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J
im Bezdek once told me, “Write just the 
same way you talk!” That is my excuse for 
the unashamedly colloquial text to follow.

Many, many years ago, sometime during 
the rock ‘n’ roll 1980s, when ladies wore 

shoulder pads and IBM 80-column punched cards were in 
high fashion, everybody in our research team had heard of 
Jim Bezdek. We were bewitched by fuzzy-pattern recogni-
tion, and Jim—the author of the famous book Pattern 

Recognition With Fuzzy Objective Function Algorithms
[1]—was our hero, alongside Lotfi Zadeh.

Years later, in 1993, I had the good fortune to attend one 
of Jim’s plenary talks at a conference in Aachen, Germany. 
He walked in wearing the most colorful Hawaiian shirt, 
blue shorts, a baseball cap, and a smile brighter than Flori-
da sunshine. His talk was magic. In 1996–1997, thanks to a 
generous grant from the National Science Foundation’s 
Collaboration in Basic Science and Engineering (COBASE) 
program, I spent six months in Pensacola, Florida, work-
ing with him. I treasure that time as the most valuable and 
enlightening experience of my career.
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I was gradually losing faith in the 
fuzzy side of fuzzy-pattern recogni-
tion. You might ask what I was 
doing, then, visiting the editor-in-
chief (EiC) of IEEE Transactions on 
Fuzzy Systems (the founding EiC, at 
that). Good question. It turned out 
that Jim and I had a soft spot for the 
nearest-neighbor (1-NN) classifier 
and its variants, which was the sub-
ject of our COBASE grant. This arti-
cle tells the story of our collaboration on prototype selection 
and what has happened since.

Prototype Classifiers

Definition
In prototype classification, the data live in some metric 
space Rn  equipped with a distance. Depending on which 
discipline or school (or continent) you come from, you may 
have a different name for the elements of .Rn  In pattern 
recognition, we call those objects, data points, or even pat-
terns. In machine learning, you are more likely to call them 
instances or examples. In statistics, we talk about observa-
tions and (the dubious singular–plural) samples. These are 
all names for the same thing: .x Rn!

We have a labeled reference set of prototypes, .X Rn1  
Each prototype is an element of Rn  and labeled in one of 
c  classes. A new data point x)  is labeled as its nearest 
prototype from the reference set .X  This is the 1-NN 
classifier [2], [3], where the points in the reference set are 
called prototypes.

My Example Data
I can hear Jim saying, “Pictures, Lucy. I like pictures! 
Where are the pictures?” I like pictures, too, and here they 
come. Have you ever seen a picture of Jim when he wasn’t 
clutching, cuddling, or dangling a 5-kg-plus fish? You have? 
Really? Take another look; I bet there is a piranha printed 
on his cap or T-shirt. Jim and fish … it’s something else. So, 
for my examples, I am choosing a 2D data set to suit the 
theme [Figure 1 (a)]. Unusual, eh? Wherever did the good 
old Gaussians go? Just for fun, I will call the fish George.

There are three classes in this 
data set: 1) background (black), 2) 
top and tail (green), and 3) face 
and bottom (blue). The only two 
features of data point x  are its x1  
and x2  coordinates. The Bayes 
error for this data set is zero 
because there are no overlap-
ping points with different class 
labels. But the configuration of 
the classes is beautifully bizarre. 

Figure 1(b) shows the data set sampled randomly from the 
full data. The classification regions of the 1-NN classifier 
using the sampled data as the reference set are shown in 
Figure  1(c). George looks a bit disheveled but, actually, 
more than 93% of the labels match the original ones.

The data were prepared from an image of 391 rows #  
769 columns of pixels and contain 300,679 points. Our ran-
domly sampled data contain 1,000 points. The question in 
this article is: Can we use a reference set of fewer than 
1,000 points and achieve similar (or better) accuracy in 
recognizing George?

Who Cares About Prototype Classifiers?
Who cares about prototype classifiers today? Hello, we have 
deep-learning neural networks. I hear this old question 
repeated over and over. During the 1980s, we were ready to 
dismiss the decision-tree classifier since we were building 
expert systems. Soon, we didn’t care much about expert 
systems, either, because the almighty multilayer perceptron 
came to power. By the 1990s, we hailed the new king: the 
support-vector machine (SVM). And today? Today, we have 
deep-learning neural networks, and nothing else will do.

