
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022 905

dO: A Differentiable Engine for Deep Lens Design of
Computational Imaging Systems
Congli Wang , Ni Chen , and Wolfgang Heidrich , Fellow, IEEE

Abstract—Computational imaging systems algorithmically post-
process acquisition images either to reveal physical quantities of
interest or to increase image quality, e.g., deblurring. Designing
a computational imaging system requires co-design of optics and
algorithms, and recently Deep Lens systems have been proposed in
which both components are end-to-end designed using data-driven
end-to-end training. However, progress on this exciting concept has
so far been hampered by the lack of differentiable forward simu-
lations for complex optical design spaces. Here, we introduce dO
(DiffOptics) to provide derivative insights into the design pipeline
to chain variable parameters and their gradients to an error metric
through differential ray tracing. However, straightforward back-
propagation of many millions of rays requires unaffordable device
memory, and is not resolved by prior works. dO alleviates this issue
using two customized memory-efficient techniques: differentiable
ray-surface intersection and adjoint back-propagation. Broad ap-
plication examples demonstrate the versatility and flexibility of
dO, including classical lens designs in asphere, double-Gauss, and
freeform, reverse engineering for metrology, and joint designs of
optics-network in computational imaging applications. We believe
dO enables a radically new approach to computational imaging
system designs and relevant research domains.

Index Terms—End-to-end lens design, image reconstruction,
memory-efficient backpropagation, physics-based learning.

I. INTRODUCTION

CAMERAS are designed with a non-trivial tradeoff between
image quality (optical aberrations) and practical consider-

ations (constraints, cost, form-factor, fabrication availability). In
traditional optical design complex lens assemblies are simulated
using ray-tracing and then semi-manually tuned to satisfy the
performance requirements. Commercial software for automated
lens design is nowadays the norm, such as ZEMAX [1] and
Code V [2].

Computational imaging systems extend the capability of con-
ventional imaging pipelines by having an additional degree of
freedom in software. The spirit is to customize cameras or

Manuscript received 29 December 2021; revised 24 July 2022; accepted 26
September 2022. Date of publication 14 October 2022; date of current version
20 October 2022. This work was supported by individual baseline funding of
King Abdullah University of Science and Technology. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Henry Arguello. (Corresponding author: Wolfgang Heidrich.)

The authors are with the Visual Computing Center, King Abdul-
lah University of Science and Technology, Thuwal 23955-6900, Saudi
Arabia (e-mail: congli.wang@kaust.edu.sa; ni.chen@kaust.edu.sa; wolfgang.
heidrich@kaust.edu.sa).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCI.2022.3212837, provided by the authors.

Digital Object Identifier 10.1109/TCI.2022.3212837

imaging modalities, and acquisition images are regarded as
optically encoded information about the physical world. Com-
putational methods, e.g., model-based numerical optimization
or data-driven machine learning, are applied to raw images and
decode the information. Examples are wavefront coding [3] and
coded aperture variants [4], [5], [6] to extend depth-of-field or
to perceive depth, cameras to capture individual rays (i.e., light
fields) [7], [8], and cameras capable of high dynamic ranges [9].

The design of computational imaging systems is particularly
challenging in that the design tradeoff happens in both hard-
ware and software. As such the final design typically occupies
a very high dimensional design space, that complicates easy
and intuitive solutions. One way to explore the design space
and evolve the co-design is to do stochastic optimization by
gradient-descent, as shown in prior end-to-end trained Deep
Lens works [10], [11], [12], [13], [14]. Such an approach requires
the derivative of the final image concerning individual optical
design parameters. This derivative-aware modeling is non-trivial
for complex lens groups, and hence fully differentiable optical
models have so far only been available for simplistic design
spaces such as a diffractive optical element or a lensless mask,
as demonstrated by various application-oriented deep optics de-
signs, for image classification [15], depth estimation [16], [17],
[18], lensless imaging [19], HDR acuisitions [20], [21], extended
depth-of-field [22], computational micrscopy [23], [24], and for
versatile purposes [25], [26]. See also [27], [28] for perspectives.
These are a long way from the expressive power of ray-tracing
based systems like ZEMAX [1] and Code V [2].

To partially tackle these challenges, derivative-aware lens
design engines [29], [30], [31] were inspired by automatic differ-
entiation (AD) [32], a fundamental technique in deep learning.
The main distinction of a derivative-aware engine compared
to conventional ones is differentiability: The availability of
derivative information relating design parameters and the error
metric. Via differential ray tracing [30], design parameters and
their gradients are chained to the error metric through a so-called
computational graph, on which back-propagation results in how
each design parameter should quantitatively change to reduce
the error metric. Together with gradient-based optimization,
the obtained derivatives provide a searching direction in the
hyper-parameter space to locally guide evolution of current
design, improving performance in terms of the error metric.
Combined with deep neural networks, such a differentiable
engine could be employed for generating lens designs [33],
[34] or image restoration [35], [36]. Recent works [13], [14]
rely on differentiable ray tracing for end-to-end designs in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3112-2820
https://orcid.org/0000-0002-0663-3867
https://orcid.org/0000-0002-4227-8508
mailto:congli.wang@kaust.edu.sa
mailto:ni.chen@kaust.edu.sa
mailto:wolfgang.heidrich@kaust.edu.sa
mailto:wolfgang.heidrich@kaust.edu.sa
https://doi.org/10.1109/TCI.2022.3212837

906 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

computational imaging. Similar trends also appear in other
research domains for solving inverse problems utilizing this
additional amount of information on derivatives, in computer
graphics [37], 3D reconstruction [38], ptychography [39], [40],
head-mounted displays calibration [41], lens metrology [42],
and phase microscopy [43].

However, one main challenge of direct applying back-
propagation to gradient computations, is memory-hunger, in
that the underlining computational graph could grow large when
many millions of Monte Carlo rays are sampled, as required by
rendering a megapixel image for a design algorithm to process
with. As such, intermediate variables and computations could
easily fill up device memory, limiting the scope of scaling-up,
hence reducing the overall performance of a derivative-aware
pipeline. Compared to model-based (or, physics-based) learning
scenarios [44], our applications require the image formation to
be computed in a Monte Carlo fashion and cannot be explicitly
stated, and thus memory-efficient techniques rely on known
image formation models like [44] are not directly applicable.
Similar memory-hunger issue exists also in differentiable ren-
dering for end-to-end learning [37], [45], and solutions have
been proposed [46]. However, an optical design engine differs
from a general-purpose graphics renderer, in that optical surface
geometry representations are well-parameterized surfaces (e.g.,
aspheric or freeform splines) rather than discrete meshes. For
non-spherical representations, the parameterization is so com-
plicated that there are no analytical solutions for ray-surface
intersection. As a result, ray-surface intersections are dominant
computations, and become the memory-hunger bottleneck in
rendering sensor image and its associated derivatives to design
parameters. Specific problems like this in a differentiable op-
tical design engine, are problems that this paper seeks crafted
solutions for.

This memory issue has not been fully addressed in previous
derivative-aware ray tracing works [13], [29], [30], [33] due to
different application-oriented goals. In [13], the implementation
of a differentiable ray tracing scheme enables image rendering,
and thus rays are traced backwardly starting from the sensor
plane, through the lenses, landing at the scene. Gradients are
naively accumulated by unrolling iterations of a ray-surface
intersection root finder, i.e. straightforward back-propagation.
This most frequent yet time-critical operation consumes a large
amount of memory and computing resources that limit the
number of rays permissible for each render batch. Further, the
gradient aggregation at the sensor plane suffers additionally to
the large amount of rays sampled per pixel, and [13] sidesteps
this issue by splitting the sensor image into blocks and rendering
them independently. However this issue can be addressed in
a more principled fashion where gradients are computed and
back-propagated in a way that is efficient in terms of both com-
pute time and memory. This is made possible by computing the
gradients instead of directly back-propagating the computational
graph, as explained below.

