
Towards Model-Driven Engineering for Big Data Analytics – An Exploratory
Analysis of Domain-Specific Languages for Machine Learning

Dominic Breuker
University of Muenster - ERCIS

 breuker@ercis.de

Abstract
Graphical models and general purpose inference

algorithms are powerful tools for moving from impera-
tive towards declarative specification of machine
learning problems. Although graphical models define
the principle information necessary to adapt inference
algorithms to specific probabilistic models, entirely
model-driven development is not yet possible. Howev-
er, generating executable code from graphical models
could have several advantages. It could reduce the
skills necessary to implement probabilistic models and
may speed up development processes. Both advantages
address pressing industry needs. They come along with
increased supply of data scientist labor, the demand of
which cannot be fulfilled at the moment. To explore the
opportunities of model-driven big data analytics, I
review the main modeling languages used in machine
learning as well as inference algorithms and corre-
sponding software implementations. Gaps hampering
direct code generation from graphical models are
identified and closed by proposing an initial conceptu-
alization of a domain-specific modeling language.

1. Motivation

Data Scientist is the term for a new type of analysts
possessing both the business knowledge to understand
the problems companies are faced with as well as the
technical skills to generate decision-relevant infor-
mation from large-scale datasets. In times in which big
data is on everyone’s lips, the data scientist is a popular
job description. Some even call it the sexiest job of the
21st century [1].

Business intelligence (BI) has traditionally been
concerned with topics such as gathering, storing, and
integrating data from various sources to make them
available through data warehouses [2]. This data may
be used purely for reporting or ad-hoc querying, but
also for more advanced analytics [3]. The former is
supported by technologies such as online analytical

processing (OLAP) while for the latter, probabilistic
analysis techniques can be used with great success.

In the context of big data, much research focusses
on technological aspects such as coping with petabyte-
scale datasets. Various approaches to accomplish this
are discussed in the literature [4], with the MapReduce
paradigm being the most well-known [5]. Yet even
more important than having the technology to process
data is hiring talented people capable to make sense of
it. Data alone is worthless without analysis. Demand
for data scientists is way ahead of supply [6].

One reason why data scientists are that hard to find
can be found by considering the skillset they have to
possess. The machine learning and data mining com-
munities have developed a long list of different algo-
rithms for tackling all sorts of analysis problems.
Among the most popular examples are k-means for
clustering and support vector machines for classifica-
tion [7]. Sophisticated software tools such as WEKA
[8], SAS, or SPSS provide ready-to-use implementa-
tions of many algorithms, making them easy to apply.
In any application though, it is the data scientist’s task
to find a mapping between these algorithms and the
particular problem at hand. The challenge is that there
is not necessarily an exact fit. Hence, a combination of
different techniques might be most appropriate. In
other cases, custom modifications might be necessary.

Even worse, an analyst needs deep understanding
of both the domain and the various technical algo-
rithms to successfully do an analysis — a rare combi-
nation [9]. Only domain experts can tell which ques-
tions are worth asking and which peculiarities of a
problem can be exploited to fine-tune models [6]. Only
a technical expert is capable of implementing them.

Hence, applied data analysis by means of standard
tools is a much more creative design process than its
name might suggest. Consequently, the machine learn-
ing community has put considerable efforts into devel-
oping a theory of designing customizable algorithms
instead of proving a set of black-box procedures. Prob-
abilistic graphical models are one piece of the puzzle.
They constitute a versatile tool for representing proba-
bilistic models, either standard ones (e.g., regression)

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.101

758

or entirely customized models. Algorithms adapting
flexibly to varying model structures are the other piece.
They allow deriving concrete implementations from a
single theory [10].

That being said, implementing an algorithm specif-
ic to a given graphical model in software is still a de-
manding and effortful task. Fortunately, there is soft-
ware shielding users from these complex issues. An
example is Infer.NET [11], a library providing facili-
ties for probabilistic model specification via an appli-
cation programming interface (API). After choosing
one of the available algorithms, the library takes over
and executes it on the model. This way of implement-
ing data analytics techniques is called a model-based
approach to machine learning [12].

While such frameworks greatly reduce the com-
plexity of implementing machine learning approaches,
the full potential is not yet leveraged. Modeling is done
programmatically via calls to an API. With probabilis-
tic models being represented graphically anyways, it is
easily conceivable to do the same thing entirely via
visual notations. Not only may this further boost
productivity. It may also facilitate collaboration in
teams of technical and domain experts.

Software engineers in the field of model-driven en-
gineering (MDE) have long acknowledged the useful-
ness of visual notations for designing software sys-
tems. Numerous frameworks have been developed
[13]. Their common theme is that (1) a domain-specific
modeling language (DSML) is used to express func-
tionality in terms of the domain under analysis and that
(2) a transformation engine generates executable code
[14]. Most importantly, these techniques avoid errors
made when programming manually and allow specify-
ing functionality declaratively instead of imperatively.
Although empirical research is costly and therefore
scarce, DSMLs proved to increase productivity in
several empirical studies [15], [16].

