
2333-942X/20©2020IEEE Apri l 2020 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE 49

Digital Object Identifier 10.1109/MSMC.2019.2950534
Date of current version: 20 April 2020

J
im Bezdek once told me, “Write just the
same way you talk!” That is my excuse for
the unashamedly colloquial text to follow.

Many, many years ago, sometime during
the rock ‘n’ roll 1980s, when ladies wore

shoulder pads and IBM 80-column punched cards were in
high fashion, everybody in our research team had heard of
Jim Bezdek. We were bewitched by fuzzy-pattern recogni-
tion, and Jim—the author of the famous book Pattern

Recognition With Fuzzy Objective Function Algorithms
[1]—was our hero, alongside Lotfi Zadeh.

Years later, in 1993, I had the good fortune to attend one
of Jim’s plenary talks at a conference in Aachen, Germany.
He walked in wearing the most colorful Hawaiian shirt,
blue shorts, a baseball cap, and a smile brighter than Flori-
da sunshine. His talk was magic. In 1996–1997, thanks to a
generous grant from the National Science Foundation’s
Collaboration in Basic Science and Engineering (COBASE)
program, I spent six months in Pensacola, Florida, work-
ing with him. I treasure that time as the most valuable and
enlightening experience of my career.

Prototype
Classifiers and

the Big Fish
The Case of Prototype (Instance) Selection

by Ludmila I. Kuncheva

©ISTOCKPHOTO.COM/HIGYOU

50 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE Apri l 2020

I was gradually losing faith in the
fuzzy side of fuzzy-pattern recogni-
tion. You might ask what I was
doing, then, visiting the editor-in-
chief (EiC) of IEEE Transactions on
Fuzzy Systems (the founding EiC, at
that). Good question. It turned out
that Jim and I had a soft spot for the
nearest-neighbor (1-NN) classifier
and its variants, which was the sub-
ject of our COBASE grant. This arti-
cle tells the story of our collaboration on prototype selection
and what has happened since.

Prototype Classifiers

Definition
In prototype classification, the data live in some metric
space Rn equipped with a distance. Depending on which
discipline or school (or continent) you come from, you may
have a different name for the elements of .Rn In pattern
recognition, we call those objects, data points, or even pat-
terns. In machine learning, you are more likely to call them
instances or examples. In statistics, we talk about observa-
tions and (the dubious singular–plural) samples. These are
all names for the same thing: .x Rn!

We have a labeled reference set of prototypes, .X Rn1
Each prototype is an element of Rn and labeled in one of
c classes. A new data point x) is labeled as its nearest
prototype from the reference set .X This is the 1-NN
classifier [2], [3], where the points in the reference set are
called prototypes.

My Example Data
I can hear Jim saying, “Pictures, Lucy. I like pictures!
Where are the pictures?” I like pictures, too, and here they
come. Have you ever seen a picture of Jim when he wasn’t
clutching, cuddling, or dangling a 5-kg-plus fish? You have?
Really? Take another look; I bet there is a piranha printed
on his cap or T-shirt. Jim and fish … it’s something else. So,
for my examples, I am choosing a 2D data set to suit the
theme [Figure 1 (a)]. Unusual, eh? Wherever did the good
old Gaussians go? Just for fun, I will call the fish George.

There are three classes in this
data set: 1) background (black), 2)
top and tail (green), and 3) face
and bottom (blue). The only two
features of data point x are its x1
and x2 coordinates. The Bayes
error for this data set is zero
because there are no overlap-
ping points with different class
labels. But the configuration of
the classes is beautifully bizarre.

Figure 1(b) shows the data set sampled randomly from the
full data. The classification regions of the 1-NN classifier
using the sampled data as the reference set are shown in
Figure 1(c). George looks a bit disheveled but, actually,
more than 93% of the labels match the original ones.

The data were prepared from an image of 391 rows #
769 columns of pixels and contain 300,679 points. Our ran-
domly sampled data contain 1,000 points. The question in
this article is: Can we use a reference set of fewer than
1,000 points and achieve similar (or better) accuracy in
recognizing George?