In this work we propose dO (DiffOptics), a derivative-
aware lens design optimization pipeline using differentiable
ray-tracing. To back-propagate from the error metric to design
variable parameters in a memory-efficient way, we analyze the

gradients in situations of ray-surface intersection and adjoint
back-propagation, to enable validity and efficiency for gradient
computation and inference. Based on the obtained derivatives,
advanced algorithms could be developed for specific design
applications.

Various applications are demonstrated using the proposed
derivative-aware pipeline, ranging from classical usage such
as spherical and aspherical lens group design optimization,
local sensitivity analysis, freeform surface optimization, setup
misalignment estimation, to advanced computational imaging
applications. We believe that these examples highlight the poten-
tial and possible application domains shown by dO. This diverse
application range differentiates dO from previous works as a
general-purpose derivative-aware pipeline based on geometric
ray tracing.

In contrast to earlier works that rely on external ray tracing
engines such as [13], dO is fully implemented in PyTorch,
which makes it easily portable and simplifies integration with
existing machine learning image reconstruction methods, while
at the same time utilizing GPU compute resources in an efficient
fashion. Source code will be available at [47].

II. DO: METHOD AND APPROACH

A. Overview

We use geometric ray tracing to model the light transport in
a sequential-mode lens design. A lens system is parameterized
by a vector variable θθθ ∈ Rn, a collection of n-number design
parameters. Starting from one end of the lens system, sampling
rays are sequentially traced through a set of parameterized
optical surfaces, intersecting only once for each surface, while
traveling towards the other end of the lens system. Rays can
be traced starting the object plane towards the image plane,
as the preferable way in lens design for aberration analysis.
Alternatively, rays are traced reversely starting from the image
plane towards the object plane preferably in graphics for image
rendering. For the ith ray, intersection on the image (object) plane
is determined by ray tracing, as a “black-box” function of θθθ,
denoted as pi(θθθ) ∈ R2. Given m number of sampling rays, the
collection ofp1,...,m is known as the spot diagram in lens design,
denoted as p ∈ R2m, a concatenation of vectors.

To optimize a design, a merit function ε(·) : R2m �→ R is ap-
plied to p, producing a scalar error ε(p(θθθ)) ∈ R, as an indicator
for design performance. Design optimization aims to solve for
an optimal θθθ∗ by minimizing the error:

θθθ∗ = argmin
θθθ

ε(p(θθθ)). (1)

For example, the usual merit function is the spot RMS error, by
comparing the current spot diagram against a target one ptarget,
in a least square sense:

ε(p) = ‖p− ptarget‖2. (2)

In dO, the merit function can also be at the irradiance level,
when optimizing in the image space rather in the intersection
space, e.g. in Refs. [13], [48]. This requires integrating a sensor
image I(p) from intersections p, given a pre-defined pixel size.
The error merit can be defined such that the produced image

WANG et al.: dO: A DIFFERENTIABLE ENGINE FOR DEEP LENS DESIGN OF COMPUTATIONAL IMAGING SYSTEMS 907

Fig. 1. Ray tracing with back-propagation. To be derivative-aware, all modules must be differentiable so that gradients can be back-propagated from the error
metric ε(p(θθθ)) to variable parameters θθθ. This is achieved by two stages of the reverse-mode AD: the forward and the backward passes. To ensure differentiability
and efficiency, a custom ray-surface intersection solver is introduced in Section II-C. Instead of unrolling iterations for forward/backward, only the forward (no
AD) is computed to obtain solutions at surfaces fi = 0, and gradients are amended afterwards as in (7).

is close to a target image Itarget in a least square sense using
pixel-by-pixel comparison:

ε(I(p)) = ‖I(p)− Itarget‖2. (3)

Crucially, the advantage of such an irradiance-based merit func-
tion allows for the consideration of software reconstruction
modules such as deep neural networks in the design process. This
allows for end-to-end designs in which the optics and the image
processing software are jointly optimized, and design solutions
are found in which the optical design maximizes the ability of
the software module to restore quality images.

Given a merit function ε(·), our goal is to evolve variable
parameters θθθ iteratively towards an optimal θθθ∗, using gradient-
based optimization. This requires computing ∂ε/∂θθθ ∈ Rn, the
partial derivatives that indicate how design parameters affect the
error metric locally. Assuming ε(p(θθθ)) is a continuous function
of θθθ, by the chain rule, the partial derivatives in (1) expand as,
without or with I:

∂ε

∂θθθ
=
∂p

∂θθθ

∂ε

∂p
, (4a)

∂ε

∂θθθ
=
∂p

∂θθθ

∂I

∂p

∂ε

∂I
. (4b)

In the following, we rely on using AD for computing (4). In AD,
sole Jacobian matrices are rarely evaluated, instead the vector-
Jacobian products are computed for a given perturbation, in our
case denoted as Δε and Δθθθ, with J T

(·) denoting the Jacobian
transposes, (4) rewrites as:

Δθθθ = J T
p J T

ε Δε, (5a)

Δθθθ = J T
p J T

I J T
ε Δε. (5b)

Given a desired decrease Δε in the error metric, our goal in
this paper is to compute the corresponding variable parame-
ter changes Δθθθ (i.e., the derivatives), by evaluating (5), and
preferably being memory-efficient for scaling up to large design
problems.

B. Ray Tracing With Back-Propagation

A straightforward way to compute the derivatives in (5) is
by using AD to perform all the computations in ray tracing.
This requires using a derivative-aware numerical library, e.g.,
PyTorch [49], to track and compute both the primal value and
its derivatives for every elementary arithmetic operation. For our

Fig. 2. Derivative-aware property of dO. In this example, the first surface
curvature θ ∈ R of a lens is under investigation. dO can obtain a spot diagram
p(θ) and derivatives ∂p/∂θ, or a rendered image I(p) and derivative ∂I/∂θ.

multiple-input and single-output case, i.e., many variable param-
eters and one scalar error metric, for numerical efficiency it is
preferable to employ the reverse-mode AD, or back-propagation
in the context of machine learning. Briefly speaking, to perform
back-propagation on (1) to calculate the derivatives, two stages
are required, the forward pass and the backward pass.

Fig. 1 illustrates this process by applying the reverse-mode
AD to ray tracing. In the forward pass, values of differentiable
parameters (θθθ in our case) are inputs from the starting plane to
the ending plane, by ray tracing, to obtain intersections p(θθθ).
With a user-defined merit function, an error metric ε(p(θθθ)) is
calculated. The forward pass defines a computational graph in
progressive that relates all differentiable variables, and non-
differentiable variables are not needed for the forward pass
with AD (i.e., forward with no AD in Fig. 1). In the backward
pass, this computational graph is back-propagated to compute
gradients following the chain rule, starting from the previously
obtained error metric ε(p(θθθ)), to compute variable derivatives
Δθθθ as in (5). Fig. 2 illustrates a derivative-aware example where
for illustrative purposes the partial derivatives are shown for
interpretation. For example, the derivatives of the spot diagram
are the “flow” diagram ∂p/∂θ revealing the motion of the spot
diagram when changing θ, where the arrows indicate moving
directions and lengths indicate magnitudes. In this case, increas-
ing θ will focus the rays, affecting more in the peripheral spots
than the central ones. Similarly, the derivative of the rendered
image is a “derivative” image ∂I/∂θ that tells how would the
pixel value changes when changing θ. The “derivative image”
indicates that the peripheral pixels are more sensitive than the
central ones, as expected.

To ensure differentiability, all modules must be differentiable,
i.e., modular computations are derivative-aware so that both

908 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

Fig. 3. The ray-surface intersection problem (6) is solved by Newton’s method.
Once the optimal t∗ is obtained, the AD-version t is computed as in (7).

the primals and their derivatives are computed and tracked in
a computational graph. This requires both the optical system
and the merit function to be fully differentiable, so that θθθ, p,
ε(p(θθθ)), and the desired derivatives Δθθθ given Δε, can all be
related through ray tracing.

