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C
lustering is an unsupervised learning method 
that partitions a set of objects into groups 
(clusters) of similar objects, where similarity 
is often computed from numerical object fea-
ture vectors (also called data points). An 

early (and still very popular) clustering algorithm, called 
k-means [1], finds clusters by minimizing the sum of the 
squared distances between data points and associated 
cluster centers. The k-means algorithm (like many other 
so-called hard clustering algorithms) assigns each object 
to one and only one of the considered clusters. In practice, 
however, cluster assignments may often be ambiguous. 
Objects may partially belong to several clusters or fit to 
none of these clusters. Such kinds of ambiguity can be 
mathematically handled by what is termed fuzzy set theo-
ry [2]. A fuzzy variant of k-means called fuzzy c-means 
(FCM) has emerged to become one of the most popular 

fuzzy clustering methods, with hundreds of thousands of 
scientific publications. For a survey, see [3]–[5]. Fuzzy clus-
tering is often used to generate membership functions for 
fuzzy rule-based systems [6], [7]. Alternating cluster esti-
mation (ACE) [8] is an extension of FCM for arbitrary 
membership function shapes. This article introduces 
sequential cluster estimation (SCE), a variant of ACE that 
finds clusters sequentially and outperforms nonsequential 
clustering for data with many clusters.

ACE
In cluster partitions generated by FCM, the memberships 
of each object in all clusters will sum up to one. Even outli-
ers will be partially assigned to the clusters and hence 
strongly affect the clustering results. This effect is avoided 
by what is termed possibilistic c-means (PCM) [9]. In con-
trast to FCM, PCM yields convex membership functions, 
more specifically Cauchy functions, for which outliers will 
receive close to zero membership values, making the clus-
tering algorithm more robust against outliers. Both FCM 
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and PCM are defined by squared error functionals whose 
minimization yields specific membership function shapes. 
Instead, squared error functionals may be abandoned, and 
fuzzy clustering may be defined directly by membership 
function shapes (which may or may not correspond to 
solutions of squared error functionals). This leads to the 
general scheme of ACE [8], where memberships are updat-
ed using the chosen function shape and clusters are updat-
ed as the centroid of each cluster, as shown on the left in 
Table 1. FCM, PCM, and infinitely many other clustering 
methods are special cases of ACE with specific member-
ship function shapes. Figure 1 shows a taxonomy of ACE 
(and SCE, as will be discussed later) instances for differ-
ent membership function shapes such as Cauchy, Gauss-
ian, cone (triangular), Poisson, and many more. The white 
boxes in the second row of Figure 1 show the ACE instanc-
es FCM, PCM (Cauchy membership functions), and danc-
ing cones for conical (i.e., radially triangular) membership 
functions. Clustering with a conical membership function 
is illustrated in Figure 2. ACE instances for Gaussian, Pois-
son, or other membership functions exist but have not 
obtained specific names (yet). ACE has been successfully 
applied to a large variety of problems such as function 
approximation [10], [11], relational clustering [12], data 
compression [13], web mining [14], keyword extraction 
[15], or news analysis [16], [17].

SCE
For each update of an FCM cluster estimate, all other clus-
ters are taken into account, so FCM clusters are mutually 
coupled. In PCM (and many other ACE instances), the clus-
ters are completely independent of each other. This may 
yield coinciding, almost identical, clusters [18], [19], but it 
also enables PCM to find only one single cluster, termed 
possibilistic one-mean (P1M) [20], where additional pre- 
and/or postprocessing is needed to find all desired clus-
ters. One approach to do so is sequential possibilistic 
one-means (SP1M) [21], where the initial cluster centers 
are randomly chosen from the given data set—with 

probabilities proportional to one minus the already 
assigned memberships—and where the cluster parameters 
are adapted during the clustering process [22], [23]. An 
equivalent approach, with Gaussian instead of Cauchy 
membership functions, is termed mountain clustering 
(MC) [24]. SCE is a generalization of the SP1M method for 
arbitrarily defined membership function shapes, as listed 
on the right in Table 1. Notice the differences between the 
ACE and SCE algorithms on the left and right sides of 
Table 1, which contain the same commands, but ACE iter-
ates the clusters simultaneously, while SCE finds clusters 
sequentially, one at a time. The third row of Figure 1 shows 
the SCE instances SP1M and MC and also two new 
instances of SCE that will be introduced and experimen-
tally validated in the next sections: sequential cones (SC) 
and sequential Poisson (SP) clustering. The new contribu-
tions of this article (SCE, SC, and SP) are displayed in red.