Who Cares About Prototype Classifiers?
Who cares about prototype classifiers today? Hello, we have
deep-learning neural networks. I hear this old question
repeated over and over. During the 1980s, we were ready to
dismiss the decision-tree classifier since we were building
expert systems. Soon, we didn’t care much about expert
systems, either, because the almighty multilayer perceptron
came to power. By the 1990s, we hailed the new king: the
support-vector machine (SVM). And today? Today, we have
deep-learning neural networks, and nothing else will do.

Delgado et al. [4] carried out a massive experimental
comparison of classifiers in an attempt to answer the pro-
vocative question: Do we need hundreds of classifiers to
solve real-world classification problems? A staggering 179
classifiers from 17 families were compared on 121 data
sets. And the authors’ answer was no. We don’t need hun-
dreds of classifiers. The current favorites are the random
forest [5] and SVM [6]. Long live the winners! The message
from the conclusion of the paper is clear: “The remaining
families of classifiers, including other neural networks

(a) (b) (c)

Figure 1. The George data set. The (a) full set, (b) sampled data, X (the prototypes), and (c) 1-NN regions using
X (6.68% error).

I treasure that time
as the most valuable
and enlightening
experience of
my career.

 Apri l 2020 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE 51

(radial basis functions, learning-
vector quantization, and cascade
correlation), discriminant analysis,
decision trees other than C5.0,
rule-based classifiers, other bagging
and boosting ensembles, 1-NNs,
Bayesian, generalized linear model,
partial least-squares regression,
multivariate adaptive regression
splines, etc., are not competitive at
all” (my emphasis). But wait, there
is a new kid on the block. The rotation forest [7] beats them
all, according to a more recent study by Bagnall et al. [8].
(I am quite proud of this, actually, as I have a little contribu-
tion to the rotation-forest ensemble method.)

I sympathize with all those uncompetitive classifiers.
But we all know that there is no single tool for every job. If
that were the case, your car, computer, and smartphone
could all be repaired with a hammer. The tool selection
depends on the data, of course. And not all is lost. In 2008,
the 1-NN family was included (by experts) among the top
10 algorithms in data mining [9].

Prototype (Instance) Selection
Observing that the 1-NN philosophy underpins many
seemingly unrelated classifiers, Jim and I set off to unite
them under the same umbrella. We called it the general-
ized nearest-prototype classifier [10], [11]. We were hoping
to pull a rabbit out of the hat; that is, identify niches that
had not been explored and propose alternative versions of
the prototype classifier. Alas, Floppy (the rabbit) did not
materialize, and instead, Jim and I got properly sucked
into one of the side issues of the 1-NN: instance selection
(also known as prototype selection/extraction/generation/
replacement, data editing for the 1-NN classifier, data con-
densing, data reduction, and more).

We will take prototype selection to mean that we
choose a subset, ,S of the reference set, ,X which satis-
fies some criteria related to the classification accuracy of
the 1-NN using S as the reference set. Requiring a zero
(resubstitution) error on X gives rise to the so-called con-
densing methods, of which Hart’s condensed 1-NN (CNN)
[12] is the classic instance. A reference set with a zero
resubstitution error is called a consistent subset of .X This
approach preserves boundary objects that are likely to be
misclassified if they are missing from the prototype set.
The alternative approach, called editing, is to select proto-
types by removing noise. It aims for better generalization
accuracy with S compared to the result when the whole
of X is used as the reference set. The pioneering method
in this category is due to Wilson (1972) [13]. Through this
approach, border objects that may be misclassified are dis-
carded. A third category, called hybrid, includes methods
that combine the two ideas. Myriad methods for prototype
selection have been proposed in all three categories since
those early years [14]–[19].

Jim and I were curious about
the hybrid approach, but instead
of explicitly combining strategies
for keeping and discarding proto-
types, we chose a random, crite-
rion-driven technique [20]. Our
study was meant to be a proof
of concept, and we only played
around with the famous iris-data
set. We discovered that a random,
criterion-driven approach [brute-

force random search and a basic genetic algorithm (GA)]
offered the best compromise between classification accu-
racy and the reduction rate compared with the classical
examples of editing and condensing. We subsequently
carried out experimental comparisons [21] and included
methods that belonged in the group of prototype replace-
ment. In other words, S is no longer a subset of X but of

,Rn with a cardinality restriction .S X; ; # ; ; Our random,
criterion-driven methods were doing okay but not as well
as the prototype-replacement competitors. During those
pre-Google times, we were not even aware that our brute-
force random search actually had a name: Monte Carlo 1
(MC1) [22]. Much as we wanted to, we could not afford to
run a large experiment. Intel was yet to release the first
Xeon processor, the Pentium II Xeon 400 (1-MB cache,
400 MHz).

