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An Adversarial Learning Based Approach for 2D
Unknown View Tomography

Mona Zehni and Zhizhen Zhao

Abstract—The goal of 2D tomography is to recover an image
given its projections from various views. It is often presumed
that viewing angles associated with the projections are known in
advance. Under certain situations, however, these angles are known
only approximately or are completely unknown. It becomes more
challenging to reconstruct the image from a collection of random
projections with unknown viewing directions. We propose an ad-
versarial learning based approach to recover the image and the
viewing angle distribution by matching the empirical distribution
of the measurements with the generated data. Fitting the distri-
butions is achieved through solving a min-max game between a
generator and a critic based on Wasserstein generative adversarial
network structure. To accommodate the update of the viewing angle
distribution through gradient back propagation, we approximate
the loss using the Gumbel-Softmax reparameterization of samples
from discrete distributions. Our theoretical analysis verifies the
unique recovery of the image and the projection distribution up to a
rotation and reflection upon convergence. Our extensive numerical
experiments showcase the potential of our method to accurately
recover the image and the viewing angle distribution under noise
contamination.

Index Terms—2D unknown view tomography, categorical
distribution, generative adversarial learning, Gumbel-softmax,
Hartley-Bessel expansion.

I. INTRODUCTION

MULTITUDE of imaging modalities rely on reconstruct-
ing an unknown signal either in 2D or 3D domain given

a set of partial measurements. Examples of such are medical
imaging and cryo-electron microscopy (cryo-EM) for imag-
ing macro-molecules, to name a few. More specifically, in a
tomography setup, the measurements i.e. projections, are the
line or plane integrals of the underlying object along various
angles. In imaging applications such as computed tomography
(CT), the viewing angles are known a-priori through the acqui-
sition process. However, this does not hold when reconstructing
macromolecular structures in cryo-EM [1]. Thus, it is important
to develop solutions for tomography with unknown projec-
tion directions. In this paper, we focus on 2D unknown view
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tomography (UVT) with the goal of jointly recovering the
unknown 2D image and the viewing angle distribution given
a large set of noisy projections.

Tomographic inversion with known viewing angles is typi-
cally a linear inverse problem and is solved by filtered back-
projection (FBP), direct Fourier methods [2], or solving a reg-
ularized optimization problem [3], [4], [5], [6]. Moreover, deep
learning solutions, training on rich datasets, exist that either learn
the reconstruction from sinogram to image [7], [8], [9], [10],
[11], denoise the FBP reconstructed images from a low-dose
sinogram [12], [13], [14], [15], [16], [17] in a supervised manner
or provide a prior i.e. regularizer, over the space of target
images [18], [19].

However, the knowledge of the viewing angles is not always
available or accurate. To avoid adverse effects on the quality of
the reconstructed image, it is important to account for uncer-
tainties in the viewing angles. Previous methods devoted to 2D
UVT estimate the viewing angles either prior to [20], [21], [22],
[23], [24], [25] or jointly with the image reconstruction [26].
In addition, in limited settings, [27], [28], [29], [30] bypass
the estimation of the projection views via the use of invariant
features.

In this paper, we present an unsupervised adversarial learn-
ing based approach for 2D tomography with unknown random
viewing angles, namely UVTomo-GAN. Our approach does not
require large paired training sets and reconstructs an image
given merely its unordered tomographic measurements. By
employing generative adversarial networks (GAN) [31], our
approach recovers the image and viewing angle distribution
through matching the distributions of the generated projections
with the measurements. Our proposed method is inspired by
CryoGAN [32] in which a 3D cryo-EM map is reconstructed
given a large set of noisy projection images with unknown
orientations by employing Wasserstein-GAN [33]. The main
assumption in CryoGAN is that the distribution of the ori-
entations of the particles is known beforehand. However, in
cryo-EM experiments, the distribution of the orientations is hard
to obtain a-priori. Therefore, under the 2D UVT set-up, we
remove the assumption that the viewing angle distribution is
given and develop a new approach to recover both the viewing
angle distribution and the 2D image simultaneously.

To recover the viewing angle distribution in a GAN frame-
work, the original generator’s loss involves sampling from the
viewing angle distribution which is non-differentiable. To en-
able the flow of gradients in the backward pass through this
non-differentiable operator, we modify the loss function at the
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generator side using Gumbel-Softmax approximation of sam-
ples from a categorical distribution [34]. Our proposed idea is
general and applicable to a vast range of similar inverse prob-
lems which involve latent variables with unknown probability
distributions such as multi-segment reconstruction [35].

