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Inverse Multislice Ptychography by Layer-Wise
Optimisation and Sparse Matrix Decomposition

Arya Bangun , Oleh Melnyk , Benjamin März , Benedikt Diederichs, Alexander Clausen , Dieter Weber ,
Frank Filbir , and Knut Müller-Caspary

Abstract—We propose algorithms based on an optimisation
method for inverse multislice ptychography in, e.g. electron mi-
croscopy. The multislice method is widely used to model the in-
teraction between relativistic electrons and thick specimens. Since
only the intensity of diffraction patterns can be recorded, the
challenge in applying inverse multislice ptychography is to uniquely
reconstruct the electrostatic potential in each slice up to some ambi-
guities. In this conceptual study, we show that a unique separation
of atomic layers for simulated data is possible when considering
a low acceleration voltage. We also introduce an adaptation for
estimating the illuminating probe. For the sake of practical appli-
cation, we finally present slice reconstructions using experimental
4D scanning transmission electron microscopy (STEM) data.

Index Terms—Ptychography, Phase Retrieval, Multislice
Method, Electron Microscopy.
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I. INTRODUCTION

ONE of the fundamental challenges in electron microscopy
is dealing with phase retrieval from the intensity of diffrac-

tion patterns. The reason for this problem is that current detectors
used in electron microscopy are unable to record phase infor-
mation, which is necessary for example to improve the image
resolution, to understand the interaction of electrons and atoms
within a material, and in particular to recover the electrostatic
potential of the specimen.

Several methodologies and approaches have been developed
for solving the phase problem. One of the most prevalent tech-
niques is ptychography. Instead of only exploiting the intensity
of a single diffraction pattern, ptychography takes advantage
of a large set of subsequently recorded diffraction patterns
stemming from multiple, partly overlapping illuminations of
the object. The illumination, that is the incident electron wave,
is also referred to as ’probe’. In essence, the acquisition of
diffracted intensities from adjacent scanning positions provides
additional information enabling to solve the phase problem [1],
[2], [3]. Following on from these original approaches, various
contributions to the phase retrieval from a single diffraction
pattern have led to the introduction of new algorithms, i.e.
enhanced methods adapted for ptychographic reconstructions.
For instance, classical alternating projection-based algorithms
like Gerchberg Saxton (GS) [4] and Fienup Hybrid Input-Output
(HIO) [5] inspired Ptychographic Iterative Engine (PIE) algo-
rithms [6], [7], [8]. Another approach for solving the phase
problem by direct inversion has been proposed in refs. [9], [10].
It utilises the property of the ambiguity function, sometimes also
called Wigner distribution function, which naturally appears by
reformulating the equation for deriving the intensity in terms of
the probe and object transfer functions.

In addition to the aforementioned methods, further ap-
proaches for modelling ptychography as an optimisation prob-
lem have been developed over the last few years. As the phase
retrieval problem is generally non-convex, there is no certainty
that the global optimum can be attained. However, several con-
tributions [11], [12], [13] manage to achieve the convergence
to a local optimum. The crucial fundamental assumption for
most studies is the single multiplicative approximation used for
modelling the interaction between the electron beam and a thin
specimen. However, this assumption does not necessarily hold
when investigating thick specimens due to strong dynamical
electron scattering effects [14], [15]. For thick specimens, one
should take into account the theory of multiple scattering and
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propagation when solving the phase problem, e.g. via the multi-
slice approach [14], [16], Bloch waves [17], [18], i.e. scattering
matrix-based formulations [19].

Several attempts have been made to adapt the phase re-
trieval model for thick specimens by incorporating the scattering
matrix, as discussed in [19], [20], [21]. In [19], the authors
developed an iterative projection algorithm called N − phaser
for estimating the scattering matrix. The key idea stems from
the specific eigenvalue structure of the scattering matrix. It can
therefore be used for estimating the object transfer function
from a thick specimen while eliminating the unwanted scattering
artefacts in the recorded diffraction patterns. Another approach
has been proposed in [21], where the authors used optimisa-
tion methods, e.g. Alternating Direction Method of Multipliers
(ADMM) and block coordinate descent, in order to estimate both
the scattering matrix as well as the probe. A similar approach
to estimate object and probe is presented in [22], where the
reconstruction is done iteratively by a modified Gauss–Newton
method.

A. Related Work

Implementations of inverse multislice ptychography have
been applied for instance in [23], [24], [25]. The key idea
in these studies bears a strong resemblance to extending the
established algorithms, such as the extended PIE. As three-
dimensional specimens were investigated, these algorithms were
named 3PIE. The forward model deals with the propagation of
the specimen entrance wave (probe) and calculates the complex
wave function for the observed specimen at a specific thickness.
The backward model constructs an estimation of the entrance
wave by applying an inverse Fourier transform to the product
of the estimated phase and the intensity of diffraction patterns
acquired in the measurement. However, mentioned works focus
on the reconstruction of visible light and x-ray data sets. The
same algorithm has been applied to reconstruct images from
the LED array microscope data in [26]. Another approach are
gradient-based methods, where the gradients are calculated over
the whole multislice model all at once. Examples can be found
in [27], [28], [29], [30].

In order to address the inverse multislice ptychography prob-
lem for electron microscopy data sets we present two different
approaches, an adaptation from the Amplitude Flow method
and a matrix decomposition, respectively. Amplitude Flow is
a gradient-based method, which has been analysed for a ran-
domised one-dimensional phase retrieval [11]. This analysis
was later enhanced for arbitrary measurements and in particular
for ptychography [31]. In the second approach, a matrix fac-
torisation technique adopted from the field of optimisation and
dictionary learning [32] is incorporated into the estimation of
the matrix from intensity measurements. Apart from proposing
different techniques to solve inverse multislice ptychography
we have also reformulated the forward multislice model. This
adjustment enables separation of the effect of the illuminating
probe from interaction with the specimen, which in turn yields
only the construction of a thick object transmission function in

Fig. 1. Illustration of the multislice method showing a probe focused on
a specimen and the resulting diffraction intensity Is at scanning position s
recorded in the far field. After each slice XM of the specimen an exit wave
Es

M is produced.

respect of a single matrix. Additionally, we outline a methodol-
ogy to reconstruct each atomic plane by applying the proposed
algorithm to synthetic data simulated for a low acceleration
voltage.

B. Summary of Contributions
� The forward multislice model is reformulated to disentan-

gle the effect of the probe from the object transfer function
at any thickness. This allows modelling a thick object as
a matrix consisting only of the product of phase gratings
and Fresnel propagators.

� Two approaches for estimating the slices of a thick object
are proposed, namely layer-wise optimisation and sparse
matrix decomposition. In the first approach we cycle over
slices applying the Amplitude Flow algorithm, only op-
timising with respect to a single slice. The matrix which
represents the phase gratings and the Fresnel propagations
is recovered by applying a second algorithm. Further fac-
torisation of this matrix is then carried out in order to
extract the slices of the object. Additionally, the proposed
algorithms are compared numerically to 3PIE [23] in terms
of reconstruction and computational time.