Finding Many Clusters
With the ability of modern computer systems and cloud 
services to process large amounts of data, finding large 

Cauchy Gaussian Cone Poisson

ACE FCM PCM DC

MCSP1MSCE SC SP

Figure 1. The instances of ACE and SCE for different membership 
function shapes. New terms introduced in this article are shown in red. 
DC: dancing cones; SP1M: sequential possibilistic one-means; MC: 
mountain clustering; SC: sequential cones; SP: sequential Poisson.

ACE SCE 

Initialize cluster centers For each cluster

Repeat   Initialize cluster center

  For each cluster   Repeat 

    Update memberships     Update memberships 

  End     Update cluster center 

  For each cluster   Until termination 

    Update cluster center End 

  End 

Until termination 

�Table 1. The ACE and SCE algorithms.
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numbers of clusters becomes 
increasingly important, for exam-
ple, to identify large numbers of 
different object types in images or 
large numbers of different custom-
er needs and preferences in cus-
tomer relation management. The 
BIRCH data set [25] is an artificial 
data set that contains an array 
of 10 × 10 = 100 clusters. Figure 3 
shows the clusters found by FCM 
and by SC clustering. In this exam-
ple, FCM (left) misses six of the 
100 clusters and assigns six dupli-
cate cluster centers, while SC 
(right) correctly identifies all 100 
clusters. These results vary slightly for different initializa-
tions (in 1,000 runs, FCM misses an average of 6.6 clusters 
with standard deviation 1.4), but on average, the SCE 
approach (here SC) yields a substantially higher cluster 
coverage than FCM, which indicates that SCE instances 
are better suited to find many clusters than ACE instances.

Clustering Delay Data
In non-black-box machine learning, 
experts often have substantial 
prior knowledge about the mem-
bership function shapes to be 
expected. Such knowledge can be 
easily taken into account in the 
ACE and SCE clustering schemes. 
Consider, for example, the case of 
an automated production line in a 
factory that makes three different 
types of products with varying 
manufacturing times. The produc-
tion times are not deterministic but 
vary probabilistically because the 
necessary components are not 

immediately available or manufacturing cells or robots 
may be momentarily busy. Such memoryless waiting times 
can be mathematically modeled by Poisson distributions. 
Now consider the problem of identifying the waiting times 
for the three different manufacturing types from a data set 
of 500 production pieces (of several varieties). The blue 
dots in Figure 4 illustrate this for the case of parts with tar-
get production times of 30, 40, and 50 s. For this data set, SP 
clustering, an SCE instance with Poisson membership 
functions, yields the three green membership functions 
shown at the top of Figure 4, which precisely match the dis-
tributions used to generate this simulation data set (aver-
age deviation of the expected value is 2.3%). A similar 
problem of clustering Poisson distributed data occurs in 
transcriptome sequencing [26].

Conclusion
This article introduced a new generalized model for sequen-
tial clustering called SCE. The SP1M and MC methods are 
instances of SCE with specific membership function shapes 
(Cauchy and Gaussian). Moreover, two new SCE instances 
(SC and SP clustering) have been introduced and experi-
mentally validated. For finding large numbers of clusters, 

0 10 20 30 40 50 60

Figure 4. The simulation data from an automated 
production line with three different product types. SP 
is able to specifically look for Poisson clusters and 
correctly identifies the Poisson distributions of the 
three product specific delays.

(a) (b)

Figure 3. The BIRCH data set clustering results for  
(a) ACE/FCM and (b) SCE/SC. SCE/SC yields a much 
better cluster coverage than ACE/FCM.

Figure 2. A cone is attracted by a data cluster (blue 
points) until it matches the local cluster structure.

In non-black-box 
machine learning, 
experts often have 
substantial prior 
knowledge about 
the membership 
function shapes to be 
expected.
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SC yields a higher cluster coverage than FCM, which indi-
cates a better suitability for finding many clusters in data. 
SP is a useful method to find clusters in delay data that can 
be modeled as mixtures of Poisson distributions.

Due to limited space, many areas of fuzzy clustering 
research have not been considered here, such as nonpoint 
prototypes, relational clustering, cluster validity, (visual) 
tendency assessment, fuzzy rules generation, kernelized 
clustering, clustering for big data, and many more. The dia-
gram in Figure 1 includes many interesting instances of 
ACE and SCE, but the remaining white boxes indicate that 
there is still rich potential for future research, including 
ACE/SCE instances with other membership function 
shapes, theory (such as properties and convergence), and 
further applications.
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