Consequently, the aim of this paper is to explore
the opportunities of defining a DSML for probabilistic
modeling. The design goal is to allow for entirely visu-
al specification from which executable code can be
generated that fits models to data. What I present in
this paper is a first conceptualization of such a lan-
guage. It synthesizes various modeling constructs pre-
sented in machine learning literature and extends them
with the information necessary to derive executable
code. This information is identified by studying the
Infer.NET API. The ultimate goal of this research is to
make the process of analyzing big data both easier and
more efficient, thereby helping to close the gap be-
tween supply and demand of data scientists.

The DSML I propose is not domain specific with
respect to an industry or a particular analytical class.

Rather, it is specific to the domain of doing inference
in probabilistic models with no or partial observations.

To establish a background on graphical models, I
review probabilistic modeling languages, the algo-
rithms they can be used with, and corresponding soft-
ware packages in Section 2. Section 3 reflects graph-
ical models against the backdrop of MDE. The DSML
for probabilistic models together with an outline of
how code generation can be accomplished are dis-
cussed in Section 4. Finally, Section 5 concludes and
outlines future research.

2. Graphical Models

2.1 The Purpose of Graphical Models

Graphical models are a tool to describe probabilis-
tic models visually. The main ingredients of these
models are random variables. A graphical model de-
scribes the joint distribution over all the variables it
contains [17]. Consider the simple example illustrated
in Figure 1. The graph represents a probability distribu-
tion �(�, �, �) over a set of three random variables
{�, �, �}. The purpose of graphical models is to sup-
port a user in asking questions about random variables,
very much in the way a database answers questions
about the data it stores [18]. For instance, a user might
want to know the distribution over variable A only, i.e.,
with B and C marginalized out.

Figure 1. Simple directed graphical model with
three variables

To illustrate how graphical models can help an-
swering these questions, consider an example in which
all variables A, B, and C are discrete and can assume
six different values (1 to 6). For each variable, the
probabilities of this happening may depend on all other
variables. The question we are seeking an answer to
shall be: what is the distribution �(�)?

Given the joint distribution �(�, �, �) this question
is easy to answer. Simply marginalize out B and C, i.e.,
sum over all the possible combinations of values B and
C can assume: �(�) = ∑ �(�, �, �)�,� . As B and C

A

C

B

P(A,B,C) = P(A|C)·P(C|B)·P(B)

759

can assume values from 1 to 6, there are 6	 = 36 such
combinations. While this solution works for toy prob-
lems it soon becomes intractable when models have
not three but thousands of variables.

The remedy comes in form of conditional inde-
pendencies that can be exploited to speed up the com-
putations. Using the product rule of probability1, we
can rewrite ∑ �(�, �, �)�,� = ∑ �(�|�, �) ⋅�,�
�(�|�) ⋅ �(�) which brings no immediate gain. In-
specting the formula in Figure 1 though we see that
�(�, �, �) factorizes to �(�|�) ⋅ �(�|�) ⋅ �(�),
which means that A is conditionally independent of B
given C. This is also reflected in the graph visualizing
the distribution. There is no arc from B to A. As a
consequence, we can change the order of summing and
multiplying when computing �(�):

�(�) =� �(�|�, �) ⋅ �(�|�) ⋅ �(�)
�,�

= � �(�|�) ⋅ �(�|�) ⋅ �(�)
�,�

= � �(�|�) ⋅� �(�|�) ⋅ �(�)
��

The effect of this change is that we no longer com-
pute a single sum with 6	 terms but two individual
sums with only 6 ⋅ 2 terms. Thus, this computation is
three times as fast as the original one.

While only discrete variables have been used in the
example above, the theory is more general than that
[19]. Random variables may equally well have differ-
ent domains and different distributions (e.g., real val-
ues and Gaussians). A wide range of stochastic models
can be expressed in this way. Conditional independen-
cies encoded in a graph’s structure allow answering
questions regarding marginal distributions by doing a
series of local computations.

While traditional machine learning techniques es-
timate parameters of models, the Bayesian paradigm is
gaining widespread popularity in recent times. In
Bayesian models a parameter is equipped with a distri-
bution (the prior), i.e., is treated as a random variable.
The goal is not to estimate a particular value for the
parameter but to infer a distribution over values after
observing training data (the posterior). Key selling
arguments include making uncertainty in parameter
estimates explicit (in form of variance in the posterior)
and enabling an analyst to specify domain knowledge
not reflected in the data (by modifying the prior) [20].