� Simulations of diffraction data of specimens (MoS2,
SrTiO3 and GaAs) with different crystal structures are
carried out. These simulations are performed for different
energies of the incoming electrons, i.e. different wave-
lengths. They serve as the ground truth for determining the
error of the reconstructions, which are carried out using
the proposed algorithms. Since the depth resolution in an
electron microscope is limited, we investigate the impact
of the slice thickness and under what conditions a unique
reconstruction is possible. We also adapt the algorithm
to estimate the illuminating probe and present the probe
reconstruction.
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� To highlight the practical use of our proposed methods we
provide results for the first applications of the algorithms
in respect of experimental data, notably in our reconstruc-
tions of the object transfer function of a MoS2 specimen
using a four-dimensional data set acquired by scanning
transmission electron microscopy (STEM).

C. Notations

Vectors are written in bold small-cap letters x ∈ CL and
matrices are written as a bold big-cap letter A ∈ CK×L for a
complex field C and for a real field R. A matrix can also be writ-
ten by indexing its elements,A=(ak�), where k∈ [K], �∈ [L].
The set of integers is written as [N ] := {1, 2, . . . , N} and
calligraphic letters are used to define functions A : C → C.
Specifically, we denote the discrete two-dimensional Fourier
transform by F . For both matrices and vectors, the notation ◦ is
used to represent element-wise or Hadamard product. The AH

is used to represent conjugate transpose. For a vector x ∈ CL,
the �p-norm is given by ‖x‖p = (

∑L
�=1 |x�|p)1/p, 1 ≤ p < ∞

and for p = ∞ we have max
�∈[L]

|x�|. For a matrix X ∈ CK×L, the

Frobenius norm is denoted by ‖X‖F :=
√∑K

k=1

∑L
�=1 |Xk�|2

and the spectral norm is given by ‖X‖ = max
‖v‖2=1

‖Xv‖2. The

trace operator Tr(.) is the operator to sum all elements in the
diagonal of square matrices. Indices are wrapped around, so
that x−p = xN−p.

II. PROBLEM STATEMENT

A. Forward Multislice Model

The forward multislice model is based on the idea that a thick
object can be approximated by multiple thin slices stacked on
top of each other. For each slice of the specimen the interaction
between the electron wave incident on this slice and the potential
of the slice can be modelled by a multiplicative approximation
in analogy to the standard model in ptychography. Furthermore,
as the illumination progresses through the object, the exit wave
of the previous slice propagates through potential-free space to
the subsequent slice, where it acts as the new illumination for
this slice, as schematically shown in Fig. 1.

Considering an aberration-free probe, the two-dimensional
probe P ∈ CN×N can be described for different aperture sizes
qmax with entries given by

py,x = πq2max

(
2J1 (2πqmax |r|)

2πqmax |r|
)
,where

y, x ∈ [N ], |r| =
√

x2 + y2,

where J1 is a Bessel function of the first kind of order 1. The
intensity of this function is called Airy disk. In general, this func-
tion can be derived analytically by applying a two-dimensional
inverse Fourier transform to a circular aperture. The probe
shifted to the scanning position (xs, ys), s ∈ [S] is denoted by a
matrix Ps ∈ CN×N with entries psx,y = px−xs,y−ys

. In general
aberrations exist and affect the probe formation. In this study
the focus is on the aberration-free condition when generating

the simulated data. For a more general treatment of this subject
please refer to [15].

The interaction between the probe Ps ∈ CN×N at scanning
point s ∈ [S] and the first slice X1 ∈ CN×N is given by the
element-wise product and in turn produces an exit wave of slice 1

Es
1 = Ps ◦X1.

After passing through the first slice the propagation of the exit
wave between the slices is modelled by the Fresnel transform
Vz which is given by

Vz (E) := F−1 (F (E) ◦Hm) ,

whereF is the Fourier operator andHm ∈ CN×N is the Fresnel
propagator matrix with entries

hy,x := e
−πiΔmλ

(
(q2y+q2x)+2

(
qx

sinθx
λ

+qy
sinθy

λ

))
, y, x ∈ [N ].

(1)

The parameters qy, qx denote the discrete grid in the reciprocal
space and hence represent spatial frequencies,Δm is the distance
of the wave propagation, and θx, θy are the two-dimensional tilt
angles. In this article, the illumination was set to be perpendicu-
lar to the object surface along a major crystallographic axis, i.e.
tilt angles are zero.

As the beam reaches the second slice, it is described by
Vz(E

s
1) and the next exit wave is given by

Es
2 = Vz (E

s
1) ◦X2.

Consequently, the general representation of the m-th observed
exit wave is written as

Es
m = Vz

(
Es

m−1

) ◦Xm for m ∈ [M ],m �= 1,

Finally, the intensity of the Fraunhofer diffraction pattern that is
recorded by a detector in the far field is given by

Is = |F (Es
M )|2 . (2)

In scanning transmission electron microscopy (STEM) the il-
luminating probe is rastered across the specimen. Therefore,
the illumination is varied to yield a set of S diffraction pat-
tern intensities collected throughout an experiment. This four-
dimensional data set is then subjected to phase retrieval by
multislice ptychography.

B. Reformulation of Multislice Ptychography

The measurement model in (2) can be further reformulated
in order to separate the probe- and the object-related terms.
This reformulation is based on the following property of the
Hadamard product. For matrices A,B ∈ CN×N the Hadamard
product A ◦B can be written according to

vec (A ◦B) = diag (vec (A)) vec (B)

= diag (vec (B)) vec (A) . (3)

The notation vec : CN×N → CN2
is an operator that vectorises

the matrix and diag : CN2 → CN2×N2
constructs a diagonal

matrix by placing the elements of the given vector on the main
diagonal. Additionally, the second equality in (3) is valid from
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the commutative property of the Hadamard product. By using
(3) the first exit wave for s-th position of the probe can be
rewritten as

vec (Es
1) = vec (Ps ◦X1) = diag (vec (X1)) vec (Ps) .

For convenience, the following notations are introduced

om := vec (Xm) ∈ CN2

,

Om := diag (om) ∈ CN2×N2

form ∈ [M ],

and

ps := vec (Ps) ∈ CN2

for s ∈ [S].

As a result, the first exit wave can be simplified as

vec (Es
1) = O1p

s.

For the second exit wave the action of the Fresnel propagator is
required. Let F2D,F−1

2D ∈ CN2×N2
denote the vectorized rep-

resentation of the two-dimensional Fourier and inverse Fourier
transforms as matrices, respectively. The term one-dimensional
Fourier matrix represents the discrete implementation of the
Fourier basis, i.e., when the Fourier basis is sampled and stored
as a matrix. Likewise, the two-dimensional Fourier matrix
can be constructed by using the Kronecker product of two
one-dimensional Fourier matrices. Consequently, for a two-
dimensional objectV ∈ CN×N the product ofF2D with vec(V)
corresponds to the vectorization of the two-dimensional Fourier
transform of V, i.e., F2Dvec(V) = vec(F(V)). By facilitating
(3), the second exit wave is given by

vec (Vz (E
s
1)) = vec

(F−1 (F (Es
1) ◦H1)

)
= F−1

2Dvec ((F (Es
1) ◦H1))

= F−1
2Ddiag (vec (H1)) vec (F (Es

1))

= F−1
2Ddiag (vec (H1))F2Dvec (Es

1) .

