Table 3. Comparison of classes of approximate 
inference algorithms 

Criterion Inference algorithms
Deterministic Stochastic

Accuracy - +

Expressiveness - +

Performance + -

Usability + -

2.4 Modeling environments 

There are several software packages that implement 
general purpose inference algorithms for graphical 
models. Murphy [33] reviewed a number of them. 
While the published review is relatively old, the ac-
companying website2 is updated regularly. At the time 
of writing it lists 68 packages, each of which is charac-
terized along several dimensions. To identify suitable 
candidates for a machine learning MDE approach, I 
filtered the list in the following way. 

First, all software packages not having an API were 
discarded. There are several standalone software tools. 
While some of them are well-developed, their major 
disadvantage is that their models cannot be integrated 
as components into other software environments.  

Second, all software packages not fully supporting 
continuous nodes were discarded. Many of the tools 
work only with discrete random variables or may sup-
port continuous variables by discretization or sampling 
only. Expressiveness is severely reduced when using 
only discrete variables. Hence, focusing on the more 
flexible packages seems reasonable. 

Five software packages were left for closer inspec-
tion after filtering. They are listed in Table 4 along 
with the corresponding programming languages as well 
as the inference algorithms they support. Almost all 
packages offer support for inference via stochastic 
approximations. Infer.NET [11] and JAGS [34] sup-
port ordinary Gibbs sampling. Stan uses a method 
called Hamiltonian Monte Carlo Sampling [35]. 

2 http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html  
(Last updated 12 February 2013)

Blaise3 uses some other form of MCMC. Regarding 
Blaise, I was not able to find source code for down-
load. Deterministic approximations are supported only 
by BayesBlock4 through a variational algorithm and by 
Infer.NET, which allows users to choose between 
VMP and EP. 

As discussed in Section 2.3, both deterministic and 
stochastic inference approaches have their pros and 
cons. Hence, I chose the Infer.NET library as a starting 
point to explore the possibilities of model-driven prob-
abilistic data analysis as it supports both approaches. 

Infer.NET is a C# library that allows specifying 
probabilistic models via its API. Internally, it compiles 
the user’s code to more efficient code on which infer-
ence algorithms can be run automatically. Models are 
created by defining variable objects and connecting 
them with factor objects. Hence, it closely resembles 
the factor graph thinking. Variables may have prior 
distributions if used in conjunction with distribution 
factors. Their distribution may also be defined as a 
function of other variables. For instance, a variable 
could be the sum of two others. Infer.Net offers a wide 
array of distributions and other types of factors. 

Table 4. Software packages for graphical models 

Name Language Inference algorithms
Deterministic Stochastic

Bayes-
Blocks

Python
C++ x

Blaise Java x

Infer.NET C# x x

JAGS Java x

Stan
C++

R
x

3. A Model-driven Critique 

From the perspective of model-driven engineering, 
graphical models constitute an interesting development 
in the field of machine learning. The most important 
aspect is the move away from standard procedures for 
specific problems that must be adapted and glued to-
gether. Instead, these new approaches strictly separate 
the problem definition from the solution strategy. De-
clarative modeling languages like A Mathematical 
Programming Language (AMPL) [36] demonstrate the 
usefulness of this idea for the case of optimization 
                                                
3 http://publications.csail.mit.edu/abstracts/abstracts07/ 
bonawitz/bonawitz.html
4 http://research.ics.aalto.fi/bayes/software/
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problems. Users can focus on the important things —
modeling the domain mathematically — and they can 
use any method they want to have the problem solved.
Reliable standard software with a declarative interface 
has been a key driver in the success story of linear 
programming as it enabled widespread industry appli-
cations [37]. Graphical models and general purpose 
inference algorithms may play the same role in today’s 
big data analytics challenges.

Moreover, graphical models could be interpreted as 
a DSML for probabilistic modeling. They provide 
dedicated constructs needed to specify a probabilistic 
model on a conceptual level. They also come with 
general purpose algorithms working on these models. 
Algorithms adapting themselves to the graph structure 
could be interpreted as transformation engines generat-
ing model-specific inference code. Hence, they offer 
the two constituent elements of MDE technology: a 
DSML and a transformation engine [14]. 

Although some literature on graphical models may 
suggest a graphical model is all one needs to do infer-
ence, this is not entirely true. Graphical models are 
meant as a device conveying the structure of a model 
to ease the inference algorithm’s derivation. However, 
they leave many things unspecified. Among them are 
obvious things such as the types of distributions being 
used, but also more complicated aspects such as which 
variables are connected with each other when their 
relationships cross the borders of plates. Consider the 
simple example of Figure 1. Whether the variables A, 
B, and C are discrete or real and which distributions 
are used to define the model cannot be seen. As a con-
sequence, a direct correspondence of visual models and 
program code cannot be established. 