Delgado et al. [4] carried out a massive experimental 
comparison of classifiers in an attempt to answer the pro-
vocative question: Do we need hundreds of classifiers to 
solve real-world classification problems? A staggering 179 
classifiers from 17 families were compared on 121 data 
sets. And the authors’ answer was no. We don’t need hun-
dreds of classifiers. The current favorites are the random 
forest [5] and SVM [6]. Long live the winners! The message 
from the conclusion of the paper is clear: “The remaining 
families of classifiers, including other neural networks 

(a) (b) (c)

Figure 1. The George data set. The (a) full set, (b) sampled data, X (the prototypes), and (c) 1-NN regions using 
X (6.68% error).
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(radial basis functions, learning-
vector quantization, and cascade 
correlation), discriminant analysis, 
decision trees other than C5.0, 
rule-based classifiers, other bagging 
and boosting ensembles, 1-NNs, 
Bayesian, generalized linear model, 
partial least-squares regression, 
multivariate adaptive regression 
splines, etc., are not competitive at 
all” (my emphasis). But wait, there 
is a new kid on the block. The rotation forest [7] beats them 
all, according to a more recent study by Bagnall et al. [8]. 
(I am quite proud of this, actually, as I have a little contribu-
tion to the rotation-forest ensemble method.)

I sympathize with all those uncompetitive classifiers. 
But we all know that there is no single tool for every job. If 
that were the case, your car, computer, and smartphone 
could all be repaired with a hammer. The tool selection 
depends on the data, of course. And not all is lost. In 2008, 
the 1-NN family was included (by experts) among the top 
10 algorithms in data mining [9].

Prototype (Instance) Selection
Observing that the 1-NN philosophy underpins many 
seemingly unrelated classifiers, Jim and I set off to unite 
them under the same umbrella. We called it the general-
ized nearest-prototype classifier [10], [11]. We were hoping 
to pull a rabbit out of the hat; that is, identify niches that 
had not been explored and propose alternative versions of 
the prototype classifier. Alas, Floppy (the rabbit) did not 
materialize, and instead, Jim and I got properly sucked 
into one of the side issues of the 1-NN: instance selection 
(also known as prototype selection/extraction/generation/
replacement, data editing for the 1-NN classifier, data con-
densing, data reduction, and more).

We will take prototype selection to mean that we 
choose a subset, ,S  of the reference set, ,X  which satis-
fies some criteria related to the classification accuracy of 
the 1-NN using S  as the reference set. Requiring a zero 
(resubstitution) error on X  gives rise to the so-called con-
densing methods, of which Hart’s condensed 1-NN (CNN) 
[12] is the classic instance. A reference set with a zero 
resubstitution error is called a consistent subset of .X  This 
approach preserves boundary objects that are likely to be 
misclassified if they are missing from the prototype set. 
The alternative approach, called editing, is to select proto-
types by removing noise. It aims for better generalization 
accuracy with S  compared to the result when the whole 
of X  is used as the reference set. The pioneering method 
in this category is due to Wilson (1972) [13]. Through this 
approach, border objects that may be misclassified are dis-
carded. A third category, called hybrid, includes methods 
that combine the two ideas. Myriad methods for prototype 
selection have been proposed in all three categories since 
those early years [14]–[19].

Jim and I were curious about 
the hybrid approach, but instead 
of explicitly combining strategies 
for keeping and discarding proto-
types, we chose a random, crite-
rion-driven technique [20]. Our 
study was meant to be a proof 
of concept, and we only played 
around with the famous iris-data 
set. We discovered that a random, 
criterion-driven approach [brute-

force random search and a basic genetic algorithm (GA)] 
offered the best compromise between classification accu-
racy and the reduction rate compared with the classical 
examples of editing and condensing. We subsequently 
carried out experimental comparisons [21] and included 
methods that belonged in the group of prototype replace-
ment. In other words, S  is no longer a subset of X  but of 

,Rn  with a cardinality restriction .S X; ; # ; ;  Our random, 
criterion-driven methods were doing okay but not as well 
as the prototype-replacement competitors. During those 
pre-Google times, we were not even aware that our brute-
force random search actually had a name: Monte Carlo 1 
(MC1) [22]. Much as we wanted to, we could not afford to 
run a large experiment. Intel was yet to release the first 
Xeon processor, the Pentium II Xeon 400 (1-MB cache, 
400 MHz).