Hence, the Fresnel propagator is a multiplication of the vec-
torised exit wave Es

m with a matrix

Gm := F−1
2Ddiag (vec (Hm))F2D ∈ CN2×N2

, m ∈ [M − 1].

Substituting the obtained representation to the second exit wave
results in

vec (Es
2) = vec (Vz (E

s
1) ◦X2)

= diag (vec (X2)) vec (Vz (E
s
1)) = O2G1O1p

s.

Consequently, the M -th exit wave is given by

vec (Es
M ) =

(
OM

M−1∏
m=1

GmOm

)
ps =: AMps (4)

and the resulting far-field vectorised intensity is

is := vec (Is) = vec
(
|F (Es

M )|2
)
= |vec (F (Es

M ))|2

= |F2Dvec (Es
M )|2 = |F2DAMps|2 .

By combining all vectorised intensities is and probes ps as
columns of the matrices

I :=
(
i1, i2, . . . , iS

) ∈ CN2×S and

P :=
(
p1,p2, . . . ,pS

) ∈ CN2×S ,

respectively, can be simplified to

I = |F2DAMP|2 . (5)

There are at least two benefits of this reformulation. Firstly,
the object transfer function for an arbitrary thickness M is now
represented by the matrixAM ∈ CN2×N2

. Note thatAM purely
represents the properties of the thick specimen without being
affected by the probe, contrary to the model (2), where the
probe’s illumination is entangled with the slices. Secondly, the
matrix AM decomposes into the product according to (4) and
each sliceOm can therefore be separated from other multipliers,
i.e. Fresnel propagatorGm, which will be convenient in the next
section where the recovery of a thick object is discussed.

With this reformulation the matrices now have an ambient
dimension ofN2 ×N2 which increases the computational com-
plexity for processing data of this form. However, because most
of these matrices are diagonal matrices they may therefore allow
a more efficient treatment and storage in comparison to, e.g. the
Bloch wave method, in which an eigenvalue decomposition is di-
rectly performed on a scattering matrix of dimension N2 ×N2.

III. METHODS AND ALGORITHMS

This section considers the recovery of a thick object and
the probe from intensity measurements (5) in diffraction space.
Firstly it is posed as a constrained optimisation problem, then
two algorithms are proposed for solving the optimisation prob-
lem under the assumption that the probes are known. Finally
concepts for incorporating the probe estimation into the sug-
gested methods are provided.

A. Inverse Multislice Ptychography as an Optimisation
Problem

One of the standard approaches for the recovery of the object
from intensity measurements is the optimisation of the data
fidelity, which is represented by the least squares problem

minimize
P,Om,m∈[M ]

∥∥∥√I− |F2DAMP|
∥∥∥2
F

subject to AM = OM

M−1∏
m=1

GmOm. (6)

The challenge in obtaining the minimiser of (6) is the non-
convexity of the objective function, which results from the
absolute value and product representation of the matrix AM

as well as the multiplication with the probes P. In general,
non-convex functions are known to require non-polynomial time
to find the global optima [33].

One common method for tackling a non-convex minimisation
is the alternating projections method [34], [35]. It is based
on minimising the objective function with respect to a single
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selected unknown at a time, while other unknowns remain
fixed. This usually results in simpler intermediate subproblems
which can be solved efficiently. Afterwards, the next unknown
is chosen for optimisation and this process is continued until
the minimisation with respect to any of the variables does
not improve further. Whereas the alternating minimisation is
well-understood for convex functions [34], it often acts as a
heuristic for non-convex ones. Nevertheless, in applications
such as ptychography [36], the estimates obtained by alternating
minimisation are quite accurate, which motivates applying this
technique to inverse multislice ptychography.

B. Phase Retrieval via Amplitude Flow

As observed throughout this section, the minimisation of the
objective function in (6) with respect to a single unknown,
either Om,AM or P, leads to the phase retrieval problem. It
concerns the recovery of an unknown vector z ∈ CL from the
measurements of the form

y = |Qz|2 ∈ RK ,

with the measurement matrix Q ∈ CK×L. One popular ap-
proach for the reconstruction of z is the Amplitude Flow al-
gorithm [11], [31]. It applies the gradient descent in order to
minimise the least squares objective

A (z) = ‖√y − |Qz|‖22 . (7)

The generalised Wirtinger gradient of the function A is given
by

∇A (z) = QH

(
Qz− Qz

|Qz| ◦
√
y

)
,

where each element k ∈ [K] in the fraction ( Qz
|Qz| )k is set to 0

whenever (Qz)k = 0. Then, starting from a position z0, the t-th
iteration is obtained via the gradient step

zt = zt−1 − μ∇A (zt−1
)
, (8)

with step size μ = ‖Q‖−2 given by the squared inverse of
the spectral norm of the matrix Q. In this way, the value of
the objective function (7) does not increase and the algorithm
converges to a critical point of A [31].

C. Layer-Wise Optimisation

For the layer-wise optimisation, the alternating minimisation
was adopted so as to optimise (6) with respect to a single slice
Om at a time, while keeping all other slices unchanged. Note that
the objective in the optimisation problem (6) can be understood
as a sum of errors for each scanning point s,

minimize
Om,m∈[M ]

S∑
s=1

∥∥∥∥∥
√
is −

∣∣∣∣∣F2DOM

M−1∏
m=1

GmOmps

∣∣∣∣∣
∥∥∥∥∥
2

2

(9)

Using initial guesses of the object transfer functions
O0

1, . . . ,O
0
M , the alternating minimisation technique is em-

ployed in order to optimise with respect to a single slice O�,

Algorithm 1: Layer-wise Optimisation.
1: Initialisation:

• Initial object transfer functions O0
1, . . . ,O

0
M , are all

equal to identity matrices.
• Intensity measurement I ∈ RN2×S .
• Number of iterations T and number of gradient steps
K.

2: for each iteration t ∈ [T ] do
3: for each layer � ∈ [M ] do
4: Compute prefix and suffix matrices R̂t

� and Ŝt
� via

(11).
5: Construct the measurement matrix Qt

� and
measurement y as in (13).