A funny story unfolded shortly after the publication of
our “apotheosis” of random/GA prototype selection [20].
Our experiments gave a 14-element consistent set for the
iris data. The previous record was a 15-element consis-
tent set, so we beat it by one. Before we published the
paper, Jim said, “You know what? I want to be double and
triple sure that we have not made a mistake. Delete your
1-NN code, write it again from scratch, and verify the
result. The first thing people will do is stick our winning
prototype set in their 1-NN classifier.” So I did, and there
was no mistake. The paper came out. Almost instantly,
the author of the previous winner (the 15-element consis-
tent prototype set) wrote an indignant email to Jim and
me claiming that our supposedly consistent set misla-
beled one object in the iris data. The author suggested
that we write a retraction and apologize for misleading
the journal’s readership.

That email exchange didn’t do my blood pressure any
good, but I knew there was no mistake. It transpired that
we had been using slightly different versions of the iris
data. Jim and I then sourced the original paper by Fisher
[23] where Anderson’s data [24] were published, and it
turned out that the “real” data set matched Jim’s and my
version. It could easily have been the other way around. Jim
was so amused by the situation that he wrote a note but not
to apologize. The title was: “Will the Real Iris Data Please
Stand Up?” [25]. The note included a table with the original
iris-data set and warned about the unmatching variants
floating around.

Do we need hundreds
of classifiers to
solve real-world
classification
problems?

52 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE Apri l 2020

Years passed, technology prospered, and big data
descended upon us. And not only big data. In addition to
the problem of scalability [26]–[28], prototype selection was
facing new challenges [29]: streaming data [30], unlabeled
data, data with concept drift [31], and more. How did ran-
dom prototype-selection methods fare in the new world

order? Quite well, apparently, especially the evolutionary
algorithms [32]–[34]. Shall we check some of the recent
favorites? Let’s see how our random methods manage to
reconstruct George by using as few prototypes as possible.

The Fun Part: Recognizing George

Methods
García et al. [18] and Triguero et al. [19] reviewed, between
them, more than 75 prototype selection and replacement
methods and ran experimental comparisons. Since we have
our hearts set on prototype selection, here are the methods
that García et al. identified as the best (the first-mentioned
method in each group). To simplify the algorithms, I intro-
duce some common concepts and notations:

 ◆ All algorithms take labeled data set X with N objects
as input.

 ◆ We will denote by M the desired number of proto-
types that will be an input parameter for some of the
algorithms.

 ◆ T denotes the number of iterations, K represents
the population size, and W designates the number of
generations.

 ◆ We will need two sets of indices , , ,A N1 2! f" , and
, , , .B M1 2! f" ,

 ◆ We will also need two functions: (,),e S X returning
the 1-NN classification error for X when S is used as
the reference set; and (,),choose Q m returning a ran-
dom subset of cardinality m sampled without replace-
ment from set .Q

Note that if I is a set of indices of elements of ,X we
use ()X I to denote the subset of X that contains the in -
dexed elements.

 ◆ Random-mutation hill climbing (RMHC) (1994): From
the hybrid family (editing and condensing), RMHC [22]
achieved an excellent trade-off between reduction and
classifier success in the experiments. It is one of the
beautifully elegant random, criterion-driven methods.
(Score!) While the original algorithm’s search space is
binary, for the experiment with George, we can indulge
in a less efficient but more straightforward implementa-
tion (Algorithm 1).

In our implementation, we evolved several solutions
and picked the best one (subset S).

 ◆ Relative neighborhood-graph editing (RNGE) (1997):
RNGE is an editing-prototype-selection algorithm [35]
classed as the best in its group [18]. The RNG is an
undirected graph defined on .X There is an edge
between p X! and q X! if there is no other point
r X! that is closer to p and q than they are to each
other. The editing algorithm works by building the
RNG of X and removing all points that are misclassi-
fied by their immediate neighbors (Algorithm 2).