As a consequence, the only two things needed in
the toolbox of a Bayesian are a modeling language to
express distributions as graphs and a so called infer-
ence algorithm, i.e., an algorithm processing these

1 The product rule of probability says that �(�,
) = �(�|
) ⋅ �(
).

graphs to answer questions regarding conditional mar-
ginal distributions (for this reason, graphical models
are most popular among Bayesians [21]). The upcom-
ing two subsections are devoted to introduce these two
types of tools.

2.2 Modeling Languages

Common to all graphical models is that they are
used to represent conditional independencies between
sets of random variables. Also, they are all graphs, i.e.,
they consist of vertices and edges. Apart from that,
different classes of graphical models exist. Most rele-
vant in this context are directed graphical models,
undirected graphical models, and factor graphs [19].

It is worth noting that graphical models are not as
standardized as the Unified Modeling Language
(UML) [22] for software engineering or the Business
Process Model and Notation (BPMN) [23] for business
process modeling. Different authors may thus use dif-
ferent modeling constructs. My treatment follows
Bishops introduction to this topic [19], but some exten-
sions from other literature are integrated as well.

Table 1. Constructs of directed graphical models

Construct Symbol Meaning

Latent varia-
ble

Defines a random
variable.

Observed
variable

Defines a random
variable clamped to

an observation.

Parameter Defines a parameter
of the model.

Dependency
relationship

Indicates that the
distribution of one

random variable de-
pends on another

variable or parameter.

Plate Defines an area that is
repeated N times.

Gate

Depending on a ran-
dom variable, it se-

lects different parts of
the model with re-

spect to the random
variable’s value.

N

T F

760

Directed graphical models represent a joint distri-
bution by breaking it down into local pieces. All con-
structs introduced in the following are presented in
Table 1. The main building blocks are random varia-
bles, denoted by circles. They are connected by di-
rected arcs which specify the dependency relationships
among them. A variable’s conditional distribution
depends on all its parent variables but no others. The
joint distribution emerges when all conditional distri-
butions are multiplied. In the example of Figure 1
variable B has no parent. Hence, the corresponding
distribution �(�) is independent of A and C. Variable
A though has a parent and so the corresponding distri-
bution �(�|�) depends on it.

If a model is to be fitted to data, training data must
be part of it. This is done by making a distinction be-
tween latent and observed variables. The latter are
shaded grey to visualize the difference. It is said that
such a variable is clamped to a value.

Another necessity is to express parameters of the
model which is done using small black circles. Similar
to observed random variables they have constant val-
ues. Like variables, they may be sources of arcs as a
random variable’s distribution may depend on them.
However, they do not have a distribution themselves.

As models may consist of huge numbers of random
variables, syntactic sugar is useful to express structural
analogies. This is achieved with the plate notation. A
plate is an area within the model that is repeated a
number of times. This way, one can for instance repeat
a part of the model for each point in the training data.

Figure 2. Graphical model for polynomial re-
gression (adapted from [19], Figure 8.7)

A similar construct developed by Minka and Winn
[24] can be used to describe mixture models in a com-
pact way. It is called a gate and can be used to switch
on and off different parts of a model depending on a
(discrete) random variable. Each value of this random
variable is associated with an area in the model. The
entire model is a mixture of all areas weighted with the
respective mixing probabilities.

Consider the example of Bayesian polynomial re-
gression adapted from Bishop [19]. It illustrates the use
of all these constructs (c.f. Figure 2).

A set of training data consisting of N pairs of real
variables (��, ��) is given. The task is to predict �′
using a new data point �′. To explain the data, the goal
is to fit a polynomial �(�, �) of order k with coeffi-
cient vector � = (��, … , ��)�. To account for the un-
certainty associated with this explanation, a Gaussian
noise model defines the likelihood function
�(�|�, �, �) = ∏ �(��|�(��, �), �)���� . To keep
things simple, �	 is assumed to be known. Following
the Bayesian approach, we also want to account for
uncertainty regarding the polynomial f itself. Hence,
variance in its parameters is formalized using a zero-
centered, multivariate Gaussian prior �(�|α) =
�(�|0, !�") with known precision . A typical ques-
tion could now be to infer the predictive distribution
�(�′|�#, �, �, , �) to reason about likely values of �′
given �′, the training data, and the model specification.

Another question could be assessing the quality of
this model. A Bayesian way of doing so is to compute
model evidence, i.e., the likelihood of the model with
all random variables marginalized out [25]. The higher
the evidence, the better is the model. Hence, this quan-
tity can be used to compare models. To represent this,
a gate has been added in Figure 2 to switch between
the regression model and an empty model using a Ber-
noulli random variable b. Model evidence is computed
by inferring the posterior over b [24].

Undirected graphs are another class of graphical
models. The most obvious difference to directed
graphs is that edges are undirected. A more important
difference is that the set of conditional independencies
that can be encoded is not the same. As a consequence,
some models expressed in one language cannot be
converted to the other notation [19]. Apart from undi-
rected arrows, the modeling language is the same.