C. Differentiable Ray-Surface Intersection

To perform ray tracing from surface to surface, the crucial
part in a differentiable optical system is to calculate ray-surface
intersection, where an intersection point x ∈ R3 is computed.
The intersection lies on an optical surface described by an
implicit function f(x;θθθ) = 0, and lies along the ray direction.
Given a ray {o,d} of origino ∈ R3 and directiond ∈ R3 of unit
length, x = o+ td for a positive marching distance t ∈ R+.
Fig. 3 illustrates this problem, which finds t > 0 such that:

f(x;θθθ) = f(o+ td;θθθ) = 0. (6)

It can be solved using iterative root finders (e.g., Newton’s
method) implemented in AD, unrolling the iterations for gra-
dient evaluations, so that the solution t and its gradients can
be related to the lens parameters θθθ, as in Ref. [13]. However,
this straightforward approach is memory consuming because of
storing the intermediate iteration variables. This issue can be
avoided by taking advantage of the fact that solution to (6) is in-
dependent on initialization of t, and hence the optimal solution t∗

can be first solved with no AD, no need for storing intermediate
states, and calculate the AD-version t by one Newton iteration:

t← t∗ − f(x;θθθ)

d · ∇f(x;θθθ) , with x = o+ t∗d, (7)

where · denotes inner product, and∇f(x;θθθ) denotes the spatial
derivatives of the implicit function with respect to x, parameter-
ized by θθθ. Refer to Supplemental Document for specific forms
of f(·) and∇f(·). Example surfaces are aspheres, XY polyno-
mials, and B-splines. Notice our approach does not depend on
specific iteration solvers chosen for solving (6), yet keeping the
solution differentiable. Our approach is simple yet effective, and
to our best knowledge is the first to address this memory issue
in differentiable optics research.

We employ Newton’s method for obtaining t∗, initialized by
a non-singular estimate t(0) = (zf − oz)/dz as in Fig. 3, and
the iteration stops when residual is smaller than the tolerance.

Fig. 4. Comparison between the two ray-surface intersection methods when
optimizing Fig. 14. Our method reduces the required memory by ∼ 6 times.

Fig. 5. Gradient images computed using different ray-surface intersection
methods. Compared to gradient image computed by [13], our approach produces
a cleaner one, due to the memory allowance for sampling more rays, as the
consequence of low memory consumption of computing the intersections. The
finite difference result suffers from slight blurriness due to numerical rounding
errors, because the finite difference values of θ+/− = {10−6,−10−6} were
approaching the single floating point precision.

Convergence of t(k) and f(o+ t(k)d;θθθ) is within a few itera-
tions of k. For spherical lenses, Newton’s method converges in
theory within exactly one iteration. Fig. 4 shows the superiority
of the proposed approach, in comparison against the unrolled
approach [13]. The unrolled approach needs to store intermedi-
ate states for AD, and consumes a large memory that cannot be
affordable on a single GPU, and hence limiting the total number
of freeform coefficients in the optimization. In contrast, our
proposed differentiable solver drastically alleviates this issue,
and imagine how often ray-surface intersection happen in ray
tracing the design. This improvement allows dO to perform
memory-efficient back-propagation when evaluating J T

p in (5),
no matter what merit function is chosen.

Our proposed method improves gradient estimates for Deep
Lens designs, by allowing more rays to be sampled per pixel. In
Fig. 5 a doublet aspheric lens (see Table III in Supplementary
Document for prescription) is under investigation, with its first
surface’s 4th aspheric coefficient θ = 0 being differentiated.
Given a planar texture image object, dO renders the correspond-
ing sensor image I and its gradient ∂I/∂θ. Fig. 5 shows the same
gradient image computed using method in [13] and ours, as well
as a finite difference version for reference, which is inaccurate
due to limited numerical precision. Method in [13] is limited to
fewer rays per pixel because of high memory consumption in
computing ray-surface intersection, producing a noisy gradient
image. In contrast, our method allows for more rays to be sam-
pled per pixel, yielding a cleaner gradient image. This example
demonstrates the superiority of our approach over [13], and the
benefit of applying our approach for robust gradient estimate,
and hence to Deep Lens training.

WANG et al.: dO: A DIFFERENTIABLE ENGINE FOR DEEP LENS DESIGN OF COMPUTATIONAL IMAGING SYSTEMS 909

Fig. 6. Adjoint back-propagation. In end-to-end learning for computational imaging applications, the merit function contains a rendering image, a neural network,
and its weights as variables. Rendering the image could use many millions of rays, and the unaffordable memory limits total ray samples in back-propagation (a),
and hence compromising the performance. Adjoint back-propagation (b) alleviates this issue by splitting computations into multiple stages (i), (ii), and (iii).

D. Adjoint Back-Propagation

Evaluating (5) depends also on the specific merit function
chosen. For simple metrics such as the spot RMS in conventional
lens designs, evaluating (5a) does not involve many rays and the
memory issue is not urgent. However, when the merit function
is in the image space, e.g. (3), and involves rendering images,
for example a megapixel resolution image I(p) may take an
intensive sampling of many millions of rays. In this scenario,
direct back-propagating on (5b) could be problematic and may
require impractical amounts of memory in the backward pass,
making derivative evaluations prohibitive in practice.

This issue can be partially alleviated by exploiting a key
insight from (5b) that, the target Δθθθ contains two parts: (i)
ray-tracing relevant derivatives J T

p determined by the current
design, and (ii) error-metric relevant derivatives J T

I J T
ε de-

termined by the chosen merit function ε(·). This separability
property enables us to split computations into multiple passes,
eventually alleviating the back-propagation memory issue. A
similar memory-efficient approach was proposed in Ref. [46].

The separability property reflects by introducing an interme-
diate derivative image ΔI to (5b):

ΔI = J T
I J T

ε Δε, (8a)

Δθθθ = J T
p ΔI. (8b)

By first evaluating (8a) and then (8b), the original (5b) can be
eventually evaluated. The computations are hence split into three
sequential stages:

i) Forward computation (no AD). This obtains a rendered
image I(θθθ) solely, with no derivative information on θθθ.
Since no computational graph is created or stored, this
stage has low memory requirements.

ii) Forward and backward on the metric function ε(I). This
treats the rendered image I as a differentiable variable,
and obtains ΔI by back-propagating (8a).

iii) Forward and backward on the optical system. This
gives the final desired variable derivatives Δθθθ by back-
propagating (8b).

The above procedure, termed the adjoint back-propagation,
allows the backward pass to be performed at stages (ii,iii), and
hence alleviating the memory issue as a whole. The adjoint

Fig. 7. Memory and time comparison between back-propagation (BP) and
adjoint back-propagation (adjoint BP) with respect to the number of sampling
rays when the merit function is in the image space, i.e., evaluating (5b). Due
to excessive memory requirements, the baseline method cannot proceed beyond
16 millions of rays, whereas the adjoint method is capable of that meanwhile
maintaining a low memory request.

terminology is relevant to the adjoint methods in other research
fields, in that the computations of back-propagation are sep-
arated with the adjoint part being computed without storing
intermediate variables from the forward part, as in (8).

This computational spirit is depicted in Fig. 6, where the merit
function is chosen deliberately to be the one used in end-to-end
learning [10], [11], [12], where the rendered image I(p(θθθ)) is
fed to a neural network whose own weights θθθnet are adjustable
during training, as a set of additional differentiable parameters
in the design optimization process. In end-to-end learning, the
goal is to optimize both the optical system parameters θθθ and net-
work weights θθθnet such that the hardware-software combination
produces the optimal image quality for the neural network to
sharpen raw sensor images. See Figs. 15 and 16 for examples.