 ◆ Relative nearest neighbor (RNN) (1972): The RNN
rule [36] was singled out as one of the best two meth-
ods in the condensing group [18]. The RNN starts with

Input: ,X ,M T

Output: Reference set ,S ,S X1 S M; ;=

1 (,)C choose A M! // the chromosome to mutate
2 ((),)e e X C X! // stored error

3 for :i T1= do
4 .C Ctemp!

5 (,)k choose B 1! // index to mutate
6 () (,)\C k choose A C 1temp ! // replace
7 ((),).e e X C Xtemp temp!

8 if e etemp# then
9 ;C Ctemp! e etemp!

10 Return ().S X C=

Algorithm 1. The RMHC prototype-
selection algorithm.

Input: X

Output: Reference set ,S S X3

1 Build ,G the RNG for .X
2 Remove all points which are misclassified by their

 immediate neighbors in .G
3 Return the remaining points as .S

Algorithm 2. The RNGE prototype-
selection algorithm.

Input: X

Output: Reference set ,S S X3

1 Run Hart’s algorithm [12] on X to obtain an initial .C

2 .flag true!

3 while flag do
4 .flag false!

5 for each element i of C do
6 .\C C i!l " , // remove i temporarily
7 if C l is consistent then
8 .C C! l // remove i permanently
9 .flag true!

10 Return ().S X C=

Algorithm 3. The RNN prototype-selection
algorithm.

 Apri l 2020 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE 53

a consistent reference set S (zero errors of 1-NN on
)X and further reduces it by removing one element at

a time and checking whether the set is still consis-
tent. If not, the element is returned to the set. If the
set is consistent, the element is permanently removed.
The process continues until all the elements have
been checked, and there has been no change to S
(Algorithm 3).

Did you notice? All three winning algorithms are old
and simple. That’s my kind of algorithm. We add to this
collection our own baselines and competitors, as ex -
plained next.

 ◆ Hart (1968): Hart’s CNN [12] returns a consistent set,
usually with a very good reduction rate. This is the
archetypal condensing algorithm, which gave rise to
the whole condensing branch.

 ◆ Wilson (1972): Wilson’s algorithm [13] is the forefather
of the editing branch of prototype-selection. It marks
for deletion all objects of X that are misclassified by
their k nearest neighbors (typically,).k 3= Then, the
marked objects are removed, and the remaining set is
returned as .S

 ◆ MC1 (1994): The MC1 method for prototype selection
[22] is the same as our random search [20]. This is a

brute-force random search whereby we generate T
prototype sets and pick the best among them. The
value of T is chosen in advance.

 ◆ GA (1995): GAs are a perfect fit for prototype selec-
tion [20], [32]–[34], [37]. The chromosome can encode
S X3 storing zero at position i if the ith element of
X is not in ,S and one, otherwise. The GA version

that we used here is shown in Algorithm 4. It enables

Figure 2. The classification regions of the 1-NN with
10% label-noise contamination; the error rate is 18.49%
(or a nice pajama pattern).

Method Type
Error Rate

(%)
Number of
Prototypes

Time
(s)

1-NN — 6.68 1,000 0.18

Hart C 7.9 211 24.93

Wilson E 7.1 913 0.5

Wilson + Hart H 8.44 101 22.71

RNGE E 6.59 921 3.92

RNN C 8.2 160 27.81

RMHC H 15.83 10 81.99

RMHC H 13.31 20 79.27

RMHC H 10.47 100 83.42

RMHC H 9.49 200 84.04

MC1 H 20.21 10 75.45

MC1 H 15.62 20 78.8

MC1 H 11.16 100 81.23

MC1 H 9.83 200 83.81

GA H 12.68 10 76.63

GA H 8.47 20 77.2

GA H 6.52 98 84.71

GA H 6.96 195 82.49

Boldface indicates that the result is in the Pareto front in terms of error-rate/
reference-set size. C: condensing; E: editing; H: hybrid.

 Table 1. The results from the experiment
with noise-free George data.