6: Produce estimate Ot+1
� = diag(ot+1

� ) as in (12) by
performing K gradient steps (8) with starting point
ot
� corresponding to the diagonal elements of Ot

�.
7: end for
8: If convergence criteria is reached → Stop
9: end for

� ∈ [M ] by solving

Ot+1
� = arg min

O�

∑
s∈[S]

∥∥∥√is − ∣∣F2DRt
�O�S

t
�p

s
∣∣∥∥∥2

2
, (10)

where the supporting prefix and suffix matrices are given by

Rt
� :=

M∏
m=�+1

Ot
mGm−1 andSt

� :=

�−1∏
m=1

GmOt+1
m . (11)

Once an estimate for the �-th slice is produced, the algorithm
continues with the �+ 1-th slice. After the L-th slice is esti-
mated, the estimation process is repeated from the first slice
until a desired stopping criterion is reached. By applying (3),
the intensity measurement for a single probe ps, s ∈ [S] can be
rearranged according to∣∣F2DRt

�O�S
t
�p

s
∣∣ = ∣∣F2DRt

� diag (o�)S
t
�p

s
∣∣

=
∣∣F2DRt

� diag
(
St
�p

s
)
o�

∣∣ .
The optimisation problem (10) is equivalent to the phase

retrieval problem

ot+1
� = argmin

o�

∥∥√y − ∣∣Qt
�o�

∣∣∥∥2
2
, (12)

with the measurement matrix and the measurements given by

Qt
� :=

⎡
⎢⎢⎣
F2DRt

� diag
(
St
�p

1
)

...

F2DRt
� diag

(
St
�p

S
)
⎤
⎥⎥⎦ and y =

⎡
⎢⎢⎣
i1

...

iS

⎤
⎥⎥⎦ , (13)

respectively. The problem in (12) can be solved by running the
gradient descent method as discussed in Section III-B for a fixed
number of iterations.

Overall, it grants us the Algorithm 1 summarised below.
Since each gradient step in Layer-wise Optimisation does not

increase the value of the objective function in (9), Algorithm 1
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will always converge in a sense that it will stop at a certain value
of the objective.

D. Sparse Matrix Decomposition

Another approach for solving the optimisation problem (6) is
separating it into two subproblems. At first, the matrix AM ∈
CN2×N2

, which represents the complex object transfer function
of a thick specimen is estimated from the measurements. In the
second step, this estimated matrix AM is to be decomposed in
order to determine the slices O0

m, m ∈ [M ], which is sparse in
the sense that only diagonal elements are non-zero. Both steps
are then reiterated. The detailed procedure is described below.

In the first step, the object transfer function is estimated by
solving the optimisation problem

Â = arg min
A

1

2

∥∥∥√I− |F2DAP|
∥∥∥2
F
. (14)

In case the matrix A is vectorised, (14) can be treated as a phase
retrieval problem of the form (7), which gives the gradient step

At+1=At−μFH
2D

((∣∣F2DAtP
∣∣−√

I
)
◦ F2DAtP

|F2DAtP|
)
PH ,

with the step size μ = 1
‖P‖2‖F2D‖2 = 1

N2‖P‖2 . The initial guess
of the matrix A is

A0 = O0
M

M−1∏
m=1

GmO0
m, (15)

with O0
m,m ∈ [M ] being the intialisations for each slice. Once

the matrixA is estimated using Â, its sparse decomposition [32]
is achieved by solving the following problem

minimize
λ,Om,m∈[M ]
Om– diagonal
‖Om‖F=1

1

2

∥∥∥∥∥Â− λOM

M−1∏
m=1

GmOm

∥∥∥∥∥
2

F

.

In view of the fact that for any set of multipliers {αmOm,m ∈
[M ]} such that

∏M
m=1 αm = 1 the slices αmOm will generate

the same AM , we address this ambiguity by normalising Om

during the optimisation and by introducing the data fidelity
parameter λ. Simultaneous minimisation with respect to all
unknowns is cumbersome. Instead the alternating minimisation
technique is employed.

Starting with initial guessesO0
m,m ∈ [M ] as used in (15) and

λ0 = 1 for the �-th slice, � ∈ [M ], the new estimate is obtained
by minimising

Ot+1
� = arg min

O� – diagonal
‖O�‖F=1

1

2

∥∥∥Â− λtRt
�O�S

t
�

∥∥∥2
F
,

where the objective is reformulated in terms of the prefix and
suffix (11) matrices. Thereby, proximal gradient descent meth-
ods [37] can be applied, which grants an update of the form

Ot+1
� = P

(
Ot

� − μλt
(
Rt

�

)H (
λtRt

�O�S
t
� − Â

) (
St
�

)H)
,

(16)

Algorithm 2: Sparse Matrix Decomposition.
1: Initialisation:

• Initial matrix A0 = O0
M

∏M−1
m=1 GmO0

m, where the
object is initialised with an identity matrix.
• Intensity measurement I ∈ RN2×S

• Number of iterations T and regularization λ0

2: for each iteration t ∈ [T ] do
3: Estimate matrix Â with initial At by solving (14).
4: for each layer � ∈ [M ] do
5: Compute prefix matrix : Rt

�

6: Compute suffix matrix : St
�

7: Estimate : Ot+1
� by solving (16)

8: end for
9: Set Ã = Ot+1

M

∏M−1
m=1 GmOt+1

m

10: Update λt+1 via (17)
11: Update At+1 = λt+1Ot+1

M

∏M−1
m=1 GmOt+1

m

12: If convergence criteria is reached → Stop
13: end for
14: return (λT )

1MOT
1 , . . . , (λ

T )
1MOT

M

with the projection operator P acting onto the space of diago-
nally normalised matrices given by

(P(X))k,j =

⎧⎨
⎩

Xk,k√∑N2

n=1|Xn,n|2
, k = j,

0, k �= j,
k, j ∈ [N2],

and the step sizeμ = 1
c where c > (λt‖Rt

�‖‖St
�‖)2, as discussed

in [32].
For the minimisation with respect to λ, estimates of the M -th

slice are combined according to Ã = Ot+1
M

∏M−1
m=1 GmOt+1

m

and λ is updated by minimising it according to the one-parameter
least squares problem

λt+1 = arg min
λ

1

2

∥∥∥Â− λÃ
∥∥∥2
F

.

Therefore, the update for λt+1 is given by

λt+1 =
Tr
(
ÂHÃ

)
Tr
(
ÃHÃ

) , (17)

which concludes the second step of our method. These two
steps are reiterated by using the new initialisation for the first
step At+1 = λt+1Ot+1

M

∏M−1
m=1 GmOt+1

m . The summary of the
procedure is given in Algorithm 2.

E. Probe Reconstruction

After estimating the object i.e. the phase gratings of a spec-
imen the optimisation method can be adapted related to Am-
plitude Flow in (7) in order to estimate the centered probe
pc ∈ CN2

, by utilising the intensity of diffraction patterns at
the same position, i.e. ic ∈ RN2

,

minimize
pc

A (pc) :=
1

2

∥∥∥√ic −
∣∣∣F2DÂpc

∣∣∣∥∥∥2
2
. (18)
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Additionally, the gradient update for the t-th iteration is similar
to (8), where there is

pt = pt−1 − μ∇A (pt−1
)
. (19)

In this case, the learning rateμ is calculated by using the spectral
norm of the estimated matrix F2DÂ, i.e. ‖F2DÂ‖.

IV. COMPUTATIONAL COMPLEXITY AND IMPLEMENTATION

In this section we discuss the computational complexity and
shortcuts, which could be implemented in order to speed up
the proposed algorithms. The naïve implementation via matrix
vectorisation as well as the construction of a Fourier matrix is
straightforward. However the experimental setting requires to
process huge data and, thus, a fast and efficient implementation
is required.