This manuscript is an extension of our previous work [36].
In this paper, we use the truncated Hartley-Bessel expansion of
the image in the Hartley domain in our reconstruction pipeline.
This truncated expansion regularizes the images and allows
for the direct use of central slice theorem (CST) to generate
the projections efficiently. As noted in [24], 2D tomography
from noisy projections taken at unknown random directions
with non-uniform distribution is more challenging than its 3D
analogue, since we cannot directly use the geometric constraints
given by CST in 3D. Our theoretical analysis and numerical
results affirm the ability of our method in recovering the image
and projection angle distribution accurately from both clean and
noisy measurements.

The organization of this paper is as follows. Section II sum-
marizes related work to UVT. We introduce the projection
formation model and the reconstruction method in Sections III
and IV. The analysis and experimental results are described
in Sections V and VI. The discussions and future directions are
presented in Section VII. We conclude the paper in Section VIII.

II. RELATED WORK

In this section, we review related literature on 2D UVT and
unsupervised solutions for 3D UVT task.

A. 2D UVT

One family of 2D UVT solutions determine the viewing
angles first [20], [21], [22], [23], [24], [25] and reconstruct the
image given the estimated views subsequently. Other approaches
include iterative methods that solve for the 2D image and the
viewing angles in alternating steps [26]. While proven effective,
these methods are computationally expensive and sensitive to
initialization. In another class of methods, to circumvent the
estimation and refinement of the viewing angles, a set of rotation
invariant features are estimated from the noisy projections.
These features are later on used to reconstruct the unknown
image [27], [28], [29], [30]. Note that these methods require
only one pass through the projection dataset and are therefore
computationally more efficient. However, they are mainly used,
when the underlying object is sparse [27], [28], projections in the
form of tilt series are available [30] or to recover a low-resolution
ab-initio model [29].

B. Adversarial Learning for 3D UVT

Gupta et al. in CryoGAN [32] proposed an unsupervised
learning approach through a distribution matching lens for cryo-
EM single particle reconstruction. In CryoGAN, the goal is to
estimate the underlying 3D density such that the distribution
of the observed projection image dataset and the one generated
from the estimated volume match. Due to its distribution match-
ing criterion, CryoGAN bypasses the estimation of individual

projection parameters. In CryoGAN, the distribution distance
is chosen as Wasserstein-1 (W1), i.e. Earth Mover’s distance.
Thus, the reconstruction problem is stated as:

v∗ = argmin
v

W1(Psim(v; platent), Preal) (1)

wherePreal is the distribution of the observed (i.e. real) projection
image dataset. Also, Psim(v; platent) is the distribution of the
simulated projection image dataset generated from the volume v
following an a-priori known distribution for the latent variables
platent. In a cryo-EM setup, each projection image is obtained
from the volume following a forward model. This forward model
is parameterized by the projection view, in-plane translation and
the contrast transfer function (CTF) parameters corresponding
to the projection image. Given a projection image dataset,
the collection of these parameters (projection view, in-plane
translation and CTF parameters), is considered a random latent
variable with platent probability distribution, which in CryoGAN
is assumed to be known. Thus, to sample from Psim given v and
platent, one samples latent variables based on platent and then adopt
the projection forward model to generate random simulated
projections of v.

As computing W1 between two high-dimensional distribu-
tions is highly intractable, W1 minimization is often done in its
dual form, following Kantrovich-Rubinstein duality [33]:

v∗=argmin
v

max
f :‖f‖L≤1

(Ey∼Preal [f(y)]−Ex∼Psim(v;platent)[f(x)])

(2)

where f represents a 1-Lipschitz function, mapping its input (i.e.
a projection image) to a single real-valued score.

Due to the close link between (2) and Wasserstein-GAN
(WGAN) frameworks [33], CryoGAN specifically proposes the
use of WGAN with gradient-penality (GP), WGAN-GP [37],
to solve (2). In a WGAN-GP setup, the mapping f is modeled
via a neural network named critic and its 1-Lipschitz continuity
constraint is enforced via the GP term.

In this paper, we extend the CryoGAN framework for the
2D UVT problem defined in Section III. In a 2D UVT setting,
the projection views form the underlying latent variable. Unlike
CryoGAN, we assume the latent variable probability distribution
(platent in CryoGAN context) is unknown and we develop a novel
approach to handle its joint recovery with the image. In addition,
we compare our method against the baselines formed by the
adaptations of CryoGAN for 2D UVT in Section VI.