Input: ,X ,M ,K W

Output: Reference set ,S ,S X1 .S M; ;=

1 for :i K1= do
2 () (,)P i choose A M! // random chromosome
3 () ((()),)f i e X P i X1p ! - // population fitness

4 for :gen W1= do

5 .O ! 4 // offspring set
6 for : /par K1 2= do
7 (,)p choose P 11! // parent 1
8 (,)p choose P 12! // parent 2
9 (,)k choose B 1! // crossover point
10 Swap the tail parts of p1 and p2 to create

 offspring o1 and .o2 (Tail is from k 1+ to .M
If ,k M= no crossover occurs and the offspring
are the parents themselves.)

11 ,O O o o1 2! , " ,

12 for :j K1= do
13 ()C O j!

14 (,)m choose B 1! // index to mutate
15 () (,)\C k choose A C 1! // replace
16 () ((),)f j e X C X1o ! - // offspring fitness
17 ()O j C!
18 Pool fp and fo and sort in descending order.

 Keep the best K chromosomes from P O, to
be the new population P and store the respec-
tive fitnesses as the new .fp

19 Return (())S X P 1= // the best chromosome

Algorithm 4. The GA prototype-selection
algorithm.

54 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE Apri l 2020

prespecifying the number of prototypes. However, due
to the crossover, there may be repeated prototypes
within a chromosome. This means that M is an upper
limit on the number of prototypes for the GA.

The George data set and MATLAB code for this illustra-
tion are available at https://github.com/LucyKuncheva/
instance_selection.

Experimental Setup
We can hardly glorify this little illustration by labeling it as an
experiment, but we still need to explain how we made the
comparisons as fair as possible. We sampled the George data
[Figure 1 (b)] from the full set [Figure 1 (a)]. The prototype-
selection methods that we used are listed in Table 1 with the
results. In addition to the techniques listed in the previous
section, we included Wilson’s method followed by Hart’s. This
combined approach (hybrid type) often leads to a small and
accurate reference set.

We took care that all our random methods carried out
exactly the same number of evaluations of the criterion

function (a 1-NN error rate on the sampled George data).
The parameters in this experiment were as follows:

 ◆ MC1: number of iterations: ,T 12 000=
 ◆ GA: population size: ,K 40= number of generations:

W 300=
 ◆ RMHC: number of chromosomes evolved (separately):

;K 40= number of mutations: .W 300=
During the second leg of the experiment, we contami-

nated George with label noise by flipping the labels of 10%
of the sampled data to a different class. Figure 2 shows the
classification regions of the 1-NN with the contaminated
set. George looks exploded here.

Results
Table 1 presents the results with the clean data, and
Table 2 gives the results with the noisy data. To make
more sense of the numbers, we will use a scatterplot. The
x axis is the logarithm of the number of retained proto-

types out of the initial 1,000. We chose the logarithmic
scale for the sole purpose of making the graphs less
crowded at the smaller cardinalities. The y axis is the
1-NN classification error on the full data (the whole of
George). An ideal point would sit at (() . ,),ln 3 1 0986 0=
where we have one prototype of each class and zero error.
The closer the point is to the origin, the better the method.
The outcomes are shown in Figure 3 for the noise-free
George and in Figure 4 for the noisy George.

In both figures, each prototype-selection method is
shown with a yellow marker. Circles represent hybrid meth-
ods, triangles indicate condensing, and squares signal edit-
ing. The thick blue line is the Pareto front; that is, the
collection of nondominated methods, which are highlight-
ed in boldface in the respective tables. Note that we can
choose the number of prototypes for MC1, RMHC, and GA.
The versions of a method for different numbers of proto-
types are shown as line graphs. In addition, next to each

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

1-
N

N
 E

rr
or

 R
at

e

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
log (Number of Retained Prototypes)

Wilson

RNGE
1-NN

Hart
Wilson and

 Hart
RNN

MC1

RMHC

GA

Figure 3. The scatterplot of the results for the noise-free
George data. The blue line represents the Pareto front.

Method Type
Error Rate

(%)
Number of
Prototypes

Time
(s)

1-NN — 16.24 1,000 0.49

Hart C 20 415 27.87

Wilson E 8.43 806 0.48

Wilson and
Hart

H 9.68 91 19.3

RNGE E 8.17 794 3.97

RNN C 21.18 355 33.94

RMHC H 24.7 10 76.7

RMHC H 15.65 20 77.74

RMHC H 14.38 100 80.67

RMHC H 15.61 200 82.14

MC1 H 21.25 10 74.18

MC1 H 15.62 20 74.91

MC1 H 15.88 100 76.5

MC1 H 14.28 200 79.76

GA H 15.85 10 75.64

GA H 11.08 20 77.3

GA H 9.92 100 80.82

GA H 12.7 197 83.03

Boldface indicates that the result is in the Pareto front in terms of error-rate/
reference-set size.