Fig. 7 shows a memory consumption comparison between the
two back-propagation methods, applying to Fig. 2, assuming
a dummy merit function of (3). The adjoint back-propagation
takes more time, but the memory consumption maintains at a
low-level, allowing for aggregations and sampling scale-ups.
This memory-efficiency enables a large number of sampling rays
for faithful image rendering for practical usage in end-to-end
computational imaging designs.

910 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

Fig. 8. Entrance pupil calculation. By tracing a dense grid at the very first
optical surface, whose aperture is the dark circle, overlaid on which we can obtain
the entrance pupil area (bright region) for subsequent ray spatial sampling, at
different viewing angles.

Fig. 9. Spot diagrams and RMS spot errors that produced by dO highly
resemble those by Zemax.

Fig. 10. Spherical aberration minimization. Differentiable parameters θθθ are
surface curvature, conic and 4th asphere coefficient. Our solver converges in 1 s.

Fig. 11. Nikon lens group total aberration minimization. Starting from an all-
spherical design, with the differentiable parametersθθθ being all surface curvatures
and aspheric coefficients of two surfaces, our optimized version achieves similar
performance as the original design.

III. IMPLEMENTATION

A. Optimization

Given the derivatives Δθθθ from back-propagating (5), dO
performs optimization and iteratively changes the variable pa-
rameters θθθ. When there are constraints in the design, e.g., posi-
tive air-spacing, minimum glass thickness or back focal length,

Fig. 12. Tolerancing a nominal lens system. The sensitivity matrices are
readily obtained as the Jacobians in dO. Here, εεε and ∂εεε/∂θθθ represent the
sensitivity matrices in three different field of views.

Fig. 13. Overview of advanced applications. (a) Caustic engineering aims to
design a freeform surface to produce a target irradiance pattern at certain distance
(Fig. 14). (b) Real setup misalignment can be estimated by using dO in reverse as
a black-box solver (Fig. 17). (c) End-to-end designs that jointly optimize lenses
and image post-processing algorithms (here, neural networks) for computational
imaging applications (Fig. 15, 16).

maximum system overall size, (1) can be modified by adding a
vector constraint function.

The specific optimization method depends on the number of
variables. When the number of variables is small (for example
θθθ ∈ Rn, n < 20), Classical damped least squares [50] are em-
ployed to efficiently optimize (1), that the required Jacobians
can be constructed from the derivative vectors. In this case it
does not take full advantage of the derivative-aware property
of dO. This is in contrast to the case when n is large (e.g.
for free-form surface optimization) and the Jacobians are too
large to be explicitly constructed, and popular gradient descent
methods such as Adam [51] can be employed. If desirable,
additional regularization terms are possible, for example when
solving (15). This optimization flexibility feature differentiates
dO from existing optical design software.

B. Lens System

We follow the standard lens design pipeline [52], [53] to
model a lens systems. We focus on the sequential mode, where
starting from one end of the lens system, rays are sequentially
traced through a sequence of parameterized optical surfaces

WANG et al.: dO: A DIFFERENTIABLE ENGINE FOR DEEP LENS DESIGN OF COMPUTATIONAL IMAGING SYSTEMS 911

Fig. 14. Caustic engineering. We optimize a freeform surface to refractive
collimated light into a target irradiance distribution at two focal lengths, at
wavelength 532.8 nm with a refractive index of 1.5. dO produces a smooth
freeform surface, and optimizes the caustic structures efficiently as shown in the
intermediate states. See Visualization 1 for the optimization process.

(including the image plane, i.e., the sensor plane), intersecting
only once for each surface, while traveling towards the other end
of the lens system. In the sequential mode, the exact visibility
ordering of the surfaces is known a priori, and thus no need
for finding the closest surface intersection when performing ray
tracing.

Ray propagation through a lens system involves two major
steps, finding the ray-surface intersection point (finding intersec-
tion points by solving (6)), and refraction of the ray at material
interfaces with chromatic effects. Only valid rays are traced in
continuity, whereas invalid rays happen when the intersections
are outside of the lens geometry or when total internal reflection
takes place.

At material interfaces, transmitted direction dt is determined
from surface normal direction n = ∇f/‖∇f‖ and incident di-
rection di, by Snell’s law [54]:

dt = n
√
1− (1− cos2 ψi)η2 + η(di − n cosψi), (9)

where cosψi = di · n and η = ni/nt is the ratio of refraction
indices of the two materials. Refractive index follows Cauchy’s
equation n(λ) = A+B/λ2, with A and B determined from
central refractive index and Abbe number.

Though in this work we focus on the sequential mode where
optical surfaces are fixed in a known order, non-sequential mode
should also be possible with proper extensions and modifications
on the current ray tracing engine.

C. Two Tracing Modes: Forward and Backward

Depending on the needs, rays can be traced through a lens
system in two different modes, forward mode or backward mode.
In the forward mode, rays are traced starting from the object
plane towards the image plane. This is the preferable way in lens
design for aberration analysis, e.g., generation for spot diagrams.
In the backward mode, rays are traced reversely, starting from the
image plane towards the object plane. This is a sampling efficient
way for sensor image rendering, and thus is the preferable way
in computer graphics to render realistic images. We will be using
these two modes interchangeably depending on specific needs.

D. Differentiable Image Rendering From Intersections

Once tracing is finished, a synthetic image I(p) can be
generated given the intersection pointsp, provided with a proper
image integrator. This process (termed rendering) of pixelization
from a continuous light signals to discretized pixel values, is
handled differently in the two tracing modes.

Reconstruction filter in the forward mode: In the forward
tracing mode, performance analysis is conduct to understand the
optical property of the current design, where rays are purposely
generated according to analysis-specific criteria. This process
may involve gradient computations, and differentiability is de-
sired in that the generated image pixel values are differentiable
to intersection point movements.

To ensure differentiability, the derivatives of this mapping
from intersection to pixel values need to be continuous. dO
employs a linear interpolation scheme to round the fractional
intersection point p into the nearest four neighboring pixels,
with the corresponding four pixel values linearly weighted.

Monte Carlo integrator in the backward mode: In the back-
ward tracing mode, rays are initialized from the pixelated sensor
plane, and are traced outwards, and the major goal is to render a
physically correct image for the current design given a specific
scene. This is achieved by integration of the rendering equa-
tion [55], and is evaluated by renderers using a Monte Carlo in-
tegrator for discrete sampling the integral. This backward tracing
mode is utilized in end-to-end system designs, see Section V-B.

E. Entrance/Exit Pupil Computation for all Fields

To perform ray tracing for a lens system, the entrance pupil
has to be determined first, which is the area over the very
front lens element where rays from a given viewing angle will
finally reach the sensor plane. This is easily determined for
paraxial angles, but not for larger angles. Fig. 8 demonstrates this
vignette effect of a double-Gauss design [56], with the calculated
entrance pupils shown at different views. Our engine determines
the entrance pupil by ray tracing a dense grid (1025× 1025)
at specific viewing angles. Entrance pupils are determined if
the sampled rays propagate through all the optical elements
successfully. Exit pupils can be determined in a similar manner
as described in [57].

F. Derivative-Aware Implementation

dO is implemented from scratch in PyTorch [49]. In compar-
ison to [13], which is based on Mitsuba2 [37], dO is therefore
more portable and very easy to combine with existing deep
neural network code for image reconstruction. This makes it
easier to integrate dO in various end-to-end design problems
while at the same time offering more degrees of freedom in terms
of flexibility for additional applications. Due to the PyTorch
backend, dO effectively uses GPU compute resources and due to
the algorithmic improvements outlined in the previous section, it
is significantly more memory efficient than previous end-to-end
differentiable ray-tracing systems. dO produces highly iden-
tical results to modern lens design software. To verify this, a
double-Gauss design [56] is under sanity check with Zemax [1],

912 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

Fig. 15. dO can perform end-to-end wavefront coding, i.e., jointly optimize phase optics profile and deconvolution algorithm for extended depth of field
applications, here by simulation. (a) Setup geometry and optimized phase optics. (b) Central PSFs at different distances. (c) Raw and post-processed images by
the neural network.