III. PROJECTION FORMATION MODEL AND PROBLEM

FORMULATION

We define the 1D projection formation model as,

ζ� = Pθ�I + ε�, � ∈ {1, 2, . . ., L} (3)

where I : B2 → R1 is an unknown 2D image compactly sup-
ported in the unit ball B2 we wish to estimate. We restrict I to
the space of absolute and square integrable functions on B2, i.e.
I ∈ L1(B2) ∩ L2(B2). Pθ denotes the tomographic projection
operator that takes the line integral along the parallel beams
whose normal direction makes an angle θ ∈ [0, 2π) with the
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x-axis,

(PθI)(x) =

∫ ∞

−∞
I(Rθ x)dy (4)

where x = [x, y]T represents the 2D Cartesian coordinates. Rθ

is a 2× 2 rotation matrix associated with θ. As I is compactly
supported in B2, its projection along any direction would also
be compactly supported in the unit ball, i.e. PθI ∈ L1(B1) ∩
L2(B1). We assume the viewing angles {θ�}L�=1 are unknown
and randomly drawn from an unknown distributionp. Finally, the
discretized projection lines of lengthm are corrupted by additive
white Gaussian noise ε� with zero mean and variance σ2. Here
we consider σ to be known, although an unbiased estimator of
σ is attainable from the variance of the boundary pixels of the
projections that only contain noise [24].

In this paper, given a large set of noisy projections, i.e.
{ζ�}L�=1, we aim to recover the image I and the unknown
distribution of the viewing angles p.

IV. METHOD

A. Image Representation

To alleviate the computational cost of generating projections
in practice, (3) is evaluated in Fourier domain using non-uniform
fast Fourier transform [38] according to central slice theorem
(CST). CST states that the Fourier transform of the projection
corresponds to the central slice in the 2D Fourier domain,

F(PθI)(ξ) = F(I)(ξ, θ). (5)

with F denoting the Fourier transform and (ξ, θ) the polar
coordinates. This motivates us to directly adopt CST to generate
the projections. Therefore, in our pipeline we seek to recover
the image in Fourier domain rather than pixel domain.

We use the Hartley transform of the images, which is a real
representation closely related to Fourier transform and defined
as:

H(I) = real{F(I)} − imag{F(I)}, (6)

where H denotes the Hartley transform. We assume the im-
age I has essential bandlimit 0≤s ≤ 1

2 and is concentrated
in the spatial domain with radius R ≤ m

2 . Therefore, H(I) can
be expanded on an orthonormal basis on a disk of radius s. We
choose real-valued steerable Hartley-Bessel (HB) expansion as
a continuous representation which implicitly regularizes the im-
age I and enables the use of CST for generating the projections.
Based on the Fourier-Bessel basis introduced in [39], [40], we
construct the real-valued HB basis uk,q

s (ξ, θ) = Jk,q
s (ξ)cas(kθ)

with radial functions

Jk,q
s (ξ) =

{
Nk,qJk

(
Rk,q

ξ
s

)
, ξ ≤ s,

0, ξ > s,
(7)

where Jk is the Bessel function of the first kind and inte-
ger order k, Rk,q denotes the q-th root of Jk, and Nk,q =
(s
√
π|Jk+1(Rk,q)|)−1 is the normalization factor. The angular

part of the HB basis is cas(kθ) = cos(kθ) + sin(kθ). We can

expand H(I) on the HB basis,

H(I)(ξ, θ) =

∞∑
k=−∞

∞∑
q=1

ck,qJ
k,q
s (ξ) cas(kθ). (8)

Note that, q and k correspond to radial and angular frequencies.
We can truncate the expansion in (8) for functions that are well
concentrated in real and Fourier space using a sampling crite-
rion Rk,q ≤ 2πsR [39], [41]. The maximum angular frequency
index is denoted by Kmax and the maximum radial frequency
for k-th angular frequency is denoted by pk. The expansion
coefficients c = {ck,q | ∀(k, q) s.t. |k| ≤ Kmax, 1 ≤ q ≤ pk} are
the unknown parameters of I we aim to recover. For an image
with s<0.5 or R< m

2 , c has less number of terms than the
number of pixels I , i.e. the cardinality of c < m2. Thus, c would
constitute a compressed representation of the image.