 Table 2. The results from the experiment
with noisy George data.

 Apri l 2020 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE 55

method on the Pareto front, we show
the cute little portrait of George (the
classification regions, leaving the
background white).

Discussion
What is trivial is trivial: When there
is noise in the data, all points are
higher up, indicating greater error.
Without noise, the editing meth-
ods (RNN and Hart) were good,
and if we hadn’t chosen serendip-
itous parameters of our GA, these
methods would have been on the
Pareto front. When there is noise,
however, the condensing methods
learn that noise to perfection, and
the generalization error shoots up (top-right corner of
Figure 4). The editing competitors (Wilson and RNGE)
are unfazed by noise. They consistently return good but
large reference sets. They filter the type of random noise
quite well, and the RNGE found its place in the Pareto
front for the noisy George, beating Wilson by a whisker.
The clear winners are the hybrid methods, a fact that
echoes the findings of other authors. We don’t need to
explicitly enforce the strategy (keep the noise or clean
the noise) within the method; criterion-driven methods
fare a lot better.

What happened with Jim’s and my MC1 and GA? In our
1998 paper [20], we found that random, criterion-driven
methods, such as the MC1 and GA, were simple and effec-
tive, something that was also mentioned as a surprising
observation by Skalak [22] in relation to the RMHC. In a
later paper [21], however, we could not confirm this result.
My implementation (I will blame that) kicked the GA
toward the bottom of the league table. The difference

from Algorithm 4 here is that, pre-
viously, we used a criterion that
sought a compromise between the
1-NN error and number of proto-
types in the form of a weighted
sum. Here, we specify a limit on the
number of prototypes. The GA
turned out to be the best among the
competitors, which were chosen
from the most successful proto-
type-selection methods [18].

It may be a fluke, but our experi-
ment with the GA (and George)
showed that this strategy can han-
dle noise. However, in both exper-
iments, the generalization error
for M 200= prototypes increases

(possibly due to overfitting), leaving the last point on the
GA line graph out of the Pareto front for the clean data. For
the noisy George, the GA with 100 prototypes is marginally
worse than the Wilson + Hart, another classical hybrid pro-
totype-selection method. The random search (MC1) did not
work well here, nor did the RMHC. The likely reason is that
the class configuration was chosen deliberately to be chal-
lenging, unlike many experimental studies, where the
classes are sampled as Gaussians.

Yes, we evaluate our criterion on the training data.
This is what we have been using all the way here (con-
densing methods don’t have a choice, since they are
meant to guarantee zero resubstitution error). The scat-
terplots, however, show the error on the full data,
which consists of the 1,000 sampled points (0.33%), and
the remaining 299,679 points (99.67%). Don’t get me
started on the limitations of this example/illustration;
the list is as long as this magazine has pages. But the
moral of the story is that if we need a very small subset
of the data with an acceptable error rate, we may have
to resort to those random, criterion-driven approaches
that seem to offer a good compromise between the car-
dinality of the reference set and the 1-NN error rate.
Long live random search!

Where next? Instance selection from big, semi-super-
vised, streaming, nonstationary, and non-independent and
identically distributed data. Instance selection could be
invaluable in that area if we find a smart and successful
way of addressing these challenges.

Conclusion
Guess what? That was the conclusion. Back in 1997,
when Jim and I were writing papers together, I would go
to him with a draft, and he would invariably return a
comment: “What kind of conclusion is this? You have run
out of steam, Lucy.” And then he would write the conclu-
sion himself. I wish that, one day, I could match Jim’s
astute, eloquent, and endlessly entertaining writing. A
girl can dream….

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

1-
N

N
 E

rr
or

 R
at

e

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
log (Number of Retained Prototypes)

6

4

2

2

8

6

444444444444444444444444

2

1

8

6

RMHC (10)

RMHC (200)
MC1 (200)
GA (197)

Wilson

RNGE
Wilson and Hart

RNN

Hart

1-NN

MC1 (10)

GA (10)

Figure 4. The scatterplot of the results for the noisy
George data. The blue line represents the Pareto front.