Fig. 16. dO can perform end-to-end large FOV imaging by jointly optimizing
aspheric coefficients and a neural network for large FOV applications, here by
simulation. Raw and post-processed images by the neural network.

using single wavelength λ = 587.56 nm at four field of views,
as in Fig. 9. The spot diagrams and the RMS errors are almost
identical to the Zemax results despite a slight variation due to
different aperture sampling strategies.

IV. CLASSICAL APPLICATIONS

dO can manage classical design problems, as will be demon-
strated in this section. Spot RMS error at different viewing angles
is chosen as the merit function ε(·) for design optimization. See
Supplemental Document for lens prescriptions and full details.

A. Design Optimization

Spherical aberration minimization: The first example is to
optimize the aspherical coefficients of an asphere lens to min-
imize the axial spherical aberration. In Fig. 10, parameters
of a revised asphere lens design (Thorlabs, ACL5040 U) are
optimized in the hope of reducing the axial RMS spot. Compared
to the initial design, our differentiable engine ends up with a
nearly six times smaller RMS spot.

Photographic camera design optimization: The engine can
also optimize complicated lens group for design optimization.
Fig. 11 shows the second example to re-parameterize curvatures
and aspheric coefficients of a Nikon patent design to mini-
mize the total RMS spot error at different field of views (0°,
10°, 20°, 32.45°), at three wavelengths (656.27 nm, 587.56 nm,
486.13 nm). The design is initialized by removing all aspheric
coefficients, showing large aberrations. After optimization, our
optimized design shows a comparable mean RMS error of the
original design. This example demonstrates the capability of dO
to perform multi-lens and aspheres optimization.

B. Tolerance Analysis

In tolerancing a lens system, or known as sensitivity analysis,
a presuming small, linear parameter perturbation Δ̂θθθ is enforced,
and the total effect of the perturbation, Δ̂ε, is calculated through
the nominal system to determine the potential effects. To avoid
confusion between perturbation and the gradients considered
before, we use the (̂·) notation. This is mathematically para-
phrased by relating Δ̂ε to Δ̂θθθ through the derivatives, known as
the Jacobian-vector product in AD terminology:

Δ̂ε = JεJpΔ̂θθθ. (10)

Notice there is a reciprocal relationship between (10) and (5). In
the forward analysis, Δ̂θθθ is given to compute Δ̂ε, whereas in the
inverse analysis, Δ̂ε is given to compute Δ̂θθθ, assuming proper
prior probabilities or regularization on Δ̂θθθ. Despite alternative
methods such as finite difference, analytical gradients [58], or
the wavefront differential method [59], dO can evaluate (10)
intrinsically, without additional implementation efforts.

WANG et al.: dO: A DIFFERENTIABLE ENGINE FOR DEEP LENS DESIGN OF COMPUTATIONAL IMAGING SYSTEMS 913

In Fig. 12, a Cooke triplet is under sensitivity analysis, with
all the optical element positional misalignment parameters θθθ
being toleranced. dO can obtain the Jacobian matrix, known
as the sensitivity matrix for further analysis. See Supplemental
Document for misalignment parameter definitions.

V. ADVANCED APPLICATIONS

Thanks to differentiability and the versatile optimizer, dO
can be combined with advanced post-processing computational
algorithms for complex designs or setup reverse-engineering,
and beyond the usual application range of lens design software.
Such domain-specific applications are deemed not easily config-
urable with existing design software, as three examples shown
in Fig. 13.

A. Caustic Engineering

Caustic engineering aims to produce a target image by pixel-
wisely changing the directions of a directional light source,
by optimizing a freeform optical surface [60], [61]. Here, we
demonstrate caustic engineering as one of the applications of
dO. We parameterize the desired surface in spline freeform,
and thus this representation ensures smoothness and higher-
order continuities of the surface, in contrast to the mesh-based
representations in alternative differentiable solvers [37]. The
freeform knot positions are fixed, spline coefficients are opti-
mized and consequently changing the surface geometry. This
flexibility of geometry representation allows dO to perform
freeform surface optimization. We employ the forward mode to
render caustic images. To enable a satisfactory reconstruction,
the desired freeform surface is assumed to be smooth and hence
is represented by B-splines with a large degree of freedom
approximately equal to the pixel number of the target image.
The error metric was the standard mean-square-error (MSE),
and we optimize the B-spline coefficients θθθ that characterize the
freeform surface:

min
θθθ
‖I(θθθ)− Itarget‖2. (11)

(11) is optimized using Adam [51] because construction of
Jacobian is computationally prohibitive due to the large num-
ber of variables in (11). Fig. 14 shows the results along with
intermediate optimization states, where the optimized freeform
surface is shown in height maps. The reconstruction image
is contrast-preserving, and the optimized freeform surface is
smooth. Although in this particular example, the contrast in
our result is not high compared to alternative specific solvers,
e.g., using optimal transportation [60] or iterative warping [61],
our result shows freeform designs would be more approach-
able when a plug-and-play differentiable engine such as dO is
available.

B. End-to-end Computational Imaging Designs

Computational imaging designs [10], [62] require jointly opti-
mization of hardware and software as a whole part. For example,
a blurry image I can be de-blurred by a designed algorithm or a
neural network N (·), and becomes a potentially sharper image
N (I). In end-to-end designs, this design process involves an

evolution of both the lens design (parameterized by θθθ) and the
post-processing algorithm N (·) (parameterized by θθθnet, e.g., an
untrained neural network of weights θθθnet). End-to-end design
optimizations are usually accomplished in a supervised setting,
by using a training set as target images Itarget to educate and
evolve the hardware/software variable parameters. This design
pipeline and the back-propagation procedure has been depicted
in Fig. 6. An end-to-end design error metric involves both θθθ and
θθθnet, and is re-phrased as:

ε(θθθ,θθθnet) = L(N (I(θθθ);θθθnet), Itarget), (12)

where L(·, ·) is a general loss metric function to quantify a total
error difference between the post-processed imageN (I(θθθ);θθθnet)
and the ground truth target image Itarget. The goal in the following
is to minimize (12) for two end-to-end computational imaging
designs, using dO.

End-to-end design for extended-depth-of-field imaging: In
wavefront coding, a pupil plane phase modulator is introduced to
deliberately distort input lights for point-spread-function (PSF)
engineering, e.g., cubic phase plate [3] that produces depth-
invariant PSFs for extended-depth-of-field, and coded aper-
ture [4] and lattice-focal [63] that produce depth-sensitive PSFs
for depth retrieval. This process is a joint optical-algorithmic
problem in that the final image is the output from a sequential
appliance of the encoding optics and the decoding algorithm.
Prior end-to-end approach relies on paraxial approximation [10],
ignoring the spatially variant nature of PSFs. Here, dO provides
an initial solution to break this limitation, in that the optical
system is faithfully reproduced by ray tracing. We parameterize
the phase plate using only third-order XY polynomials, and
end-to-end jointly optimize the polynomial coefficients θθθXY

and U-Net [64] parameters θθθnet for extended depth of field
applications, as in Fig. 15. Specifically, the total error metric
in (12) consists an MSE loss Lmse and a channel feature loss
Lvgg16 on pre-trained VGG16 [65]:

min
θθθXY,θθθnet

ε(θθθXY, θθθnet) = Lmse + Lvgg16. (13)

See Supplemental Document for full details on network archi-
tecture, definitions of loss terms L, and training set genera-
tion. Initialized from a null zero phase, the optimized phase in
Fig. 15(a) exhibits a similar structure as in [3], verified by the
central PSFs in Fig. 15(b). Given the blurry raw input images,
the post-processed images in Fig. 15(c) reveal sharp features.