Factor graphs are a third notation for distributions.
As discussed above, graphical models describe how a
joint distribution can be decomposed into factors. Fac-
tor graphs are an explicit representation of this factori-
zation [19]. Their basic constructs are listed in Table 2.
However, they are not restricted to only these three.
Apart from directed dependencies, any constructs used
in the directed graphical models may be used too.

xn

yn

α

σ2

θ

y´
x´

N

T

Fb
p

761

Table 2. Basic constructs of factor graphs

Construct Symbol Meaning

Variable Defines a random variable.

Factor Correspond to factors of the
joint distribution.

Relationship
Indicates which random

variables are part of which
factor.

Random variables in factor graphs are again repre-
sented in form of circles, possibly clamped to observed
values. The factors of a joint distribution are associated
with factor constructs connected via undirected arcs to
all variables used in the factors. An example is illus-
trated in Figure 3. The joint distribution is split up into
two factors �� and �	. As there can be different ways of
splitting up a joint distribution, there can be different
factor graphs describing the same joint distribution.

Figure 3. A factor graph corresponding to the
directed graphical model of Figure 1.

2.3 Inference Algorithms

The goal of inference algorithms is to compute un-
known quantities from those that are known. Given a
set of latent random variables �$ and a set of observed
random variables �%, probabilistic inference can be
described as the problem of computing a distribution
�(�$|�%) over the latent variables given the observed
ones [25]. As mentioned above, in a Bayesian ap-
proach in which traditional parameters are treated as
latent variables, inference can be used to solve a wide
range of problems such as prediction for new data.

A number of general purpose algorithms have been
developed in the past. General purpose refers to the
fact that these algorithms are not tailored to a specific
probabilistic model. Instead, they can be adapted to

different models, and graphical models provide a for-
malism facilitating these adaptions.

On a broad level, inference algorithms can be clas-
sified into exact and approximate algorithms. Exact are
all algorithms that always deliver the correct solution.
Notable examples are the junction tree algorithm [26],
which works on any kind of graphical model, and the
sum-product algorithm [27], which can be applied to
tree-structured factor graph. Problematic about these
algorithms is that they are often inapplicable to real
world problems. On the one hand, the sum-product
algorithm severely restricts a graph’s structure and can
only be used with a limited number of models. On the
other hand, the more general junction tree algorithm is
computationally intractable for all but the simplest
models [19]. Exact algorithms are also restricted to
discrete variables or linear Gaussian models [25].

Unfortunately, one cannot expect to find an effi-
cient and exact solution for the general case [28].
Hence, there is a huge field of research dealing with
approximate inference. There are two main types of
methods: deterministic and stochastic approximations.

A famous representative of the first type is mean
field approximation. The idea is to replace the original,
intractable distribution with an approximate form with
additional independencies added to ensure tractability.
Minimizing the difference between the original distri-
bution and the approximate form delivers an approxi-
mation that can be used for inference. Variational Mes-
sage Passing (VMP) [29] is a general purpose algo-
rithm doing this on graphical models. Alternatively, the
Expectation propagation (EP) algorithm [30] can be
used. The difference compared to VMP is that the
minimization is done in another way. As approxima-
tions, these algorithms do not necessarily return a cor-
rect solution. They may be far off and do not provide
an estimate of the approximation’s accuracy.

Stochastic approximations do not approximate the
functional form of a distribution but perform sampling
instead. The idea is that any property of a distribution
can be approximated by drawing and averaging over a
sufficiently large number of samples. For virtually all
models of interest, Markov Chain Monte Carlo
(MCMC) methods can be used. They construct a mar-
kov chain whose stationary distribution is the one from
which samples shall be drawn [25]. A popular special
case of MCMC is Gibbs sampling which can be ap-
plied to a wide range of graphical models [31].

A comparison of these inference algorithms is
found in Table 3. Stochastic inference is better with
respect to accuracy. It will converge to solutions of any
accuracy eventually while deterministic algorithms
may deliver bad results no matter how long they run.
Sampling can also be applied to a wider range of prob-
lems. It can be cumbersome to apply deterministic

A

C

B

P(A,B,C) = f1·f2

f1 = P(A|C) f2 = P(C|B)·P(B)

762

algorithms to more elaborate distributions [32]. They
score though when it comes to performance. Sampling
may require long running times until convergence is
reached. Only for few, very large models, sampling
may be more efficient [25]. It is also not trivial to con-
figure a sampler and to diagnose convergence. Deter-
ministic methods can be used more easily.