A. Layer-Wise Optimisation

First, we consider the implementation of Layer-wise Optimi-
sation summarized in Algorithm 1. The algorithm is presented
via construction of the measurement matrix Qt

� given by (13).
The gradient step (8) only requires to compute the multiplication
with Qt

� and its conjugate transpose (Qt
�)

H , which can be done
efficiently on the basis of Fast Fourier transform.

A multiplication of the prefix and suffix matrices St
� and Rt

�

given by (11) with an arbitrary vector in CN2
consists of the two

repeated operations:Omv andGmv for some v ∈ CN2
. AsOm

is a diagonal matrix, only N2 operations are required. Gm is a
product of two Fourier matrices and a diagonal matrix. Hence,
when Fast Fourier transform is used, the second product requires
O(N2 logN) operations. Therefore, a multiplication with St

�

and Rt
� can be performed in O((�− 1)N2 logN) and O((M −

�)N2 logN) operations, respectively. Then, a multiplication
with a single row block of Qt

� is done in O(MN2 logN) and
for a multiplication with the whole matrixQt

� O(SMN2 logN)
operations are needed. The same argument applies for a multi-
plication with the conjugate transpose of Qt

�.
In addition to the computation of the gradient, also the step

size given by ‖Qt
�‖−2 needs to be evaluated. The spectral norm

can be accurately computed by performing J iterations of the
power method, which are given by

vt,�j+1 =
(Qt

�)Q
t
�v

t,�
j

‖ (Qt
�)Q

t
�v

t,�
j ‖2

.

Then, ‖Qt
�v

t,�
J ‖2 is a good estimate of the spectral norm of Qt

�.
Again, each iteration is a product of vt,�j with Qt

� and its conju-
gate and, thus, the power method requires O(JSMN2 logN)

operations. For a faster convergence vt+1,�
0 = vt,�J is initialised

as the top eigenvectors of Qt+1
� and Qt

� are not expected to
differ much, especially for later iterations. It was shown that in
Algorithm 1 for each iteration and each slice the spectral norm
is estimated and then K gradient steps are performed, which
grants the total complexity of

O (T (K + J)SM2 N2 logN
)
.

B. Sparse Matrix Decomposition

Algorithm 2 consists of two steps, the estimation of At and
its decomposition. In the first step, At is treated as an N2 ×N2

matrix without any additional information about its structure.
Hence, for K1 gradient steps for (14) O(K1(N

2S log(N2S) +
N4S). operations are performed. The step size stays the same
for all t ∈ [T ] and can be computed via the power method for
P, which is O(J1 N

2S) operations for some J1 denoting the
number of power method iterations.

Turning to the decomposition step, the update (16) is in-
vestigated at first. The matrix Z = λtRt

�O�S
t
� has to be

computed. This can be done by evaluating its columns as
Ze1, . . ., ZeN2 , where {ej , j ∈ [N2]} are standard basis
vectors. This can be done with O(MN4 logN) operations.
Furthermore, the difference with Â gives additional O(N4)
operations. Next, the product with conjugate transposes has
complexity of O(MN4 logN), which implies that the total
complexity of a single iteration is given by O(MN4 logN).
The step size once again determined by performing J2 iterations
of power method for both Rt

� and St
�, which requires addi-

tional O(J2 MN2 logN) operations. Therefore, the estimation
of slices by performing update (16) K2 times for each slice has
a complexity of O((K2 N

4 + J2 N
2)M2 logN).

At last, the update for λt+1 can be computed in
O(MN4 logN) as Ã is again a product of diagonal and Fourier
matrices. Combining everything together results in a total com-
plexity of

O (J1 N2S +
[
K1 N

2S log
(
N2S

)
+N4S

]
T

+
(
K2 N

4 + J2 N
2
)
M2 T logN

)
for Algorithm 2.

For numerical trials below, two implementations were tested.
The first is based on the Fast Fourier transform as described
above. The second uses matrix multiplication in the decom-
position step, specifically, sparse matrix products to improve
the numerical computation by using the fact that each slice
object Ol is a diagonal matrix, and randomized Singular Value
Decomposition (SVD) for computation of the eigenvalues. The
latter turned out to be faster, which may be caused either by the
large constants hidden in O notation or a small N .

C. Comparison to 3PIE

The computational complexity of 3PIE [23] is given by

O (TKSMN2 logN
)
,

where K denotes the number of iterations. This is M times
smaller than the complexity of Layer-Wise optimisation as it
updates all slices simultaneously. The use of the full matrix A
in Sparse Decomposition leads to notably larger computation
time.

V. SIMULATION AND EXPERIMENTAL DETAILS

In this section, information regarding the simulated dataset
of a specimen used as the ground truth, including its type and
crystal structure, is given. Furthermore, the microscope and a
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TABLE I
PARAMETERS FOR GENERATING SIMULATED DATA SETS TAKEN FROM GAAS [38], MOS2 [39], SRTIO3 [40]

Fig. 2. Structure of materials. (a) 2D projection of GaAs. (b) 3D structure of
GaAs. (c) 2D projection of SrTiO3. (d) 3D structure of SrTiO3. (e) 2D projection
of MoS2. (f) 3D structure of MoS2. Structural parameters were taken from
GaAs [38], MoS2 [39], SrTiO3 [40]. In the simulated data, the hexagonal cell
was transformed into an orthogonal cell.

description of the experimental conditions used for obtaining
actual experimental diffraction data are provided.

A. Simulated Data Sets

Intensities of simulated diffraction patterns from Molybde-
num disulfide (MoS2), Strontium titanate (SrTiO3), and Gal-
lium arsenide (GaAs) specimens with elevated thicknesses were
generated by using a forward multislice algorithm. In Fig. 2,
their 3D structural representations as well as 2D projections
along [0 0 1] of the unit cells are shown. The structural as well
as simulation parameters are given in Table I. In addition, the
parameter unit cell presents the most simple repeated lattice
point in the crystal. The collection of several unit cells is called
a supercell. At last, the semi-convergence angle represents the
semi-angle that appears in a cone shape when a convergent
electron beam illuminates a specimen.

B. Experimental Dataset

Besides simulated datasets, numerical evaluations of experi-
mental datasets are also performed. From a bulk crystal of 2H-
MoS2, sheets were exfoliated by using a poly-dimethylsiloxane
elastomeric film supported on a glass slide and transferred onto
a holey silicon nitride membrane for the use in transmission
electron microscopy (TEM). Experimental data of MoS2 was
acquired using a probe corrected Hitachi HF5000 field emission
microscope in STEM mode and with an acceleration voltage of
200 keV as well as a beam current of about 7.4 pA. Intensities
of diffraction patterns were recorded by using a Medipix3 Mer-
lin4EM camera with 256× 256 pixels. The distance between

Fig. 3. (a) PACBED of an experimental data set of MoS2 acquired using a
Hitachi HF5000 microscope in STEM mode with a Medipix3 Merlin camera.
(b) Amplitude of the probe initialisation, or the so-called Airy disk, which is
generated by taking the absolute value of the two-dimensional inverse Fourier
transform of the circular aperture generated from the PACBED.

neighbouring scan points was 26.5 pm inx, i.e. horizontal, and y,
i.e. vertical, scanning directions. In addition, the acquisition time
per diffraction pattern was 0.5 ms and data was acquired using a
dynamic range of 6 b. The position-averaged convergent beam
electron diffraction pattern (PACBED) is depicted in Fig. 3,
where the intensity of all diffraction patterns from 128× 128
scanning points is averaged.