Given the image expanded on HB basis, following CST, the
Hartley transform of the projection from angle θ� is simply
obtained by setting θ = θ� in (8) and is written as:

H(Pθ�I)(ξ)=

Kmax∑
k=−Kmax

pk∑
q=1

ck,qJ
k,q
s (ξ)cas(kθ�)=Hθ�(ξ)c. (9)

Therefore, we rewrite (3) in Hartley domain as:

ζ̃� = Hθ�c+ ε̃�, θ� ∼ p, � ∈ {1, 2, . . ., L}, (10)

with ζ̃ = H(ζ) and ε̃ = H(ε). The Hartley transform is unitary
due to its self-adjoint and self-inverse properties. Therefore, the
distribution of the Gaussian additive noise is preserved after
taking the Hartley transform, i.e. ε̃� ∼ N (0m, σ2Im) where 0m

is a vector of zeros of length m and Im is an m×m identity
matrix.

From the HB expansion coefficient c, we can reconstruct the
image in the spatial domain,

I(r, ϕ) =

Kmax∑
k=−Kmax

pk∑
q=1

ck,q H
(
uk,q
s

)
(r, ϕ) (11)

where

H(uk,q
s

)
(r, ϕ) =

2
√
2πs(−1)(q+l)Rk,qJk(2πsr)

(2πsr)2 −R2
k,q

× cos
(
kϕ+

π

4

)
, (12)

and l = k+1
2 for odd k and l = k

2 for even k. Since we have the
analytical form of the basis function, we can easily evaluate the
function values on Cartesian coordinates [x, y] with x = r cosϕ
and y = r sinϕ.

B. Adversarial Learning for 2D UVT

Similar to CryoGAN, our reconstruction criterion is matching
the distribution of the real projection dataset and the projections
generated by c and p following (10). As GANs have proven suit-
able for matching a target distribution, we employ an adversarial
learning framework presented in Fig. 1.
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Fig. 1. An illustration of our pipeline for adversarial learning based 2D
UVT. Given the projections {ζ�real}L�=1 (green dashed box), we recover the
truncated Hartley-Bessel expansion coefficients c of the image and viewing
angle distribution p (blue dashed box).

Our adversarial learning approach consists of a criticDφ and a
generatorG. Unlike classic GAN models with generators param-
eterized by neural networks with learnable weights, we specify
the generator G by the known projection model defined in (10),
the parameters of the image and viewing angle distribution, i.e.
c and p. The generator’s goal is to output projections that are
close to the real projection dataset {ζ̃�real}L�=1 in distribution and
hence fool the critic. For our model, the unknowns we seek to
estimate at the generator side are c and p. On the other hand,
the critic Dφ, parameterized by φ, tries to distinguish between
the observations and the generated projections. Our pipeline is
depicted in Fig. 1.

We use WGAN [33] loss, express the loss function in terms
of c, p and φ and state the min-max problem as,

L(c, p, φ) =
B∑

b=1

Dφ(ζ̃
b
real)−Dφ(ζ̃

b
syn) (13)

ĉ, p̂ = argmin
c,p

max
φ

L(c, p, φ), (14)

where L denotes the loss, B and b represent the batch size
and the index of a sample in the mini-batch, respectively. Also,
ζ̃real and ζ̃syn mark the real and synthesized projections in Hart-
ley domain. ζ̃syn is generated from the estimated image ĉ and
projection distribution p̂ following ζ̃syn = Hθ ĉ+ ε̃, θ ∼ p̂. In
our experiments, we used spectral normalization (SN) [42] to
regularize the critic and found that SN is sufficient for stabilizing
the training. Following common practice, we solve (14) by
alternating updates between φ and the generator’s variables, i.e.
c and p, based on the associated gradients.

The loss at the generator side for a fixed Dφ is,

LG(c, p) = −
B∑

b=1

Dφ(Hθbc+ ε̃b), θb ∼ p. (15)

While (15) is differentiable with respect to c, its gradient of p
is not defined, as it involves sampling θb from the distribution
p. This hinders updating p through gradient back-propagation.
To address this, we aim to design an alternative approximation
of (15) which is differentiable with respect to p.

Algorithm 1: UVTomo-GAN.
Require: αφ, αc, αp: learning rates for φ, c and p. ndisc:
the number of updates of the critic per generator update.