A funny story unfolded shortly after the publication of 
our “apotheosis” of random/GA prototype selection [20]. 
Our experiments gave a 14-element consistent set for the 
iris data. The previous record was a 15-element consis-
tent set, so we beat it by one. Before we published the 
paper, Jim said, “You know what? I want to be double and 
triple sure that we have not made a mistake. Delete your 
1-NN code, write it again from scratch, and verify the 
result. The first thing people will do is stick our winning 
prototype set in their 1-NN classifier.” So I did, and there 
was no mistake. The paper came out. Almost instantly, 
the author of the previous winner (the 15-element consis-
tent prototype set) wrote an indignant email to Jim and 
me claiming that our supposedly consistent set misla-
beled one object in the iris data. The author suggested 
that we write a retraction and apologize for misleading 
the journal’s readership.

That email exchange didn’t do my blood pressure any 
good, but I knew there was no mistake. It transpired that 
we had been using slightly different versions of the iris 
data. Jim and I then sourced the original paper by Fisher 
[23] where Anderson’s data [24] were published, and it 
turned out that the “real” data set matched Jim’s and my 
version. It could easily have been the other way around. Jim 
was so amused by the situation that he wrote a note but not 
to apologize. The title was: “Will the Real Iris Data Please 
Stand Up?” [25]. The note included a table with the original 
iris-data set and warned about the unmatching variants 
floating around.

Do we need hundreds 
of classifiers to 
solve real-world 
classification 
problems?
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Years passed, technology prospered, and big data 
descended upon us. And not only big data. In addition to 
the problem of scalability [26]–[28], prototype selection was 
facing new challenges [29]: streaming data [30], unlabeled 
data, data with concept drift [31], and more. How did ran-
dom prototype-selection methods fare in the new world 

order? Quite well, apparently, especially the evolutionary 
algorithms [32]–[34]. Shall we check some of the recent 
favorites? Let’s see how our random methods manage to 
reconstruct George by using as few prototypes as possible.

The Fun Part: Recognizing George

Methods
García et al. [18] and Triguero et al. [19] reviewed, between 
them, more than 75 prototype selection and replacement 
methods and ran experimental comparisons. Since we have 
our hearts set on prototype selection, here are the methods 
that García et al. identified as the best (the first-mentioned 
method in each group). To simplify the algorithms, I intro-
duce some common concepts and notations:

 ◆ All algorithms take labeled data set X with N  objects 
as input.

 ◆ We will denote by M  the desired number of proto-
types that will be an input parameter for some of the 
algorithms.

 ◆ T  denotes the number of iterations, K  represents 
the population size, and W  designates the number of 
generations.

 ◆ We will need two sets of indices , , ,A N1 2! f" ,  and 
, , , .B M1 2! f" ,

 ◆ We will also need two functions: ( , ),e S X  returning 
the 1-NN classification error for X  when S  is used as 
the reference set; and ( , ),choose Q m  returning a ran-
dom subset of cardinality m  sampled without replace-
ment from set .Q

Note that if I  is a set of indices of elements of ,X  we 
use ( )X I  to denote the subset of X  that contains the in -
dexed elements.

 ◆ Random-mutation hill climbing (RMHC) (1994): From 
the hybrid family (editing and condensing), RMHC [22] 
achieved an excellent trade-off between reduction and 
classifier success in the experiments. It is one of the 
beautifully elegant random, criterion-driven methods. 
(Score!) While the original algorithm’s search space is 
binary, for the experiment with George, we can indulge 
in a less efficient but more straightforward implementa-
tion (Algorithm 1).

In our implementation, we evolved several solutions 
and picked the best one (subset S).

 ◆ Relative neighborhood-graph editing (RNGE) (1997): 
RNGE is an editing-prototype-selection algorithm [35] 
classed as the best in its group [18]. The RNG is an 
undirected graph defined on .X  There is an edge 
between p X!  and q X!  if there is no other point 
r X!  that is closer to p  and q  than they are to each 
other. The editing algorithm works by building the 
RNG of X  and removing all points that are misclassi-
fied by their immediate neighbors (Algorithm 2).