VI. NUMERICAL RESULTS

Several numerical evaluations that measure performance of
the proposed algorithms as well as comparisons to the 3PIE
algorithm [23] in terms of reconstruction quality and com-
putation time are presented in this section. In contrast to the
proposed algorithms, there is no theoretical choice of the step
size parameter α for the 3PIE algorithm. Hence, three different
step size parameters α ∈ {0.1, 0.5, 1.0}, where α = 1.0 comes
from the original implementation [23], were used.

For all algorithms, the object slices O0
m were initialised with

an identity matrices. The probe was initialised by constructing a
binary circular aperture from the aggregated diffraction patterns
and appling the inverse Fourier transform.

Throughout this section the abbreviation GT for ground truth,
LW for Layer-wise Optimisation, SD for Sparse Matrix Decom-
position, and 3PIEα for step size α ∈ {0.1, 0.5, 1.0} are used.

A. Error Metrics for Evaluation of the Algorithm

The error metric used for evaluating the reconstruction of each
slice is calculated as the mean square error

1

M

M∑
m=1

∥∥∥Om − γmÔm

∥∥∥2
F

‖Om‖2F
, (20)
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Fig. 4. Per slice relative reconstruction error of 20 slices with distance 1 nm
for specimen: (a) GaAs. (b) MoS2. (c) SrTiO3.

withOm and Ôm being the ground truth and the estimated object
at the m-th slice, respectively. The global phase factors γm are
given by Tr(ÔH

mOm)/|Tr(ÔH
mOm)|.

The objective of the presented optimisation problem is to
minimise the error between measured and estimated intensities
of diffraction patterns. Accordingly, it is necessary to introduce
an additional error metric∥∥∥√I−

∣∣∣F2DÂMP
∣∣∣∥∥∥

F∥∥∥√I
∥∥∥
F

, (21)

with ÂM being the total estimated object transfer function at
slice M . In (20) the error metric is referred to as the relative
reconstruction error whereas, the error metric in (21) is referred
to as the relative measurement error.

B. Reconstruction of Arbitrary Slice Thickness

In the first experiment, recovery of accumulated atom posi-
tions of a phase grating were considered. Intensities of diffrac-
tion patterns of GaAs, MoS2 and SrTiO3 were simulated from
phase gratings of 20 nm thickness using the forward multislice
model (5). The simulation parameters can be found in Table I.
For the reconstruction, it was assumed that as in experimental
setup the precise distances are unknown and the crystals are
decomposed into slices separated by a 1 nm Fresnel propagation
distance. Thus, one can heuristically approximate the correct re-
construction by using an initial, comparably large slice thickness
and evaluating the atomic positions.

Fig. 5. Relative measurement error as in (21) of 20 slices with distance 1 nm
for specimen: (a) GaAs. (b) MoS2. (c) SrTiO3.

Fig. 5 shows the relative measurement error (21) of the
proposed algorithms and 3PIE for different step size parameters
α. It turned out that the choice of α has a strong impact on the
convergence of the relative measurement error as presented in
Fig. 5. For different specimens with 20 slices, the 3PIE algorithm
converged slower compared to our proposed algorithms. Regard-
ing the relative measurement error, the layer-wise optimisation
converged faster than the sparse matrix decomposition and 3PIE.

However, the relative measurement error only describes the
characteristic of an algorithm with respect to the measurement
data. Since in general the correctness of the reconstructed object
should be measured with respect to the object ground truth,
also the relative reconstruction error (20) was evaluated. Fig. 4
shows that the sparse matrix decomposition shows lower relative
reconstruction error (20) on datasets, of GaAs and SrTiO3,
while for MoS2 the Layer-wise Optimisation outperforms other
algorithms. The individual relative reconstruction error for each
slice is presented to observe the deviation of the reconstructed
object from the ground truth. The average can be observed in
Table II, where Sparse Matrix Decomposition performed better
in terms of relative reconstruction error than other algorithms.

The complete phase reconstructions are depicted in Fig. 6. In
general, the 3PIE algorithm shows unstable reconstruction for
20 slices for all chosen step sizes α.

The experiment was repeated for specimens with only 5 slices
and the distance between slices increased to 4 nm. The obtained



BANGUN et al.: INVERSE MULTISLICE PTYCHOGRAPHY BY LAYER-WISE OPTIMISATION AND SPARSE MATRIX DECOMPOSITION 1005

Fig. 6. Phase reconstruction in radian of 20 slices for arbitrary slice thickness with Fresnel propagation distance 1 nm. The acceleration voltage of the datasets
is 200 keV and the reconstruction is observed at 100 iterations.

reconstructions are shown in Fig. 7. In contrast to Fig. 6, 3PIE al-
gorithm was able to perform better and the phase reconstruction
for α = 1 showed the best reconstruction among three choices
of α. These observation suggested, that the proposed algorithms
are more robust in terms of larger number of slices than 3PIE.

C. Atomic Plane Decomposition

The reconstruction of each atomic plane, i.e., direct recon-
struction of each slice of the crystals as in Fig. 2, was also

examined. This approach proved to be quite challenging due to
arising ambiguities concerning the atom positions along the di-
rection of the electron beam. These ambiguities can be observed
in Fig. 8 by comparing the reconstructed slice for one of the
algorithms and the ground truth column. Atom positions were
combined and a decomposition of the layers was not successful.

1) Increasing the Fresnel Propagation Distance: A huge
advantage of conducting a conceptual study is the possibility
to set the Fresnel propagation distance in the forward multislice
model to any desired value within the simulation in order to study



1006 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

Fig. 7. Phase reconstruction in radian of 5 slices for arbitrary slice thick with Fresnel propagation distance 4 nm. The acceleration voltage of the datasets is
200 keV and the reconstruction is observed at 100 iterations.

Fig. 8. Phase reconstruction in radian of 9 slices for atomic plane decomposition with given Fresnel propagation distance as in Table I. The acceleration voltage
of the datasets is 200 keV and the reconstruction is observed at 100 iterations.

TABLE II
RELATIVE RECONSTRUCTION ERROR AS IN (20) OF THE ALGORITHMS FOR

DIFFERENT SPECIMENS WITH 20 SLICES

the performance of the reconstruction algorithms. In the next
experiment, the Fresnel propagation distance was deliberately
increased for both the forward and the inverse processes.