Consistent with this observation, none of the librar-
ies in table 4 provides facilities for graphically specify-
ing graphical models. Instead, APIs are called to create 
them. While the process of modeling resembles that of 
drawing a model (and specifying, on the way, the addi-
tional information that is needed), no actual visualiza-
tion connected to the code is created. 

I argue that this way of modeling in code leaves un-
tapped a considerable part of the benefits graphical 
models may provide. Most importantly, visual lan-
guages can further boost productivity. Direct im-
provements might be realized since specifying models 
graphically avoids mistakes in the source code. Much 
more significant though can be secondary effects. Ma-
chine learning components integrated into information 
infrastructures of enterprises will not be developed by 
a single person but by teams that are subject to em-
ployee turnover. New employees could more easily 
familiarize themselves with visual models than with 
code. A direct, formal connection between visual mod-

els and code also ensures alignment that can otherwise 
be lost easily over time as the software is modified. 

It is worth noting that modeling Bayesian networks 
is different than using graphical user interfaces (GUIs) 
of statistical software packages such as SPSS. The 
former define distributions (cf. Section 2.1) while the 
latter are used to chain together the statistical tech-
niques implemented in the software package. 

4. Model-driven Engineering for Machine 
Learning 

4.1 A Graphical Modeling Language 

To develop a conceptual model of an engine trans-
forming a graphical model to executable code, the first 
step is to define a DSML containing all necessary 
information. Graphical modeling languages are a good
starting point but do not contain sufficient information. 
To approach the problem of designing the DSML, I 
have analyzed the Infer.NET modeling API against the 
backdrop of the modeling languages discussed in Sec-
tion 2.2. The result is an initial proposal for a DSML. 
A model of its abstract syntax can be found in Figure 
4. The rationale behind it is as follows. 

The main constructs of Infer.NET models are vari-
ables which are either random or observed. Both have 
associated data types stored in the attribute type, and 
the latter have an attribute called value to store the 
observation. Although it is possible to define constants 
as well their use is discouraged. The code generated by 
the library must be recompiled each time a constant 
value changes. Observed variables can be changed 
without recompilation. 

Variables are connected to each other via factors. 
They define the distributions over the variables. Hence, 
Infer.NET models are very similar to factor graphs. A 
difference is that they can be thought of as directed. 
Factors can be of different types. They broadly fall into 
the classes of distribution factors (Gaussian, discrete, 
…) and derived factors (sum of two or more variables, 
inner product of random vectors, …), which is docu-
mented in the attribute type. A factor is parameterized 
by at least one variable, which is captured in the is 
parameter for relationship. If more than one variable is 
required and they cannot be used interchangeably, it is 
necessary to specify the variables’ roles (e.g., mean 
and variance parameters of a Gaussian). All factors 
define a distribution over exactly one random variable, 
which is indicated by the produces relationship. 

Both variables and factors are subsumed in the ab-
stract entity type Node which can be given a textual 
description (the name attribute). Nodes can lie in two 
types of areas. They can be in a Plate, in which case 
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they are not single nodes but arrays of nodes indexed 
by the plate. The index runs from one to plateSize. If a 
node belongs to multiple plates, it becomes a high-
dimensional jagged array. To consistently index these 
arrays, an arbitrary total order must be defined on the 
plates. It is codified in the is higher than relationship. 

It can occur that a variable being a parameter for a 
factor is associated to a different set of plates than the 
factor is. In this case, it must be specified how the 
mismatch should be resolved. There can be two cases. 
First, the factor can lie in a plate in which the variable 
is not (more factors than variables). This can be re-
solved by feeding the variable into all the factors. The 
other possibility is that the variable lies in a plate in 
which the factor is not (more variables than factors).
Similarly to the first case, all variables can be fed into 
the factor (if the specific type of factor can handle 
them). In any case, if only a specific variable or factor 
should be used and not all, a selector variable must be 
defined. The ternary relationship selects codifies this. 

Nodes may also lie within a GateOption to allow 
for describing mixture models. Gate options belong to 
exactly one Gate, which in turn belongs to exactly one 
random variable. The value associated with a gate 
option must be a possible value of that random varia-
ble. It is specified using the value attribute. Gate op-
tions may be nested in each other as documented in the 
is nested in relationship. 