Input: {ζ̃ real
� }L�=1. Random initialization of c. The

distribution p is initialized with Unif(0, 2π).
Output: Estimates of I and p.
1: while φ has not converged do
2: for t = 0, . . ., ndisc − 1 do
3: Sample a batch from real data, {ζ̃breal}Bb=1.
4: Sample a batch of simulated projections using

estimated c and p, i.e. {ζ̃bsyn}Bb=1 following (10).
5: Update the critic following gradient ascent steps

using the gradient of (13) with respect to φ.
6: end for
7: Sample a batch of {ri,b}Bb=1 using (19).
8: Update c and p using stochastic gradient descent

steps by taking the gradients of (20) with respect to c
and p.

9: end while

To accommodate this approximation, we first discretize the
support of the viewing angles, i.e. [0, 2π) into Nθ equal-sized
bins. This makes p a probability mass function (PMF) of length
Nθ with the following properties:

Nθ−1∑
i=0

pi = 1, and pi ≥ 0, ∀i ∈ {0, . . ., Nθ − 1}. (16)

Now p corresponds to a discrete or categorical distribution over
θ, which implies the sampled viewing angles from p can only
belong to Nθ discrete categories. Therefore, we re-write the loss
function (15) as:

LG(c, p)=−
B∑

b=1

Nθ−1∑
t=0

δ(θt − θb)Dφ(Hθtc+ ε̃b), θb ∼ p.

(17)
A closer look at (17) reveals that δ(θt − θb), θb ∼ p is a sample
from the discrete distribution p. This enables us to incorpo-
rate the notion of Gumbel-Softmax distribution and approxi-
mate (15) as:

LG(c, p) ≈ −
B∑

b=1

Nθ−1∑
i=0

ri,b(p)Dφ(Hθic+ ε̃b), (18)

ri,b(p)=
exp ((gb,i+log(pi))/τ)∑Nθ−1

j=0 exp ((gb,j+log(pj))/τ)
,

gb,i ∼ Gumbel(0, 1), (19)

where τ is the softmax temperature factor. As τ → 0, ri,b(p)→
one-hot(argmaxi[gb,i+log(pi)]). Moreover, to obtain samples
from the Gumbel(0, 1) distribution, it suffices to draw u ∼
Unif(0, 1), g=− log(− log(u)) [34]. Note that due to the
reparametrization trick applied in (18), the approximated gen-
erator’s loss has a tangible gradient with respect to p. We also
add prior knowledge on the image and projection distribution
in the form of regularization terms. Hence, the regularized loss
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function we optimize at the generator side is:

L(c, p)=LG(c, p)+γ1gTV(c)+γ2‖c‖2+γ3TV(p)+γ4‖p‖2,
(20)

where we include total variation (TV) and �2 regularization terms
for the image, with γ1 and γ2 weights. To construct the TV of
the image in terms of c, we use (11) to render I on a Cartesian
grid in spatial domain and then compute total variation of I .
Furthermore, we assume that the unknown PMF is a piece-wise
smooth function of viewing angles (which is a valid assumption
especially in single particle analysis in cryo-EM [43]), therefore
adding TV and �2 regularization terms for the PMF with γ3 and
γ4 weights. We present the pseudo-code for UVTomo-GAN in
Algorithm 1.

C. Maximum Marginalized Likelihood Estimation Via
Expectation-Maximization

As a baseline for UVTomo-GAN, we consider maximum
marginalized likelihood estimation (MMLE). We solve MMLE
in Fourier domain via expectation-maximization (EM) and rep-
resent F(I) with its expansion coefficients a on Fourier-Bessel
bases. Thus, MMLE is formulated as

â, p̂=argmax
a,p

L∑
�=1

log

(
Nθ−1∑
i=0

P (F(ζ�)|a, θi)pi
)
. (21)

To solve (21), we take the gradients with respect to a and p and
set them to zero. For p, we further impose

∑Nθ−1
i=0 pi = 1. This

yields the following alternating updates for a and p, in the form
of:

(E-step) : rti,j =
exp

(
−‖F(ζi)−Hθj

at−1‖2
2σ2

)
∑Nθ−1

j=0 pt−1
j exp

(
−‖F(ζi)−Hθj

at−1‖2
2σ2

) ,
(22)

(M-step) :