End-to-end design for large field-of-view (FOV) imaging:
Large field-of-view (FOV) imaging is challenging for cemented
doublets due to the severe aberrations that cannot be fully
compensated because of the lack of design degree of freedoms.
We argue this large aberrations can be corrected not through
additional optical components, but through a computational
post-processing algorithm that applies on the perceived aberra-
tion image. Using an end-to-end learning, this optical aberration
limitations can be addressed by using a post-processing neural
network, here we use [66]. The training follows (12), optimizing:

min
θθθasphere,θθθnet

ε(θθθasphere, θθθnet) = Lmse + Lvgg16. (14)

914 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

Fig. 17. dO can be employed as a general-purpose solver to back-engineer
real setup misalignment parameters so that simulation and reality match, demon-
strated by the high similarity between optimized images and the target (real)
ones. (a) Experimental setup includes an LED light source, a lens, and an image
sensor. (b) LA1131 was in focus but tilted. (c) LA1986 was out of focus and
tilted. Optimized images share high visual similarity to the real target ones,
revealing the success of our approach. See Visualization 2 for the optimization
process.

A cemented doublet parameterized by its aspheric coefficients
θθθasphere and network parametersθθθnet are jointly optimized follow-
ing a similar metric as in (13). Fig. 16 shows how the original
blurry images can be post-processed and be deblurred, after the
end-to-end learning, justifying the applicability of dO.

C. Misalignment Estimation

Finally, we show real experimental results to leverage poten-
tials of the proposed differentiable pipeline, dO, by using it in
reverse to estimate misalignment of an experimental setup. This
task of misalignment estimation is not possible with previous
differentiable renderers, e.g., Mitsuba2 [37] or Ref. [13], be-
cause of geometric representation incompatibility and missing
implementations for optics element perturbations, and most
importantly, the memory efficiency of dO allows for large
number of rays to be sampled per pixel for gradient estimates. In
Fig. 17(a), a pinpoint light source, consists of an LED (central
wavelength 622 nm) and an iris of radius 0.4mm, is placed far
in front of a misaligned plano-convex lens. The lens was able
to rotate freely, but the exact angular values were unknown,
and the imperfect mounting leads to slight yet noticeable tilting.

The setup is imaged by a monochromatic CMOS sensor (FLIR,
GS3-U3-51S5M-C, pixel size of 3.45µm). Without knowing
the exact position and angle parameters θθθ, e.g., light source
position, sensor to lens distancing, lens yaw/pitch angles, it is
very challenging to reproduce experimental measurements by
manual parameter tuning a simulation setup. In Fig. 17, we show
the success of dO to estimate such misalignment parameters, by
minimizing the MSE error between the simulation image I(θθθ)
and the target real captured image Ireal. We employ the forward
mode to render I(θθθ). To escape local stationary points and to
regularize gradient computation, we enforce centroid alignment
between the two images, by denoting C(·) as an operator for
calculating image centroid:

min
θθθ
‖I(θθθ)− Ireal‖2 + μ‖C(I(θθθ))− C(Ireal)‖2, (15)

where μ is a tradeoff parameter to balance between MSE and
alignment errors. Empirically, (15) is optimized by Adam and
damped least squares in alternation. The optimization usually
takes < 0.5min to finish for a megapixel image resolution on a
GPU (Nvidia, GeForce RTX 2080 Ti).

Two lenses of different focal lengths (Thorlabs, LA1131, focal
length of 50mm; LA1986, focal length of 125mm) were under
investigation, as shown in Fig. 17(b) and Fig. 17(c). In Fig. 17(b),
the lens was focused but tilted, and the goal is to re-parameterize
the simulation to fit real measurements. In Fig. 17(c), the lens
was slightly de-focused, introducing a blurry bright disk on
the sensor plane. With an increase of angular misalignment,
the image smears and elongates in the horizontal direction.
Initialized from a coarse setup estimation, the final optimized
images match real images visually well. Refer to Supplemental
Document for full results. This example proves the validity
of the differentiability of dO, and demonstrates the possibility
of using dO for setup calibration. The simplicity of using the
proposed engine for misalignment estimation allows integrat-
ing self-calibration into existing numerical modeling pipelines.
From a broader perspective, we demonstrate the possibility of
using a differentiable ray tracer such as dO, as a general inverse
solver for metrology problems.

VI. DISCUSSION AND CONCLUSION

In principle, ray optics limits the application range of dO in
that the wave nature of light is ignored. Resolution demanding
imaging applications towards diffraction-limited performance
such as telescope or microscope designs are hence not pos-
sible at this point. In methodology, we rely on gradient de-
scent and damped least squares as the optimization techniques,
and thus a number of iteration steps are required for conver-
gence. Due to its local optimization nature, the solver suffers
from the local minima problem and the initialization sensitiv-
ity issue. In software, dO relies mostly on reverse-mode AD,
which is known to be memory-consuming especially for large
amount of Monte Carlo samples, though partially alleviated,
can still limit the number of rays used when optimizing the
design. More memory-efficient approaches could be explored.
We also expect faster speed performance after careful code
improvements.

WANG et al.: dO: A DIFFERENTIABLE ENGINE FOR DEEP LENS DESIGN OF COMPUTATIONAL IMAGING SYSTEMS 915

The current ray tracing engine could be further enhanced.
From design perspective, more surface representations could
be implemented, e.g., Laguerre, Hermite, and Zernike polyno-
mials. New tracing methods are possible, for example paraxial
tracing [67] and Gaussian beam tracing [68]. Also, new features
could be implemented, e.g., diffraction and gratings, Fresnel
equation and polarization ray tracing, coatings, stray light and
ghost analysis, and non-sequential tracing. From application
perspective, further applications could be explored, e.g., lens
metrology [69], realistic lens rendering [70], and wavefront
sensor designs [71], [72]. Hardware-software end-to-end opti-
mization for domain-specific applications [10], [11], [12], [62],
or semi-supervised training for automatic lens design [33], [34]
are also target topics. We believe dO serves as an initial starting
point towards these applications.

To conclude, we have proposed dO, a differentiable ray
tracing engine for lens design. Board applications are demon-
strated, ranging from classical design optimization and sensi-
tivity analysis, to computationally intensive freeform design,
end-to-end learning for computational imaging applications,
and to challenging experimental misalignment estimation. We
envision the potential of dO, as it opens up an exciting aspect to
bring first-order gradient insights into lens design and relevant
problems.

REFERENCES

[1] Zemax, “Zemax opticstudio,” 2013. [Online]. Available: https://www.
zemax.com/

[2] Synopsys, Inc., “Code V,” Accessed: Oct. 2022. [Online]. Available: https:
//www.synopsys.com/optical-solutions/codev.html

[3] E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-
front coding,” Appl. Opt., vol. 34, no. 11, pp. 1859–1866, 1995.

[4] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth
from a conventional camera with a coded aperture,” ACM Trans. Graph.,
vol. 26, no. 3, 2007, Art. no. 70.

[5] C. Zhou, S. Lin, and S. Nayar, “Coded aperture pairs for depth from
defocus,” in Proc. IEEE Int. Conf. Comput. Vis., 2009, pp. 325–332.

[6] O. Cossairt and S. Nayar, “Spectral focal sweep: Extended depth of field
from chromatic aberrations,” in Proc. IEEE Int. Conf. Comput. Photogr.,
2010, pp. 1–8.

[7] R. Ng and P. Hanrahan, “Light field photography with a hand-held plenop-
tic camera,” Comput. Sci. Tech. Rep., vol. 2, no. 11, pp. 1–11, 2005.

[8] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tum-
blin, “Dappled photography,” ACM Trans. Graph., vol. 26, no. 3, 2007,
Art. no. 69.