When using the model, the purpose is to infer the 
posterior distributions conditioned on all observations 
to make predictions for new data. Hence, it must be 
indicated which observed variables (priors) are to be 
replaced with inferred posteriors. This is done using 
the Boolean attribute infer? of the entity type Observed 
Variable. After setting the posteriors, training data will 
be replaced with new data. Any variable for which no 
new data will be available can be marked as one for 
which a posterior predictive distribution shall be evalu-
ated. This is done using the predict? attribute. 

4.2 Code Generation Scheme 

Based on the DSML from Section 4.1 a simple 
code generation scheme can be defined. The basic 
skeleton consists of a single C# class with three meth-
ods GenerateModel, InferPosteriors, and MakePredic-
tions. Most relevant is GenerateModel, which is why I 
discuss code generation for this method only. 

Ignoring gates for the moment, GenerateModel can 
be structured into different areas as illustrated in Figure 
5. First, ranges must be defined that are used as indices 
for plates. This is done by processing all plates of a
model and inserting a line of code for each of them: 
Range name = new Range(plateSize).Named("name");

Figure 4. Abstract syntax of the DSML in entity relationship notation

FactorVariable
is

parameter
for

produces

NodePlate
is

contained
in

is
higher
than plateSize

role

Random
Variable

Observed
Variable

D,T

infer?

selects

Gate

GateOption
is

contained
in

belongs
to

is
switched
by

predict?

is
nested
in

D,T

value

(1,n) (1,n)

(0,n)

(0,n)

(0,n)

(0,n)

(0,n)
(0,n) (0,n) (0,n) (0,n)

(0,n)

(0,n)

(1,1)

(1,n)

(1,1)

(0,n)

(1,1)

(1,1)

typetype

value

name

name

765



The second step is to define all variables. Again, 
this can be done by processing all entities of type Vari-
able and appending lines of code: 
varName = 
Variable.New<dataType>().Named("varName");

varName and dataType are taken from the corre-
sponding attributes of the entities. Additionally, the 
variable must be declared as a class attribute: 
Variable<dataType> varName;

The third step is to define the factors. Hence, all en-
tities of type factor must be processed to append new 
lines of code in the factor definition area. The structure 
of the code depends on a factor’s type. Examples are:
varName = Variable<dataType>.Random(varDistName);

var3Name = var1Name > var2Name;

The first line assigns a distribution object varDist-
Name to a variable varName. varDistName is an object 
representing a distribution. The second line defines the 
distribution over a Boolean variable var3Name as the 
probability of var1Name being larger than var2Name. 

Figure 5. Structure of the model area. 

If any variable belongs to a plate, the variable defi-
nition code is changed to an array version with corre-
sponding dimensions. The factor definition also iterates 
over these dimensions. Special care is necessary if 
entries in the selects relationship are encountered. 
Fortunately, it can be handled easily by using the se-
lecting variable as an index. 

Finally, it must be accounted for the gates used in 
the model. This is done by nesting model areas into 
each other in the same way the GateOption entities are 
nested. A designated root model area is created first. 
All other model areas are nested by putting them into 
the Branching block area of their parent model area. 
Gates are defined in Infer.NET using different selec-
tion methods. If the selecting variable branch is Ber-
noulli, the code will look like this: 
using (Variable.If(branch)){ // one model area } 

using (Variable.IfNot(branch)){ // other area} 

5. Conclusion, Limitations, and Outlook 

Motivated by the lack of data scientists in industry I
have proposed an initial conceptualization of a DSML 
supporting code generation from visual representations 
of probabilistic models for big data analytics. Starting 
at existing notations, extensions have been defined 
based on analysis of the Infer.NET modeling API. 
How modeling constructs correspond to code has been 
illustrated informally by a rudimentary code generation 
scheme. However, no actual code generator for the 
Infer.NET library has been implemented yet. Doing so 
would substantiate the claim that the DSML does in 
fact cover all constructs necessary. I plan to address 
this limitation in the future by implementing a DSML 
using Microsoft’s Visualization and Modeling SDK. 

Another limitation is the focus on only a single li-
brary, namely Infer.NET. Referring back to the analo-
gy of linear programming, the ideal DSML would be 
library-independent and could generate code for a wide 
range of them. Unfortunately, these libraries are in an 
earlier stage of development. In the near future, I do 
not expect them to be standardized and stable enough 
to ensure easy interoperability. Integrating other librar-
ies can therefore be a long term goal only. 

It might be fruitful though to analyze standalone 
software packages that have been discarded in this 
paper’s review. Some of them have GUIs, yet they are 
often meant to be used for educational examples in-
stead of sophisticated models (e.g., DoodleBUGS, the 
GUI of the BUGS project [31]). Nevertheless, such 
GUIs may inform the design of concrete syntax for the 
DSML and could also reveal deficits that have not 
shown up so far. A review is left to future research. 
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