We were hoping
to pull a rabbit
out of the hat; that
is, identify niches
that had not been
explored and propose
alternative versions
of the prototype
classifier.

56 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE Apri l 2020

About the Author
Ludmila I. Kuncheva (mas00a@bangor.ac.uk) is with the
School of Computer Science and Electronic Engineering,
Bangor University, United Kingdom.

References
[1] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms.

New York: Plenum Press, 1981.

[2] E. Fix and J. L. Hodges, “Discriminatory analysis: Non parametric discrimination:

Small sample performance,” USAF School of Aviation Medicine, Randolph Field, TX,

Tech. Rep. 4., 1952.

[3] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York:

Wiley, 2001.

[4] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need

hundreds of classifiers to solve real world classification problems?” J. Mach. Learn.

Res., vol. 15, pp. 3133–3181, 2014. [Online]. Available: http://jmlr.org/papers/v15/

delgado14a.html

[5] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. doi:

10.1023/A:1010933404324.

[6] C. Cortes and V. N. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3,

pp. 273–297, 1995. doi: 10.1007/BF00994018.

[7] J. J. Rodríguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A new classifier

ensemble method,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619–

1630, Oct. 2006. doi: 10.1109/TPAMI.2006.211.

[8] A. J. Bagnall, A. Bostrom, G. C. Cawley, M. Flynn, J. Large, and J. Lines, Is rotation

forest the best classifier for problems with continuous features? 2018. [Online]. Avail-

able: https://arXiv:abs/1809.06705

[9] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inform. Syst., vol. 14,

no. 1, pp. 1–37, 2008. doi: 10.1007/s10115-007-0114-2.

[10] L. Kuncheva and J. Bezdek, “An integrated framework for generalized nearest

prototype classifier design,” Int. J. Uncertain. Fuzz. Knowl.-Based Syst., vol. 6, no. 5,

pp. 437–457, 1998. doi: 10.1142/S0218488598000355.

[11] L. I. Kuncheva and J. C. Bezdek, “Presupervised and postsupervised prototype

classifier design,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1142–1152, 1999. doi:

10.1109/72.788653.

[12] P. E. Hart, “The condensed nearest neighbor rule (Corresp.),” IEEE Trans. Inf.

Theory, vol. 14, no. 3, pp. 515–516, 1968. doi: 10.1109/TIT.1968.1054155.

[13] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using edited data,”

vol. SMC-2, no. 3, pp. 408–421, 1972. doi: 10.1109/TSMC.1972.4309137.

[14] B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification Tech-

niques. Los Alamitos, CA: IEEE Computer Society Press, 1991.

[15] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-

based learning algorithms,” Mach. Learn., vol. 38, no. 3, pp. 257–286, 2000. doi:

10.1023/A:1007626913721.

[16] H. Brighton and C. Mellish, “Advances in instance selection for instance-based

learning algorithms,” Data Min. Knowl. Discov., vol. 6, no. 2, pp. 153–172, 2002. doi:

10.1023/A:1014043630878.

[17] H. E. Liu, Instance Selection and Construction for Data Mining. Berlin, Heidel-

berg: Springer-Verlag, 2010.

[18] S. Garcia, J. Derrac, J. R. Cano, and F. Herrera, “Prototype selection for

nearest neighbor classification: Taxonomy and empirical study,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 417–435, Mar. 2012. doi: 10.1109/

TPAMI.2011.142.

[19] I. Triguero, J. Derrac, S. Garcia, and F. Herrera, “A taxonomy and experimental

study on prototype generation for nearest neighbor classification,” IEEE Trans.

Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 1, pp. 86–100, Jan. 2012. doi: 10.1109/

TSMCC.2010.2103939.

[20] L. I. Kuncheva and J. C. Bezdek, “On prototype selection: Genetic algorithms or

random search?” IEEE Trans. Syst., Man Cybern., vol. 28, no. 1, pp. 160–164, 1998. doi:

10.1109/5326.661099.

[21] J. Bezdek and L. Kuncheva, “Nearest prototype classifier designs: An experi-

mental study,” Int. J. Intell. Syst., vol. 16, no. 12, pp. 1445–1473, 2001. doi: 10.1002/

int.1068.