 ◆ Relative nearest neighbor (RNN) (1972): The RNN 
rule [36] was singled out as one of the best two meth-
ods in the condensing group [18]. The RNN starts with 

Input: ,X  ,M  T

Output: Reference set ,S  ,S X1  S M; ;=

1 ( , )C choose A M!  // the chromosome to mutate
2 ( ( ), )e e X C X!  // stored error

3 for :i T1=  do
4  .C Ctemp!

5  ( , )k choose B 1!  // index to mutate
6  ( ) ( , )\C k choose A C 1temp !  // replace
7  ( ( ), ).e e X C Xtemp temp!

8  if e etemp#  then
9   ;C Ctemp!  e etemp!

10 Return ( ).S X C=

Algorithm 1. The RMHC prototype-
selection algorithm.

Input: X

Output: Reference set ,S  S X3

1 Build ,G  the RNG for .X
2  Remove all points which are misclassified by their  

 immediate neighbors in .G
3 Return the remaining points as .S

Algorithm 2. The RNGE prototype-
selection algorithm.

Input: X

Output: Reference set ,S  S X3

1 Run Hart’s algorithm [12] on X  to obtain an initial .C

2 .flag true!

3 while flag do
4  .flag false!

5  for each element i  of C  do
6   .\C C i!l " ,  // remove i  temporarily
7   if C l  is consistent then
8    .C C! l  // remove i  permanently
9    .flag true!

10 Return ( ).S X C=

Algorithm 3. The RNN prototype-selection 
algorithm.



 Apri l  2020    IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE 53

a consistent reference set S  (zero errors of 1-NN on 
)X  and further reduces it by removing one element at 

a time and checking whether the set is still consis-
tent. If not, the element is returned to the set. If the 
set is consistent, the element is permanently removed. 
The process continues until all the elements have 
been checked, and there has been no change to S  
(Algorithm 3).

Did you notice? All three winning algorithms are old 
and simple. That’s my kind of algorithm. We add to this 
collection our own baselines and competitors, as ex -
plained next.

 ◆ Hart (1968): Hart’s CNN [12] returns a consistent set, 
usually with a very good reduction rate. This is the 
archetypal condensing algorithm, which gave rise to 
the whole condensing branch.

 ◆ Wilson (1972): Wilson’s algorithm [13] is the forefather 
of the editing branch of prototype-selection. It marks 
for deletion all objects of X  that are misclassified by 
their k  nearest neighbors (typically, ).k 3=  Then, the 
marked objects are removed, and the remaining set is 
returned as .S

 ◆ MC1 (1994): The MC1 method for prototype selection 
[22] is the same as our random search [20]. This is a 

brute-force random search whereby we generate T  
prototype sets and pick the best among them. The 
value of T  is chosen in advance.

 ◆ GA (1995): GAs are a perfect fit for prototype selec-
tion [20], [32]–[34], [37]. The chromosome can encode 
S X3  storing zero at position i  if the ith element of 
X  is not in ,S  and one, otherwise. The GA version 

that we used here is shown in Algorithm 4. It enables 

Figure 2. The classification regions of the 1-NN with 
10% label-noise contamination; the error rate is 18.49% 
(or a nice pajama pattern).

Method Type
Error Rate 

(%)
Number of 
Prototypes

Time 
(s)

1-NN — 6.68 1,000 0.18

Hart C 7.9 211 24.93

Wilson E 7.1 913 0.5

Wilson + Hart H 8.44 101 22.71

RNGE E 6.59 921 3.92

RNN C 8.2 160 27.81

RMHC H 15.83 10 81.99

RMHC H 13.31 20 79.27

RMHC H 10.47 100 83.42

RMHC H 9.49 200 84.04

MC1 H 20.21 10 75.45

MC1 H 15.62 20 78.8

MC1 H 11.16 100 81.23

MC1 H 9.83 200 83.81

GA H 12.68 10 76.63

GA H 8.47 20 77.2

GA H 6.52 98 84.71

GA H 6.96 195 82.49

Boldface indicates that the result is in the Pareto front in terms of error-rate/
reference-set size. C: condensing; E: editing; H: hybrid.

 Table 1. The results from the experiment 
with noise-free George data.