Table 3. Comparison of classes of approximate
inference algorithms

Criterion Inference algorithms
Deterministic Stochastic

Accuracy - +

Expressiveness - +

Performance + -

Usability + -

2.4 Modeling environments

There are several software packages that implement
general purpose inference algorithms for graphical
models. Murphy [33] reviewed a number of them.
While the published review is relatively old, the ac-
companying website2 is updated regularly. At the time
of writing it lists 68 packages, each of which is charac-
terized along several dimensions. To identify suitable
candidates for a machine learning MDE approach, I
filtered the list in the following way.

First, all software packages not having an API were
discarded. There are several standalone software tools.
While some of them are well-developed, their major
disadvantage is that their models cannot be integrated
as components into other software environments.

Second, all software packages not fully supporting
continuous nodes were discarded. Many of the tools
work only with discrete random variables or may sup-
port continuous variables by discretization or sampling
only. Expressiveness is severely reduced when using
only discrete variables. Hence, focusing on the more
flexible packages seems reasonable.

Five software packages were left for closer inspec-
tion after filtering. They are listed in Table 4 along
with the corresponding programming languages as well
as the inference algorithms they support. Almost all
packages offer support for inference via stochastic
approximations. Infer.NET [11] and JAGS [34] sup-
port ordinary Gibbs sampling. Stan uses a method
called Hamiltonian Monte Carlo Sampling [35].

2 http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
(Last updated 12 February 2013)

Blaise3 uses some other form of MCMC. Regarding
Blaise, I was not able to find source code for down-
load. Deterministic approximations are supported only
by BayesBlock4 through a variational algorithm and by
Infer.NET, which allows users to choose between
VMP and EP.

As discussed in Section 2.3, both deterministic and
stochastic inference approaches have their pros and
cons. Hence, I chose the Infer.NET library as a starting
point to explore the possibilities of model-driven prob-
abilistic data analysis as it supports both approaches.

Infer.NET is a C# library that allows specifying
probabilistic models via its API. Internally, it compiles
the user’s code to more efficient code on which infer-
ence algorithms can be run automatically. Models are
created by defining variable objects and connecting
them with factor objects. Hence, it closely resembles
the factor graph thinking. Variables may have prior
distributions if used in conjunction with distribution
factors. Their distribution may also be defined as a
function of other variables. For instance, a variable
could be the sum of two others. Infer.Net offers a wide
array of distributions and other types of factors.

Table 4. Software packages for graphical models

Name Language Inference algorithms
Deterministic Stochastic

Bayes-
Blocks

Python
C++ x

Blaise Java x

Infer.NET C# x x

JAGS Java x

Stan
C++

R
x

3. A Model-driven Critique

From the perspective of model-driven engineering,
graphical models constitute an interesting development
in the field of machine learning. The most important
aspect is the move away from standard procedures for
specific problems that must be adapted and glued to-
gether. Instead, these new approaches strictly separate
the problem definition from the solution strategy. De-
clarative modeling languages like A Mathematical
Programming Language (AMPL) [36] demonstrate the
usefulness of this idea for the case of optimization

3 http://publications.csail.mit.edu/abstracts/abstracts07/
bonawitz/bonawitz.html
4 http://research.ics.aalto.fi/bayes/software/

763

problems. Users can focus on the important things —
modeling the domain mathematically — and they can
use any method they want to have the problem solved.
Reliable standard software with a declarative interface
has been a key driver in the success story of linear
programming as it enabled widespread industry appli-
cations [37]. Graphical models and general purpose
inference algorithms may play the same role in today’s
big data analytics challenges.

Moreover, graphical models could be interpreted as
a DSML for probabilistic modeling. They provide
dedicated constructs needed to specify a probabilistic
model on a conceptual level. They also come with
general purpose algorithms working on these models.
Algorithms adapting themselves to the graph structure
could be interpreted as transformation engines generat-
ing model-specific inference code. Hence, they offer
the two constituent elements of MDE technology: a
DSML and a transformation engine [14].

Although some literature on graphical models may
suggest a graphical model is all one needs to do infer-
ence, this is not entirely true. Graphical models are
meant as a device conveying the structure of a model
to ease the inference algorithm’s derivation. However,
they leave many things unspecified. Among them are
obvious things such as the types of distributions being
used, but also more complicated aspects such as which
variables are connected with each other when their
relationships cross the borders of plates. Consider the
simple example of Figure 1. Whether the variables A,
B, and C are discrete or real and which distributions
are used to define the model cannot be seen. As a con-
sequence, a direct correspondence of visual models and
program code cannot be established.

Consistent with this observation, none of the librar-
ies in table 4 provides facilities for graphically specify-
ing graphical models. Instead, APIs are called to create
them. While the process of modeling resembles that of
drawing a model (and specifying, on the way, the addi-
tional information that is needed), no actual visualiza-
tion connected to the code is created.