[22] D. B. Skalak, “Prototype and feature selection by sampling and random mutation

hill climbing algorithms,” in Proc. 11th Int. Conf. Machine Learning, Burlington, MA:

Morgan Kaufmann, 1994, pp. 293–301.

[23] R. Fisher, “The use of multiple measurements in taxonomic problems,” Ann.

Eugen., vol. 7, no. 2, pp. 179–188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137.x.

[24] E. Anderson, “The irises of the Gaspe Peninsula,” Bull. Amer. Iris Soc., vol. 59,

pp. 2–5, 1935.

[25] J. C. Bezdek, J. M. Keller, R. Krishnapuram, L. I. Kuncheva, and N. R. Pal, “Will

the real iris data please stand up?” IEEE Trans. Fuzzy Syst., vol. 7, no. 3, pp. 368–369,

1999. doi: 10.1109/91.771092.

[26] J. R. Cano, F. Herrera, and M. Lozano, “Stratification for scaling up evolution-

ary prototype selection,” Pattern Recog. Lett., vol. 26, no. 7, pp. 953–963, 2005. doi:

10.1016/j.patrec.2004.09.043.

[27] A. de Haro-García and N. García-Pedrajas, “A divide-and-conquer recursive

approach for scaling up instance selection algorithms,” Data Min. Knowl. Discov.,

vol. 18, no. 3, pp. 392–418, 2009. doi: 10.1007/s10618-008-0121-2.

[28] I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera, “MRPR: A MapRe-

duce solution for prototype reduction in big data classification,” Neurocomputing,

vol. 150, pp. 331–345, Feb. 2015. doi: 10.1016/j.neucom.2014.04.078.

[29] L. I. Kuncheva and I. A. D. Gunn, “A concept-drift perspective on prototype selec-

tion and generation,” in Proc. Int. Joint Conf. Neural Networks (IJCNN), Vancouver,

BC, 2016, pp. 16–23. doi: 10.1109/IJCNN.2016.7727175.

[30] C. Alippi, G. Boracchi, and M. Roveri, “A just-in-time adaptive classification

system based on the intersection of confidence intervals rule,” Neural Netw., vol. 24,

no. 8, pp. 791–800, 2011. doi: 10.1016/j.neunet.2011.05.012.

[31] N. Lu, J. Lu, G. Zhang, and R. L. de Mantaras, “A concept drift-tolerant case-base

editing technique,” Artif. Intell., vol. 230, pp. 108–133, Jan. 2016. doi: 10.1016/j.artint

.2015.09.009.

[32] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms

as instance selection for data reduction in KDD: An experimental study,” IEEE

Trans. Evol. Comput., vol. 7, no. 6, pp. 561–575, 2003. doi: 10.1109/TEVC.2003.

819265.

[33] N. García-Pedrajas, J. A. Romero del Castillo, and D. Ortiz-Boyer, “A cooperative

coevolutionary algorithm for instance selection for instance-based learning,” Mach.

Learn., vol. 78, no. 3, pp. 381–420, 2010. doi: 10.1007/s10994-009-5161-3.

[34] N. García-Pedrajas, A. de Haro-García, and J. Pérez-Rodríguez, “A scalable

approach to simultaneous evolutionary instance and feature selection,” Inf. Sci., vol.

228, pp. 150–174, 2013. doi: 10.1016/j.ins.2012.10.006.

[35] J. S. Sánchez, F. Pla, and F. J. Ferri, “Prototype selection for the nearest neigh-

bour rule through proximity graphs,” Pattern Recog. Lett., vol. 18, no. 6, pp. 507–513,

1997. doi: 10.1016/S0167-8655(97)00035-4.

[36] G. W. Gates, “The reduced nearest neighbor rule (Corresp.),” IEEE Trans.

Inform. Theory, vol. 18, no. 3, 1972. doi: 10.1109/TIT.1972.1054809.

[37] L. I. Kuncheva, “Editing for the k-nearest neighbors rule by a genetic algo-

rithm,” Pattern Recog. Lett., vol. 16, no. 8, pp. 809–814, 1995. doi: 10.1016/0167-8655

(95)00047-K.