[9] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance
maps from photographs,” in Proc. 24th Annu. Conf. Comput. Graph.
Interactive Techn., 1997, pp. 369–378. [Online]. Available: https://doi.org/
10.1145/258734.258884

[10] V. Sitzmann et al., “End-to-end optimization of optics and image process-
ing for achromatic extended depth of field and super-resolution imaging,”
ACM Trans. Graph., vol. 37, no. 4, pp. 1–13, 2018.

[11] Y. Peng, Q. Sun, X. Dun, G. Wetzstein, W. Heidrich, and F. Heide, “Learned
large field-of-view imaging with thin-plate optics,” ACM Trans. Graph.,
vol. 38, no. 6, pp. 1–14, 2019.

[12] X. Dun, H. Ikoma, G. Wetzstein, Z. Wang, X. Cheng, and Y. Peng,
“Learned rotationally symmetric diffractive achromat for full-spectrum
computational imaging,” Optica, vol. 7, no. 8, pp. 913–922, 2020.

[13] Q. Sun, C. Wang, Q. Fu, X. Dun, and W. Heidrich, “End-to-end complex
lens design with differentiate ray tracing,” ACM Trans. Graph., vol. 40,
no. 4, pp. 1–13, 2021.

[14] E. Tseng et al., “Differentiable compound optics and processing pipeline
optimization for end-to-end camera design,” ACM Trans. Graph., vol. 40,
no. 4, pp. 1–19, 2021.

[15] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, and G. Wetzstein, “Hybrid
optical-electronic convolutional neural networks with optimized diffrac-
tive optics for image classification,” Sci. Rep., vol. 8, no. 1, pp. 1–10,
2018.

[16] J. Chang and G. Wetzstein, “Deep optics for monocular depth estimation
and 3D object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2019, pp. 10193–10202.

[17] Y. Wu, V. Boominathan, H. Chen, A. Sankaranarayanan, and A. Veer-
araghavan, “Phasecam3-D – Learning phase masks for passive single
view depth estimation,” in Proc. IEEE Int. Conf. Comput. Photogr., 2019,
pp. 1–12.

[18] H. Ikoma, C. M. Nguyen, C. A. Metzler, Y. Peng, and G. Wetzstein,
“Depth from defocus with learned optics for imaging and occlusion-aware
depth estimation,” in Proc. IEEE Int. Conf. Comput. Photogr., 2021,
pp. 1–12.

[19] K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, and L. Waller,
“Learned reconstructions for practical mask-based lensless imaging,” Opt.
Exp., vol. 27, no. 20, pp. 28075–28090, 2019.

[20] Q. Sun, E. Tseng, Q. Fu, W. Heidrich, and F. Heide, “Learning rank-1
diffractive optics for single-shot high dynamic range imaging,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1386–1396.

[21] C. A. Metzler, H. Ikoma, Y. Peng, and G. Wetzstein, “Deep optics for
single-shot high-dynamic-range imaging,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., 2020, pp. 1375–1385.

[22] S. Tan, Y. Wu, S.-I. Yu, and A. Veeraraghavan, “Codedstereo: Learned
phase masks for large depth-of-field stereo,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 7170–7179.

[23] K. Yanny et al., “Miniscope3d: Optimized single-shot miniature 3D fluo-
rescence microscopy,” Light: Sci. Appl., vol. 9, no. 1, 2020, Art. no. 171.

[24] H. Pinkard et al., “Learned adaptive multiphoton illumination microscopy
for large-scale immune response imaging,” Nature Commun., vol. 12, no. 1,
2021, Art. no. 1916.

[25] V. Boominathan, J. K. Adams, J. T. Robinson, and A. Veeraraghavan,
“Phlatcam: Designed phase-mask based thin lensless camera,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 42, no. 7, pp. 1618–1629, Jul. 2020.

[26] J. N. Martel, L. K. Mueller, S. J. Carey, P. Dudek, and G. Wetzstein,
“Neural sensors: Learning pixel exposures for HDR imaging and video
compressive sensing with programmable sensors,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 42, no. 7, pp. 1642–1653, Jul. 2020.

[27] G. Wetzstein et al., “Inference in artificial intelligence with deep optics
and photonics,” Nature, vol. 588, no. 7836, pp. 39–47, 2020.

[28] Z. Ballard, C. Brown, A. M. Madni, and A. Ozcan, “Machine learning
and computation-enabled intelligent sensor design,” Nature Mach. Intell.,
vol. 3, no. 7, pp. 556–565, 2021.

[29] M. Hillenbrand, A. Hoffmann, D. P. Kelly, and S. Sinzinger, “Fast
nonparaxial scalar focal field calculations,” Schedae Inform., vol. 31,
pp. 169–175, 2014.

[30] J.-B. Volatier, Álvaro Menduiña-Fernández, and M. Erhard, “Generaliza-
tion of differential ray tracing by automatic differentiation of computa-
tional graphs,” J. Opt. Soc. Amer. A, vol. 34, no. 7, pp. 1146–1151, 2017.

[31] C. Wang, N. Chen, and W. Heidrich, “Lens design optimization by back-
propagation,” in Proc. Int. Opt. Des. Conf., 2021, Art. no. 120781O.

[32] O. Manzyuk, B. A. Pearlmutter, A. Radul, D. Rush, and J. M. Siskind,
“Perturbation confusion in forward automatic differentiation of higher-
order functions,” J. Funct. Program., vol. 29, 2019, Art. no. e12.

[33] G. Côté, J.-F. Lalonde, and S. Thibault, “Extrapolating from lens
design databases using deep learning,” Opt. Exp., vol. 27, no. 20,
pp. 28279–28292, 2019.

[34] G. Côté, J.-F. Lalonde, and S. Thibault, “Deep learning-enabled framework
for automatic lens design starting point generation,” Opt. Exp., vol. 29,
no. 3, pp. 3841–3854, 2021.

[35] A. Halé, P. Trouvé-Peloux, and J.-B. Volatier, “End-to-end sensor and
neural network design using differential ray tracing,” Opt. Exp., vol. 29,
no. 21, pp. 34748–34761, 2021.

[36] Z. Li, Q. Hou, Z. Wang, F. Tan, J. Liu, and W. Zhang, “End-to-end learned
single lens design using fast differentiable ray tracing,” Opt. Lett., vol. 46,
no. 21, pp. 5453–5456, 2021.

[37] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob, “Mitsuba 2,” ACM
Trans. Graph., vol. 38, no. 6, pp. 1–17, 2019.

[38] J. Krishna Murthy, G. Iyer, and L. Paull, “gradslam: Dense slam meets
automatic differentiation,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp. 2130–2137.

[39] S. Ghosh, Y. S. G. Nashed, O. Cossairt, and A. Katsaggelos, “ADP:
Automatic differentiation ptychography,” in Proc. IEEE Int. Conf. Comput.
Photogr., 2018, pp. 1–10.

https://www.zemax.com/
https://www.zemax.com/
https://www.synopsys.com/optical-solutions/codev.html
https://www.synopsys.com/optical-solutions/codev.html
https://doi.org/10.1145/258734.258884
https://doi.org/10.1145/258734.258884

916 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

[40] S. Kandel, S. Maddali, M. Allain, S. O. Hruszkewycz, C. Jacobsen,
and Y. S. G. Nashed, “Using automatic differentiation as a general
framework for ptychographic reconstruction,” Opt. Exp., vol. 27, no. 13,
pp. 18653–18672, 2019.

[41] Q. Guo et al., “Raycast calibration for augmented reality hmds with off-
axis reflective combiners,” in Proc. IEEE Int. Conf. Comput. Photogr.,
2020, pp. 1–12.

[42] C. Wang, N. Chen, and W. Heidrich, “Towards self-calibrated lens metrol-
ogy by differentiable refractive deflectometry,” Opt. Exp., vol. 29, no. 19,
pp. 30284–30295, Aug. 2021.