I argue that this way of modeling in code leaves un-
tapped a considerable part of the benefits graphical
models may provide. Most importantly, visual lan-
guages can further boost productivity. Direct im-
provements might be realized since specifying models
graphically avoids mistakes in the source code. Much
more significant though can be secondary effects. Ma-
chine learning components integrated into information
infrastructures of enterprises will not be developed by
a single person but by teams that are subject to em-
ployee turnover. New employees could more easily
familiarize themselves with visual models than with
code. A direct, formal connection between visual mod-

els and code also ensures alignment that can otherwise
be lost easily over time as the software is modified.

It is worth noting that modeling Bayesian networks
is different than using graphical user interfaces (GUIs)
of statistical software packages such as SPSS. The
former define distributions (cf. Section 2.1) while the
latter are used to chain together the statistical tech-
niques implemented in the software package.

4. Model-driven Engineering for Machine
Learning

4.1 A Graphical Modeling Language

To develop a conceptual model of an engine trans-
forming a graphical model to executable code, the first
step is to define a DSML containing all necessary
information. Graphical modeling languages are a good
starting point but do not contain sufficient information.
To approach the problem of designing the DSML, I
have analyzed the Infer.NET modeling API against the
backdrop of the modeling languages discussed in Sec-
tion 2.2. The result is an initial proposal for a DSML.
A model of its abstract syntax can be found in Figure
4. The rationale behind it is as follows.

The main constructs of Infer.NET models are vari-
ables which are either random or observed. Both have
associated data types stored in the attribute type, and
the latter have an attribute called value to store the
observation. Although it is possible to define constants
as well their use is discouraged. The code generated by
the library must be recompiled each time a constant
value changes. Observed variables can be changed
without recompilation.

Variables are connected to each other via factors.
They define the distributions over the variables. Hence,
Infer.NET models are very similar to factor graphs. A
difference is that they can be thought of as directed.
Factors can be of different types. They broadly fall into
the classes of distribution factors (Gaussian, discrete,
…) and derived factors (sum of two or more variables,
inner product of random vectors, …), which is docu-
mented in the attribute type. A factor is parameterized
by at least one variable, which is captured in the is
parameter for relationship. If more than one variable is
required and they cannot be used interchangeably, it is
necessary to specify the variables’ roles (e.g., mean
and variance parameters of a Gaussian). All factors
define a distribution over exactly one random variable,
which is indicated by the produces relationship.

Both variables and factors are subsumed in the ab-
stract entity type Node which can be given a textual
description (the name attribute). Nodes can lie in two
types of areas. They can be in a Plate, in which case

764

they are not single nodes but arrays of nodes indexed
by the plate. The index runs from one to plateSize. If a
node belongs to multiple plates, it becomes a high-
dimensional jagged array. To consistently index these
arrays, an arbitrary total order must be defined on the
plates. It is codified in the is higher than relationship.

It can occur that a variable being a parameter for a
factor is associated to a different set of plates than the
factor is. In this case, it must be specified how the
mismatch should be resolved. There can be two cases.
First, the factor can lie in a plate in which the variable
is not (more factors than variables). This can be re-
solved by feeding the variable into all the factors. The
other possibility is that the variable lies in a plate in
which the factor is not (more variables than factors).
Similarly to the first case, all variables can be fed into
the factor (if the specific type of factor can handle
them). In any case, if only a specific variable or factor
should be used and not all, a selector variable must be
defined. The ternary relationship selects codifies this.

Nodes may also lie within a GateOption to allow
for describing mixture models. Gate options belong to
exactly one Gate, which in turn belongs to exactly one
random variable. The value associated with a gate
option must be a possible value of that random varia-
ble. It is specified using the value attribute. Gate op-
tions may be nested in each other as documented in the
is nested in relationship.

When using the model, the purpose is to infer the
posterior distributions conditioned on all observations
to make predictions for new data. Hence, it must be
indicated which observed variables (priors) are to be
replaced with inferred posteriors. This is done using
the Boolean attribute infer? of the entity type Observed
Variable. After setting the posteriors, training data will
be replaced with new data. Any variable for which no
new data will be available can be marked as one for
which a posterior predictive distribution shall be evalu-
ated. This is done using the predict? attribute.

4.2 Code Generation Scheme

Based on the DSML from Section 4.1 a simple
code generation scheme can be defined. The basic
skeleton consists of a single C# class with three meth-
ods GenerateModel, InferPosteriors, and MakePredic-
tions. Most relevant is GenerateModel, which is why I
discuss code generation for this method only.