Input: ,X  ,M  ,K  W

Output: Reference set ,S  ,S X1  .S M; ;=

1 for :i K1=  do
2  ( ) ( , )P i choose A M!  // random chromosome
3  ( ) ( ( ( )), )f i e X P i X1p ! -  // population fitness

4 for :gen W1=  do

5  .O ! 4  // offspring set
6  for : /par K1 2=  do
7   ( , )p choose P 11!  // parent 1
8   ( , )p choose P 12!  // parent 2
9   ( , )k choose B 1!  // crossover point
10    Swap the tail parts of p1  and p2  to create  

  offspring o1  and .o2  (Tail is from k 1+  to .M  
If ,k M=  no crossover occurs and the offspring 
are the parents themselves.)

11   ,O O o o1 2! , " ,

12  for :j K1=  do
13   ( )C O j!

14   ( , )m choose B 1!  // index to mutate
15   ( ) ( , )\C k choose A C 1!  // replace
16   ( ) ( ( ), )f j e X C X1o ! -  // offspring fitness
17   ( )O j C!
18    Pool fp  and fo  and sort in descending order.  

  Keep the best K  chromosomes from P O,  to 
be the new population P  and store the respec-
tive fitnesses as the new .fp

19 Return ( ( ))S X P 1=  // the best chromosome

Algorithm 4. The GA prototype-selection 
algorithm.
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prespecifying the number of prototypes. However, due 
to the crossover, there may be repeated prototypes 
within a chromosome. This means that M  is an upper 
limit on the number of prototypes for the GA.

The George data set and MATLAB code for this illustra-
tion are available at https://github.com/LucyKuncheva/
instance_selection.

Experimental Setup
We can hardly glorify this little illustration by labeling it as an 
experiment, but we still need to explain how we made the 
comparisons as fair as possible. We sampled the George data 
[Figure 1 (b)] from the full set [Figure 1 (a)]. The prototype-
selection methods that we used are listed in Table 1 with the 
results. In addition to the techniques listed in the previous 
section, we included Wilson’s method followed by Hart’s. This 
combined approach (hybrid type) often leads to a small and 
accurate reference set.

We took care that all our random methods carried out 
exactly the same number of evaluations of the criterion 

function (a 1-NN error rate on the sampled George data). 
The parameters in this experiment were as follows:

 ◆ MC1: number of iterations: ,T 12 000=
 ◆ GA: population size: ,K 40=  number of generations: 

W 300=
 ◆ RMHC: number of chromosomes evolved (separately): 

;K 40=  number of mutations: .W 300=
During the second leg of the experiment, we contami-

nated George with label noise by flipping the labels of 10% 
of the sampled data to a different class. Figure 2 shows the 
classification regions of the 1-NN with the contaminated 
set. George looks exploded here.

Results
Table 1 presents the results with the clean data, and 
Table  2 gives the results with the noisy data. To make 
more sense of the numbers, we will use a scatterplot. The 
x  axis is the logarithm of the number of retained proto-

types out of the initial 1,000. We chose the logarithmic 
scale for the sole purpose of making the graphs less 
crowded at the smaller cardinalities. The y  axis is the 
1-NN classification error on the full data (the whole of 
George). An ideal point would sit at ( ( ) . , ),ln 3 1 0986 0=  
where we have one prototype of each class and zero error. 
The closer the point is to the origin, the better the method. 
The outcomes are shown in Figure  3 for the noise-free 
George and in Figure 4 for the noisy George.

In both figures, each prototype-selection method is 
shown with a yellow marker. Circles represent hybrid meth-
ods, triangles indicate condensing, and squares signal edit-
ing. The thick blue line is the Pareto front; that is, the 
collection of nondominated methods, which are highlight-
ed in boldface in the respective tables. Note that we can 
choose the number of prototypes for MC1, RMHC, and GA. 
The versions of a method for different numbers of proto-
types are shown as line graphs. In addition, next to each 
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Figure 3. The scatterplot of the results for the noise-free 
George data. The blue line represents the Pareto front.

Method Type
Error Rate 

(%)
Number of 
Prototypes

Time 
(s)

1-NN — 16.24 1,000 0.49

Hart C 20 415 27.87

Wilson E 8.43 806 0.48

Wilson and  
Hart

H 9.68 91 19.3

RNGE E 8.17 794 3.97

RNN C 21.18 355 33.94

RMHC H 24.7 10 76.7

RMHC H 15.65 20 77.74

RMHC H 14.38 100 80.67

RMHC H 15.61 200 82.14

MC1 H 21.25 10 74.18

MC1 H 15.62 20 74.91

MC1 H 15.88 100 76.5

MC1 H 14.28 200 79.76

GA H 15.85 10 75.64

GA H 11.08 20 77.3

GA H 9.92 100 80.82

GA H 12.7 197 83.03

Boldface indicates that the result is in the Pareto front in terms of error-rate/
reference-set size.