The relative reconstruction errors (20) for all algorithms are
shown in Fig. 10, where the first index represents the original
Fresnel propagation distance as listed in Table I. It is notable
that both Layer-wise Optimisation and Sparse Decomposition
benefited from a larger Fresnel distance. Fig. 9 shows phase
reconstruction at the Fresnel propagation distance of 4 nm.
Compared to the original Fresnel propagation distance, the de-
composition of each atomic plane was improved. Due to the fact
that with the increase of the distance, the Fresnel matrix is less
similar to the identity what consequently prevented ambiguities
related to the atomic positions for different atomic planes to
appear.

Increasing the Fresnel propagation distance would correspond
to artificially increasing the lattice parameter in electron beam
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Fig. 9. Phase reconstruction in radian of 9 slices for atomic plane decomposition with increasing Fresnel propagation distance 4 nm. The acceleration voltage of
the datasets is 200 keV and the reconstruction is observed at 100 iterations.

Fig. 10. Relative reconstruction error of atomic plane decomposition with 9
slices of specimens (a) GaAs. (b) MoS2. (c) SrTiO3. The error is observed at
100 iterations.

direction. This is only possible in a simulation study. However,
the conceptual insight is that the phase fronts of electron waves
with 200 keV energy would only change significantly after
propagating 4 nm for the algorithms to separate the Fresnel
propagation from the interaction with the Coulomb potential
of the slices.

2) Low Electron Energy: The Fresnel propagator on (1) con-
tains the product of the wavelength and the propagation distance
as the governing parameters. Therefore, a realistic reconstruc-
tion with atomic layer sensitivity needs to use larger wavelengths
to compansate for atomic spacings in the range of 0.1 nm
Furthermore, the same potential in a given specimen leads to a
larger phase change of low-energy electrons as compared to high
energies due to the effect of the so-called interaction constant
on the phase grating. The relation between electron acceleration
voltage U and wavelength λ is given by λ = hc√

e2 U2+2eUmc2
,

with c being the speed of light,h the Planck constant,m the elec-
tron mass, and e the elementary charge. For 200 keV electrons,
the wavelength is approximately 2.5 pm, whereas it increases
to 4.18 pm for electrons with 80 keV energy. The interaction
constant increases by about 40%. Note that both acceleration
voltages, 200 and 80 kV, are common settings in STEM such that
atomic resolution can be obtained readily in aberration corrected
machines. Fig. 11 shows a reconstruction of the atomic planes
using an acceleration voltage of 80 keV. Despite the low-signal
artefacts related to the location of the atoms in the different
slices, the exact location of the atoms in each slice can now
be correctly determined. However, for 3PIE algorithm the step
size α is a crucial factor to improve the reconstruction. In this
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Fig. 11. Phase reconstruction in radian of 3 slices for atomic plane decomposition with acceleration voltage 80 keV. The reconstruction is observed at 2000
iterations.

Fig. 12. Probe reconstruction after estimating 9 slices of atomic plane decom-
position as in Fig. 8. The amplitude is normalized and the phase is in radian.
The reconstruction is observed at 100 iterations.

case, theα = 1 improve the reconstruction compared toα = 0.1
and α = 0.5. After estimating the object, it is also possible to
reconstruct the probe as discussed in the following section.

D. Probe Reconstruction

The reconstruction of the probe using the optimisation prob-
lem in (18) can be performed after the estimation of the matrix
AM . As discussed in the forward multislice model, the esti-
mated matrix AM can be generated by calculating the prod-
uct of each slice of the object Om and the Fresnel matrix
Gm, AM = OM

∏M−1
m=1 GmOm. In Fig. 12, the reconstructed

probes observed at 100 iterations are shown after estimating
the slices in Fig. 8. It can be seen that for 3PIE algorithm for
specimen MoS2 at α = 1.0, we have artifacts on the amplitude

since the Airy disk appears not only at the center but also at
different positions on the left and top right.

E. Experimental Data

Numerical evaluations on diffraction intensity measurements
acquired experimentally from a MoS2 specimen are presented
below. The thickness of the experimental specimen was deter-
mined by comparison with simulated position-averaged diffrac-
tion patterns to be approximately 35 nm. Further experimental
details are described in Section V.

Applying the same algorithms to experimental instead of
simulated data is a crucial aspect to demonstrate the practical
usefulness of the methods.

Real data is affected by additional parameters that are dif-
ficult or even impossible to include in simulations and in the
algorithmic setups above. For example, the recording inherently
contains Poissonian counting noise, the camera has a modulation
transfer function which leads to a blurring of diffraction space
features, and the projection system of the microscope can cause
geometrical distortions of the diffraction patterns. Furthermore,
the scan positions of the STEM probe usually deviate slightly
from the ideal regular raster due to instabilities of the scan
engine. Hence, reconstructing based on experimental data is a
crucial checkpoint in the evaluation of the proposed algorithms.

Due to this a detailed analysis of the performance of layer-
wise optimisation and sparse matrix decomposition algorithms
in dependence of the experimental conditions were set aside
for a future task. Instead this preliminary evaluation focuses on
demonstrating the principal applicability by targeting the qual-
itative reconstruction of the MoS2 structure using a relatively
small number of five slices, similar to the example in Fig. 7. In
particular, this was necessary due to computational efficiency
and the much higher dimensionality of the experimental data
as compared to the simulations, i.e., the large number of probe
positions and camera pixels.

1) Slice Reconstruction: Consequently, the phases of the
individual slice reconstructions in Fig. 13 were not expected
to quantitatively represent the actual phase gratings on the one
hand. On the other hand, they were supposed to resemble the
atomic structure of the specimen in the respective slices, taking
a large portion of the dynamical scattering into account.
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Fig. 13. Phase reconstruction in radian of 5 slices from experimental data
MoS2 with Fresnel propagation distance 7.377 nm. The reconstruction is ob-
served after 50 iterations.

Fig. 14. Projection of the phase reconstruction, in radian, of MoS2.

Indeed, the atomic structure is consistently visible in all
slices, opposite to single-slice models for which evaluations at
thicknesses of tens of nanometers are by far out of range. The
dynamic range of the phase is comparably low, most probably
because more slices would be needed to disentangle the slice po-
tentials and Fresnel propagation between the slices completely.
Fig. 13 shows the reconstructions for all considered algorithms.
In contrast to Layer-wise optimization and Sparse Matrix De-
composition, the 3PIE algorithms struggle to reconstruct slices
1 to 3.

Furthermore, the slices were combined into the object transfer
function matrix A and its two-dimensional projection represen-
ing all atoms at once is presented in Fig. 14. A coloured overlay
of the Molybdenum (Mo) and Sulfur (S) atoms were added to
the figure in order to better visualise the reconstructed atomic
arrangement.