[43] E. Bostan, R. Heckel, M. Chen, M. Kellman, and L. Waller, “Deep phase
decoder: Self-calibrating phase microscopy with an untrained deep neural
network,” Optica, vol. 7, no. 6, pp. 559–562, 2020.

[44] M. Kellman et al., “Memory-efficient learning for large-scale compu-
tational imaging,” IEEE Trans. Comput. Imag., vol. 6, pp. 1403–1414,
2020.

[45] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable monte
carlo ray tracing through edge sampling,” ACM Trans. Graph., vol. 37,
no. 6, 2018, Art. no. 222.

[46] M. Nimier-David, S. Speierer, B. Ruiz, and W. Jakob, “Radia-
tive backpropagation,” ACM Trans. Graph., vol. 39, no. 4, 2020,
Art. no. 146.

[47] C. Wang, N. Chen, and W. Heidrich, “dO Source Code,” 2022, [Online].
Available: https://github.com/vccimaging/diffOptics

[48] H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt.
Soc. Amer. A, vol. 19, no. 3, pp. 590–595, 2002.

[49] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Pro-
cessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d Alché-Buc, E. Fox, and R. Garnett, Eds. Red Hook, NY,
USA: Curran Assoc., Inc., 2019, pp. 8024–8035. [Online]. Avail-
able: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

[50] J. Meiron, “Damped least-squares method for automatic lens design,” J.
Opt. Soc. Amer., vol. 55, no. 9, pp. 1105–1109, 1965.

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. Int. Conf. Learn. Representations, 2015. [Online]. Available: http:
//arxiv.org/abs/1412.6980

[52] J. M. Geary, Introduction to Lens Design: With Practical ZEMAX Exam-
ples. Richmond, VA, USA: Willmann-Bell, 2002.

[53] C. Kolb, D. Mitchell, and P. Hanrahan, “A realistic camera model for
computer graphics,” in Proc. 22nd Annu. Conf. Comput. Graph. Interactive
Techn., 1995, pp. 317–324.

[54] M. Born and E. Wolf, Principles of Optics, 7th ed. Cambridge, U.K.:
Cambridge Univ. Press, 2019.

[55] J. T. Kajiya, “The rendering equation,” in Proc. 13th Annu. Conf. Comput.
Graph. Interactive Techn., 1998, pp. 157–164.

[56] J. G. Baker, “Highly corrected objective having two inner divergent menis-
cus components between collective components,” U.S. Patent 2532751,
1949.

[57] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From
Theory to Implementation. San Mateo, CA, USA: Morgan Kaufmann,
2016.

[58] M. Rimmer, “Analysis of perturbed lens systems,” Appl. Opt., vol. 9, no. 3,
pp. 533–537, 1970.

[59] D. P. Feder, “Differentiation of ray-tracing equations with respect to
construction parameters of rotationally symmetric optics,” J. Opt. Soc.
Amer., vol. 58, no. 11, pp. 1494–1505, 1968.

[60] Y. Schwartzburg, R. Testuz, A. Tagliasacchi, and M. Pauly, “High-
contrast computational caustic design,” ACM Trans. Graph., vol. 33, no. 4,
2014, Art. no. 74. [Online]. Available: https://doi.org/10.1145/2601097.
2601200

[61] G. Damberg and W. Heidrich, “Efficient freeform lens optimiza-
tion for computational caustic displays,” Opt. Exp., vol. 23, no. 8,
pp. 10224–10232, 2015. [Online]. Available: https://doi.org/10.1364/OE.
23.010224

[62] M. D. Robinson and D. G. Stork, “Joint design of lens systems and digital
image processing,” in Proc. Int. Opt. Des. Conf., 2006, Paper no. WB4.

[63] A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4-D
frequency analysis of computational cameras for depth of field extension,”
ACM Trans. Graph., vol. 28, no. 3, 2009, Art. no. 97.

[64] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.- Assist. Interv., 2015, pp. 234–241.

[65] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representations,
2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[66] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, “DeblurGAN-v2: Deblurring
(orders-of-magnitude) faster and better,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 8878–8887.

[67] R. R. Shannon, The Art and Science of Optical Design. Cambridge, U.K.:
Cambridge Univ. Press, 1997.

[68] G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron.
Lett., vol. 7, no. 23, pp. 684–685, 1971.

[69] D. Wang et al., “Simultaneous multisurface measurement of freeform
refractive optics based on computer-aided deflectometry,” Optica, vol. 7,
no. 9, pp. 1056–1064, 2020.

[70] M. Hullin, E. Eisemann, H.-P. Seidel, and S. Lee, “Physically-based real-
time lens flare rendering,” in ACM Trans. Graph.. New York, NY, USA:
ACM2011, pp. 1–10.

[71] C. Wang, X. Dun, Q. Fu, and W. Heidrich, “Ultra-high resolution coded
wavefront sensor,” Opt. Exp., vol. 25, no. 12, pp. 13736–13746, 2017.
[Online]. Available: https://doi.org/10.1364/OE.25.013736

[72] C. Wang, Q. Fu, X. Dun, and W. Heidrich, “Modeling classical wavefront
sensors,” Opt. Exp., vol. 28, no. 4, pp. 5273–5287, 2020.

Congli Wang received the B.Eng. degree in electrical
engineering from Tianjin University, Tianjin, China,
in 2015, and the M.Sc. and Ph.D. degrees in electrical
engineering from the King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia, in
2016 and 2021. He is currently a Postdoctoral Re-
searcher with the University of California, Berkeley,
Berkeley, CA, USA. His research interests include
computational imaging, wavefront sensing, and adap-
tive optics.

Ni Chen received the B.S. degree in software en-
gineering from the Harbin Institute of Technology,
Harbin, China, in 2008, the M.S. degree in electri-
cal engineering from Chungbuk National University,
Cheongju, South Korea, and the Ph.D. degree in elec-
trical engineering from Seoul National University,
Seoul, South Korea, in 2010 and 2014, respectively.
She is currently a Researcher with the King Abdullah
University of Science and Technology, Thuwal, Saudi
Arabia. From 2014 to 2016, she was a Research
Scientist with the University of Hong Kong, Hong

Kong, and from 2016 to 2017, she was an Associate Professor with the Shanghai
Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Beijing,
China. From 2018 to 2019, she was a Research Assistant Professor with the
Department of Electrical and Computer Engineering, Seoul National University.
Her research interests include three-dimensional optical imaging and display.

Wolfgang Heidrich (Fellow, IEEE) received the
Ph.D. degree from the University of Erlangen, Er-
langen, Germany, in 1999. He was a Research As-
sociate with the Computer Graphics Group of the
Max-Planck-Institute for Computer Science in Saar-
brucken, Germany, before joining UBC in 2000. He
is currently a Professor of computer science with
the King Abdullah University of Science and Tech-
nology (KAUST), Thuwal, Saudi Arabia. He joined
KAUST in 2014, after 13 years as a Faculty Member
with the University of British Columbia, Vancouver,

BC, Canada. His research interests include intersection of imaging, optics,
computer vision, computer graphics, and inverse problems. His current research
interests include computational imaging, focusing on hardware-software co-
design of the next generation of imaging systems, with applications such as
High-Dynamic Range imaging, compact computational cameras, hyperspectral
cameras, to name just a few. He work on High-Dynamic Range Displays served
as the basis for the technology behind Brightside Technologies, which was
acquired by Dolby in 2007. He has chaired the papers program for both Siggraph
Asia and the International Conference of Computational Photography among
others. He was the recipient of a 2014 Humboldt Research Award.

https://github.com/vccimaging/diffOptics
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2601097.2601200
https://doi.org/10.1145/2601097.2601200
https://doi.org/10.1364/OE.23.010224
https://doi.org/10.1364/OE.23.010224
http://arxiv.org/abs/1409.1556
https://doi.org/10.1364/OE.25.013736

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