 Table 2. The results from the experiment 
with noisy George data.
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method on the Pareto front, we show 
the cute little portrait of George (the 
classification regions, leaving the 
background white).

Discussion
What is trivial is trivial: When there 
is noise in the data, all points are 
higher up, indicating greater error. 
Without noise, the editing meth-
ods (RNN and Hart) were good, 
and if we hadn’t chosen serendip-
itous parameters of our GA, these 
methods would have been on the 
Pareto front. When there is noise, 
however, the condensing methods 
learn that noise to perfection, and 
the generalization error shoots up (top-right corner of 
Figure 4). The editing competitors (Wilson and RNGE) 
are unfazed by noise. They consistently return good but 
large reference sets. They filter the type of random noise 
quite well, and the RNGE found its place in the Pareto 
front for the noisy George, beating Wilson by a whisker. 
The clear winners are the hybrid methods, a fact that 
echoes the findings of other authors. We don’t need to 
explicitly enforce the strategy (keep the noise or clean 
the noise) within the method;  criterion-driven methods 
fare a lot better.

What happened with Jim’s and my MC1 and GA? In our 
1998 paper [20], we found that random, criterion-driven 
methods, such as the MC1 and GA, were simple and effec-
tive, something that was also mentioned as a surprising 
observation by Skalak [22] in relation to the RMHC. In a 
later paper [21], however, we could not confirm this result. 
My implementation (I will blame that) kicked the GA 
toward the bottom of the league table. The difference 

from Algorithm 4 here is that, pre-
viously, we used a criterion that 
sought a compromise between the 
1-NN error and number of proto-
types in the form of a weighted 
sum. Here, we specify a limit on the 
number of prototypes. The GA 
turned out to be the best among the 
competitors, which were chosen 
from the most successful proto-
type-selection methods [18].

It may be a fluke, but our experi-
ment with the GA (and George) 
showed that this strategy can han-
dle noise. However, in both exper-
iments, the generalization error 
for M 200=  prototypes increases 

(possibly due to overfitting), leaving the last point on the 
GA line graph out of the Pareto front for the clean data. For 
the noisy George, the GA with 100 prototypes is marginally 
worse than the Wilson + Hart, another classical hybrid pro-
totype-selection method. The random search (MC1) did not 
work well here, nor did the RMHC. The likely reason is that 
the class configuration was chosen deliberately to be chal-
lenging, unlike many experimental studies, where the 
classes are sampled as Gaussians.

Yes, we evaluate our criterion on the training data. 
This is what we have been using all the way here (con-
densing methods don’t have a choice, since they are 
meant to guarantee zero resubstitution error). The scat-
terplots, however, show the error on the full data, 
which consists of the 1,000 sampled points (0.33%), and 
the remaining 299,679 points (99.67%). Don’t get me 
started on the limitations of this example/illustration; 
the list is as long as this magazine has pages. But the 
moral of the story is that if we need a very small subset 
of the data with an acceptable error rate, we may have 
to resort to those random, criterion-driven approaches 
that seem to offer a good compromise between the car-
dinality of the reference set and the 1-NN error rate. 
Long live random search!

Where next? Instance selection from big, semi-super-
vised, streaming, nonstationary, and non-independent and 
identically distributed data. Instance selection could be 
invaluable in that area if we find a smart and successful 
way of addressing these challenges.

Conclusion
Guess what? That was the conclusion. Back in 1997, 
when Jim and I were writing papers together, I would go 
to him with a draft, and he would invariably return a 
comment: “What kind of conclusion is this? You have run 
out of steam, Lucy.” And then he would write the conclu-
sion himself. I wish that, one day, I could match Jim’s 
astute, eloquent, and endlessly entertaining writing. A 
girl can dream….
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Figure 4. The scatterplot of the results for the noisy 
George data. The blue line represents the Pareto front.

We were hoping 
to pull a rabbit 
out of the hat; that 
is, identify niches 
that had not been 
explored and propose 
alternative versions 
of the prototype 
classifier.
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