Ignoring gates for the moment, GenerateModel can
be structured into different areas as illustrated in Figure
5. First, ranges must be defined that are used as indices
for plates. This is done by processing all plates of a
model and inserting a line of code for each of them:
Range name = new Range(plateSize).Named("name");

Figure 4. Abstract syntax of the DSML in entity relationship notation

FactorVariable
is

parameter
for

produces

NodePlate
is

contained
in

is
higher
than plateSize

role

Random
Variable

Observed
Variable

D,T

infer?

selects

Gate

GateOption
is

contained
in

belongs
to

is
switched
by

predict?

is
nested
in

D,T

value

(1,n) (1,n)

(0,n)

(0,n)

(0,n)

(0,n)

(0,n)
(0,n) (0,n) (0,n) (0,n)

(0,n)

(0,n)

(1,1)

(1,n)

(1,1)

(0,n)

(1,1)

(1,1)

typetype

value

name

name

765

The second step is to define all variables. Again,
this can be done by processing all entities of type Vari-
able and appending lines of code:
varName =
Variable.New<dataType>().Named("varName");

varName and dataType are taken from the corre-
sponding attributes of the entities. Additionally, the
variable must be declared as a class attribute:
Variable<dataType> varName;

The third step is to define the factors. Hence, all en-
tities of type factor must be processed to append new
lines of code in the factor definition area. The structure
of the code depends on a factor’s type. Examples are:
varName = Variable<dataType>.Random(varDistName);

var3Name = var1Name > var2Name;

The first line assigns a distribution object varDist-
Name to a variable varName. varDistName is an object
representing a distribution. The second line defines the
distribution over a Boolean variable var3Name as the
probability of var1Name being larger than var2Name.

Figure 5. Structure of the model area.

If any variable belongs to a plate, the variable defi-
nition code is changed to an array version with corre-
sponding dimensions. The factor definition also iterates
over these dimensions. Special care is necessary if
entries in the selects relationship are encountered.
Fortunately, it can be handled easily by using the se-
lecting variable as an index.

Finally, it must be accounted for the gates used in
the model. This is done by nesting model areas into
each other in the same way the GateOption entities are
nested. A designated root model area is created first.
All other model areas are nested by putting them into
the Branching block area of their parent model area.
Gates are defined in Infer.NET using different selec-
tion methods. If the selecting variable branch is Ber-
noulli, the code will look like this:
using (Variable.If(branch)){ // one model area }

using (Variable.IfNot(branch)){ // other area}

5. Conclusion, Limitations, and Outlook

Motivated by the lack of data scientists in industry I
have proposed an initial conceptualization of a DSML
supporting code generation from visual representations
of probabilistic models for big data analytics. Starting
at existing notations, extensions have been defined
based on analysis of the Infer.NET modeling API.
How modeling constructs correspond to code has been
illustrated informally by a rudimentary code generation
scheme. However, no actual code generator for the
Infer.NET library has been implemented yet. Doing so
would substantiate the claim that the DSML does in
fact cover all constructs necessary. I plan to address
this limitation in the future by implementing a DSML
using Microsoft’s Visualization and Modeling SDK.

Another limitation is the focus on only a single li-
brary, namely Infer.NET. Referring back to the analo-
gy of linear programming, the ideal DSML would be
library-independent and could generate code for a wide
range of them. Unfortunately, these libraries are in an
earlier stage of development. In the near future, I do
not expect them to be standardized and stable enough
to ensure easy interoperability. Integrating other librar-
ies can therefore be a long term goal only.

It might be fruitful though to analyze standalone
software packages that have been discarded in this
paper’s review. Some of them have GUIs, yet they are
often meant to be used for educational examples in-
stead of sophisticated models (e.g., DoodleBUGS, the
GUI of the BUGS project [31]). Nevertheless, such
GUIs may inform the design of concrete syntax for the
DSML and could also reveal deficits that have not
shown up so far. A review is left to future research.

6. References

[1] T. H. Davenport and D. J. Patil, “Data Scientist : The
Sexiest Job Of the 21st Century Data Scientist,” Harvard
Business Review, no. October, 2012.

[2] S. Chaudhuri, U. Dayal, and V. Narasayya, “An overview
of business intelligence technology,” Communications of the
ACM, vol. 54, no. 8, pp. 88–98, 2011.

[3] H. J. Watson, “Tutorial: Business Intelligence – Past,
Present, and Future,” Communications of AIS, vol. 25, no. 39,
pp. 487–510, 2009.

[4] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker, “A Comparison of
Approaches to Large-Scale Data Analysis,” in SIGMOD’09,
2009, pp. 165–178.

[5] J. Dean and S. Ghemawat, “MapReduce : Simplified Data
Processing on Large Clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 1–13, 2008.

Range definition area

Variable definition area

Factor definition area

Model area

Branching block area

766

[6] A. McAfee and E. Brynjolfsson, “Big Data: The
Management Revolution,” Harvard Business Review,
October, 2012.

[7] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang,
M. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.
Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10
algorithms in data mining,” Knowledge and Information
Systems, vol. 14, no. 1, pp. 1–37, 2007.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, and I. H. Witten, “The WEKA data mining
software: an update,” SIGKDD Explorations, vol. 11, no. 1,
pp. 10–18, 2009.