⎧⎨⎩Atat = bt,

ptj=
∑L

i=1 rti,j∑L
i=1

∑Nθ−1

j=0 rti,j
,

(23)

where

At((k, q), (k,′ q′)) = p̂t(k − k′)
Nξ∑
ξ=1

Jk,q
s (ξ)Jk,′q′

s (ξ) (24)

p̂t(k) =

Nθ−1∑
j=0

ptj exp

(
−ı

2πkj

Nθ

)
(25)

bt(k, q)=

Nξ∑
ξ=1

Nθ−1∑
j=0

Jk,q
s (ξ) exp

(
−ı

2πkj

Nθ

) L∑
i=1

ri,jF(ζi) (26)

where ri,j denotes the probability that the i−th projection is
associated with θj angle and t is the iteration index. Also,
Hθa generates the projection at θ direction in Fourier domain
given FB expansion coefficients a. In (23), At is indexed by
(k, q) and (k,′ q′) pairs and the discretization in ξ is identical
to the projection dataset. The advantages of using truncated

FB expansion is that: (1) similar to HB representation, it pro-
vides an implicit regularization on the image, and (2) build-
ing matrix At in (24) in each iteration only requires rescal-
ing the entries of a pre-computed matrix J((k, q), (k,′ q′)) =∑Nξ

ξ=1 J
k,q
s (ξ)Jk,′q′

s (ξ) by p̂t(k − k′).
In (22)-(23), we update the probabilistic angular assignments

for the projections in the E-step while updating a and p in the
M-step. Note that, in the absence of noise, i.e. σ = 0, the E-
step reduces to template matching [44]. To solve at from the
equation Atat = bt, we use preconditioned conjugate gradient
descent [45].

D. Computational Complexity

We conclude this section by comparing the computational
complexity per iteration of UVTomo-GAN and EM.

1) UVTomo-GAN Complexity: Based on Algorithm 1, we
split the computational cost of UVTomo-GAN between: 1) the
critic and 2) the generator (i.e. c and p) updates. Let CD denote a
fixed computational cost related to forward and backpropagation
passes through the critic Dφ. As expected, CD depends on
the batch size, network architecture and the size of its input.
Thus, the larger the critic network, the higher the CD. For our
critic architecture, we use a cascade of N � m fully connected
(FC) layers with intermediate ReLU non-linearities. Therefore,
CD points to the cost of matrix multiplications and backward
passes through these N layers. Furthermore, we keep the input
and output sizes of these FC layers to be O(m) (m is the
image/projection size). Therefore, CD = O(m2N) = O(m2).
As these operations can be parallelized on GPU, forward and
backward passes through Dφ are time-efficient. For batch size
B = O(m), the cost of critic update is O(BCD) = O(m3).

For updating the generator according to (18), first we generate
Nθ = O(m) projections or templates. This is done in O(m3).
A thorough discussion on the derivation of this computational
complexity term is deferred to Appendix A.

In our implementation of (18), instead of using B different
noise realizations {ε̃b}Bb=1 for each of the clean templates,
we consider Nθ noisy templates in total. This means the loss
function we use at the generator side is:

LG(c, p) ≈ −
B∑

b=1

Nθ∑
i=1

ri,b(p)Dφ(Hθic+ ε̃i). (27)

Indeed in the absence of noise, (27) matches (18). However, in
the noisy case, the benefits of (27) are two-fold: 1) having the
same performance as (18) empirically, 2) reducing the number
of passes through the critic.

Consequently, adding up the cost of passing Nθ projection
templates through Dφ leads to a total computational cost of
O(m3 +mCD) per generator update step. We update c and p
every ndisc iterations. Therefore, the average cost of UVTomo-
GAN per iteration including the generator and critic’s updates

is O
(

(ndisc−1)m3+(m3+mCD)
ndisc

)
= O(m3).

EM Complexity: For EM, we specify the computational
cost of E-step and M-step. At each E-step, we generate Nθ

projection templates. If these templates are generated following
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CST and using the non-uniform Fourier transform of the image,
they require O(m2 logm) computations. Next, we update the
angular assignments ofL projections by comparing them against
O(m) templates, hence a cost of O(m2 L). Then, the total
cost of E-step is O(m2 logm+m2 L) = O(m2 L). For the
M-step, computing bt from the projections costs O(m2 L) (or
O(m logmL) if using FFT) while updating FB coefficients a
in (23) using conjugate gradient descent has O(

√
κω) computa-

tional cost [45] where ω is the number of non-zeros of At and
κ is its condition number. Note that ω = O(ηm3) depends on
the number of non-zero elements in p̂t, i.e. η. If all entries in p̂t

are non-zero (η = O(m)), then the M-step’s computational cost
is O(

√
κm4). Finally, the overall computational complexity for

EM is O(
√
κ ηm3 +m2 L).