2) Probe Reconstruction: A direct implementation of the
Amplitude Flow as in (7) was adopted in order to reconstruct the
illuminating probe after estimating the object transfer function
matrix A. At this setting the focus was solely on the intensity
of the diffraction patterns acquired at the center position of the
illuminated area on the specimen. The resulting reconstructions
of amplitude and phase of the probe are presented in Fig. 15.
It shows that the data was taken with a well-focused probe as
indicated by the sharp peak in the amplitude and a flat phase
except for the noise. The reconstruction of the probe is in general

Fig. 15. Probe reconstruction after estimating the specimen’s slice of experi-
mental data MoS2. The reconstruction is observed after 50 iterations.

a robust check whether the algorithm and the parameters used
for the reconstruction were suitable to separate illumination and
specimen. In the presented case it can be concluded that the large
slice thickness did not affect this, because no specimen details
are visible in the reconstructed probe of both, reconstructed data
from sparse matrix decomposition and layer-wise optimisation.

F. Numerical Computations

Besides theoretical computation complexity, the numerical
computation time for all algorithms was evaluated. Since the
parameters that affect the computation are the number of slices
and dimension of the datasets, numerical computation for both
aspects are presented. For all algorithms the evaluation was
performed individually on the same workstation. It was equipped
with AMD EPYC 7543P with 32 CPU (64 threads) operating
at a base frequency of 2.80 GHz, and 512 GB DDR4 RAM
with operating frequency of 3.2 GHz. It should be noted that
we performed the simulation for each algorithm without noise
background, i.e., no other processes or algorithms were running
during the evaluation. Fig. 16 shows the wall time of all algo-
rithms for increasing dimension and number of slices. In general,
3PIE requires smaller computation time per iteration compared
to the proposed algorithms.

For Sparse Matrix Decomposition the practical implementa-
tion, as discussed in Section IV, can significantly improve the
computation time, as for both scenarios the Sparse Matrix De-
composition required less computation time than the Layer-wise
Optimisation. While the computation complexity, as discussed
in Section IV, showed that Sparse Matrix Decomposition has
the worst complexity among the algorithms presented in this
article, it could be optimised for fast and efficient implementa-
tion by reshaping the product of AP ∈ CN2×S into a stack of
two-dimensional and incorporating the fast Fourier transform.
Furthermore, if Ps is given by shifts of a probe P, that is
Ps = SsP with a shift operator Ss, then the computational
speed of the product AP was increased. For a k-th row of AP
the identity

(AP)(k) = N2F2D

[
F−1

2DA(k) ◦ F−1
2DRP

]
holds, where R is a coordinate reversal. This would lead to the
computational complexity of

O (N4 logN2 + SN2
)

operations for the product AP instead of O(N4S).
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Fig. 16. CPU Wall Time of all algorithms both for increasing dimension and
number of slices.

When the number of slices was increased, the computation
time of Layer-wise Optimisation deteriorated in contrast to 3PIE,
which is explained by the slice-by-slice optimisation approach.
That Layer-wise Optimisation can be further accelerated by a
parallelized computation of the gradient, which was not used in
the conducted numerical experiments.

VII. DISCUSSION

Numerical observations showed that the proposed algorithms
performed robust reconstruction in terms of increasing number
of slices for arbitrary slice thickness compared to the state of the
art algorithm 3PIE. Additionally, it was shown that for experi-
mental data sets, the proposed algorithms provided better recon-
struction than the 3PIE algorithm. However, one disadvantage
of the proposed methods is that the computation time required
to perform the evaluation is larger than for the state of the art
algorithm. Especially for Layer-wise Optimisation when a larger
number of slices is to be estimated. The possible improvement
for both proposed algorithms should be investigated further in a
future study.

Theoretically it would be interesting to examine the funda-
mental limit of the algorithms with respect to the number of
slices needed to disentangle interaction and Fresnel propagation
sufficiently well. Moreover, a systematic study addressing the
impact of the probe semi-convergence angle, the electron energy,
aberrations of the electron-optical system and coherence effects
could shed light on the robustness of the presented methodology
in respect to the multitude of experimental parameters in real
measurements. If one wants to work with low dose data, where

Poisson noise is dominant, one has to modify the objective func-
tion. Poisson maximum likelihood has been used with success in
case of single slice ptychography [41] and can be adapted to our
layer-wise estimation. For the sparse matrix decomposition, one
can even use a Poisson phase retrieval method [42] in the first
step, estimatingA, without changing the decomposition method
at all.

Since the reformulation of the forward multislice model in this
article yielded purely a matrix representing the transfer function
of a thick specimen, it would be possible to relate such a matrix
to a scattering matrix constructed from the Bloch wave method
and observe the differences between both approaches. The latter
would require an intensive computational effort of eigenvalue
decomposition for huge scattering matrices.

It should be possible to estimate the specimen thickness
directly from the algorithms. One possibility could be to incor-
porate information from the high-angle intensity of diffraction
patterns, or to start from a coarse slicing first with large slice
thicknesses, and then increase the number of slices subsequently.
In case that a sufficiently high total thickness is assumed, empty
slices should emerge, indicating that the specimen is actually
compact along the electron beam direction. In general, a suitable
regularisation should be developed and applied in future works
to improve the reconstruction as well as to optimally estimate
the Fresnel propagation distance. An interesting approach is a
suitable sparsity model, as applied in [43] for the case of single
slice ptychography.

Finally, the reformulation of the multislice scheme as a simple,
though large, one-step matrix multiplication can be used to easily
characterise the specimen transfer function. Hence, investigating
the effect of different probe settings could be done by a matrix
multiplication without re-running the propagation from the first
slice. In that respect, studying the capabilities and performance
of the reformulation is not only relevant for solving inverse prob-
lems, but also interesting with respect to conventional forward
simulations.

VIII. CONCLUSION AND SUMMARY

We proposed reformulation of the forward multislice method
such that the transfer function of a thick specimen can be directly
determined. In combination with the ptychographic approach
we presented two optimisation models for solving the inverse
multislice ptychography problem for both arbitrary thickness
and atomic plane decomposition. In the first case, given the
intensity of diffraction patterns, several atomic planes were
jointly processed into a single reconstruction in order to show
the total potential. In the atomic plane decomposition each slice
was reconstructed at its atomic plane and given only the intensity
of the diffraction patterns the results showed the unique atomic
positions in each slice.

Our observations showed that the proposed algorithms
outperform the 3PIE algorithm for a larger number of slices in
the arbitrary slice thickness scenario as well as for experimental
data sets. In contrast to the 3PIE algorithm that highly depends
on the selection of an optimal step size, our proposed method
can automatically determine the step size, in terms of the
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maximum singular value. In the atomic plane decomposition,
since we have small Fresnel propagation distance, it is in
general difficult to uniquely decompose the atom positions for
each slice. Nevertheless, some potential approaches such as
using data acquired at a lower acceleration voltage, namely
80 keV, can improve the reconstruction.

We also supported our numerical observations with the
reconstruction of the object given the intensity of diffrac-
tion patterns acquired from the experimental data set of
MoS2. It was shown that both algorithms can reconstruct the
phase of the specimen. Additionally, by using the reformu-
lation of the forward multislice method, a matrix was con-
structed that represented the thick object transfer function,
i.e. scattering matrix. This reformulation can be used to di-
rectly generate the two-dimensional projection of the atomic
arrangement.
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