[9] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth,
“From data mining to knowledge discovery: an overview,” in
in Advances in Knowledge Discovery and Data Mining,
1996, pp. 1–34.

[10] C. M. Bishop, “A New Framework for Machine
Learning,” in IEEE World Congress on Computational
Intelligence (WCCI 2008), 2008, pp. 1–24.

[11] T. Minka, J. Winn, J. Guiver, and D. Knowles,
“Infer.NET 2.5,” 2012.

[12] C. M. Bishop, “Model-based Machine Learning,”
Philosophical transactions Series A Mathematical physical
and engineering sciences, vol. 371, no. 1984, 2013.

[13] H. Giese and S. Henkler, “A survey of approaches for
the visual model-driven development of next generation
software-intensive systems,” Journal of Visual Languages
Computing, vol. 17, no. 6, pp. 528–550, 2006.

[14] D. C. Schmidt, “Model-Driven Engineering,” Computer,
vol. 39, no. 2, pp. 25–31, 2006.

[15] J. Kärnä, J. P. Tolvanen, and S. Kelly, “Evaluating the
Use of Domain-Specific Modeling in Practice,” in 9th
Workshop on Domain-Specific Modeling at OOPSLA, 2009.

[16] J. P. Tolvanen and S. Kelly, “Defining Domain-Specific
Modeling Languages to Automate Product Derivation :
Collected Experiences,” in 9th International Software
Product Line Conference, 2005, vol. 3714, pp. 198–209.

[17] D. Heckerman, “A Tutorial on Learning With Bayesian
Networks,” Redmond, 1996.

[18] M. I. Jordan, “An introduction to probabilistic graphical
models,” 2003.

[19] C. M. Bishop, Pattern Recognition and Machine
Learning. New York: Springer, 2006.

[20] T. Hastie, R. Tibshirani, and J. Friedman, The Elements
of Statistical Learning - Data Mining, Inference, and
Prediction, 2nd ed. 2009.

[21] M. I. Jordan, “Graphical models,” Statistical Science,
vol. 19, no. 1, pp. 140–155, 2004.

[22] OMG, “Unified Modeling Language (UML) - Version
2.4.1 August 2011.” 2011.

[23] OMG, “Business Process Model and Notation (BPMN) -
Version 2.0 January 2011.” 2011.

[24] T. Minka and J. Winn, “Gates: A graphical notation for
mixture models,” in Neural Information Processing Systems
(NIPS), 2008, pp. 1073–1080.

[25] K. Murphy, Machine Learning: A Probalbistic
Perspective. The MIT Press, 2012.

[26] S. L. Lauritzen and D. J. Spiegelhalter, “Local
computations with probabilities on graphical structures and
their application to expert systems,” Journal of the Royal
Statistical Society Series B (Methodological), vol. 50, no. 2,
pp. 157–224, 1988.

[27] F. R. Kschischang and B. J. Frey, “Factor Graphs and
the Sum-Product Algorithm,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 498–519, 2001.

[28] P. Dagum and M. Luby, “Approximating probabilistic
inference in Bayesian belief networks is NP-hard,” Artificial
Intelligence, vol. 60, pp. 141–153, 1993.

[29] J. Winn and C. M. Bishop, “Variational Message
Passing,” Journal of Machine Learning Research, vol. 6, no.
1, pp. 661–694, 2005.

[30] T. P. Minka, “Expectation propagation for approximate
Bayesian inference,” in UAI’01, 2001, pp. 362–369.

[31] D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best,
“The BUGS project: Evolution, critique and future
directions.,” Statistics in Medicine, vol. 28, no. 25, pp. 3049–
3067, 2009.

[32] M. P. Wand, J. T. Ormerod, S. A. Padoan, and R.
Frührwirth, “Mean field variational Bayes for elaborate
distributions,” Bayesian Analysis, vol. 6, no. 4, pp. 1–48,
2011.

[33] K. P. Murphy, “Software for Graphical models: a
review,” International Society for Bayesian Analysis Bulletin,
vol. 14, pp. 13–15, 2007.

[34] M. Plummer, “JAGS : A Program for Analysis of
Bayesian Graphical Models Using Gibbs Sampling JAGS :
Just Another Gibbs Sampler,” in 3rd International Workshop
on Distributed Statistical Computing (DSC 2003), 2003.

[35] Stan Development Team, “Stan Modeling
Language User’s Guide and Reference Manual - Version
1.3.” 2013.

[36] R. Fourer, D. M. Gay, and B. W. Kernigha, AMPL: A
Modelling Language for Mathematical Programming.
Monterey: Duxbury Press, Brooks/Cole Pub. Co., 2002.

[37] G. B. Dantzig, “Linear Programming,” Operations
Research, vol. 50, no. 1, pp. 42–47, 2002.

767