In terms of convergence, we empirically observe that
UVTomo-GAN requires more training iterations. We attribute
this to the difference between the convergences of stochastic
gradient descent used in UVTomo-GAN versus full batch pro-
cessing in EM. On the other hand, we show that while UVTomo-
GAN is robust to the choice of initialization, EM is likely to get
stuck in a bad locally optimal solution with random initializa-
tion. This observation is also reported in cryo-EM settings in
[43], [46].

V. ANALYSIS

In this section, we first define our notations and then formally
state the reconstruction guarantees of UVTomo-GAN.

A. Notations

We assume the image f ∈ L1(B2) ∩ L2(B2) has a bandlimit
0 < s ≤ 0.5 and compactly supported in the unit ball B2. In
addition, f ∈ span{us

k,q}Ω, Ω = {(k, q) | |k| ≤ Kmax, 1 ≤ q ≤
pk} with uk,q

s = Jk,q
s (ξ)cas(kθ). Thus, the Hartley transform

of f is expanded on a HB basis set. A measurement ζ associated
with the projection angle θ ∼ p is ζ = Pθf + ε with ε[n] ∼ qε
denoting additive IID noise. We assume qε has full support in
Fourier domain, i.e. {Fqε}(ω) �= 0, ∀ω.

Let O(2) denote the group of all possible rotations and reflec-
tions, i.e. ΓTΓ = I and det(Γ) = ±1, ∀Γ ∈ O(2). The action of
the O(2) group on f is defined as,

(Γf)(x) = f(Γ−1x), ∀Γ ∈ O(2) (28)

where x = [x, y] denotes the Cartesian coordinate. On the other
hand, the action of Γ on a probability distribution p defined over
[0, 2π) manifests as a combination of flip or circular shift. The
group O(2) partitions the space of span{us

k,q}Ω into a set of
equivalence classes where [f ] = {Γf, ∀Γ ∈ O(2)}. Let P clean

f,p

and P noisy
f,p denote the probability distributions induced by clean

and noisy projections, i.e. ζclean = Pθf and ζnoisy = Pθf + ε
with θ ∼ p, respectively.

B. Theoretical Results

Here we elaborate upon the theoretical reconstruction guar-
antees of our proposed method.

Theorem 1: Consider f, g ∈ L1(B2) ∩ L2(B2) and the as-
sociated bounded probability distributions pf and pg on the
viewing angles distributed in [0, 2π). Then,

P clean
f,pf

= P clean
g,pg

⇒ [f ] = [g], [pf ] = [pg]. (29)

Furthermore, if f = Γg, Γ ∈ O(2), then pf = Γpg .
The proof is provided in Appendix B. Intuitively, Theorem

1 states that if f and g have the same induced clean projection
distribution, then the underlying objects and projection distribu-
tions are equivalent up to a rotation and reflection. We link the
proof of this theorem to unique angular recovery in unknown
view tomography [20], [21].

Theorem 2: Assume f ∈ L1(B2) ∩ L2(B2) denoting the
ground truth (GT) image and p representing the bounded GT
probability distribution over the viewing angles θ ∈ [0, 2π).
Let f̂ and p̂ stand for the recovered image and the bounded
probability distribution after the convergence of UVTomo-GAN.
Consider the asymptotic case as L → ∞. Then,

P noisy
f,p = P noisy

f̂ ,p̂
⇒ f̂ = Γf, p̂ = Γp, (30)

for a unique Γ ∈ O(2).
The proof is available in Appendix C. This theorem validates

that upon the convergence of UVTomo-GAN in the presence of
noise and infinite number of noisy projections, the GT image and
viewing angle distribution is recovered up to a rotation-reflection
transformation. We defer the study of sample complexity of
UVTomo-GAN with finite size projection dataset to future work.

VI. NUMERICAL RESULTS

A. Experiment Setup

1) Datasets: To evaluate the generalization of our method to
images of different properties, we conduct experiments on four
different images (for additional results, refer to Appendix F).
Two are biomedical images of lung and abdomen from low
dose CT (LDCT) dataset [47]. We defined the third image as
a set of randomly located and shaped ellipses with various
intensities. For the last image, we generated the 3D map of 100S
Ribosome [48] using its protein sequence in Chimera [49] and
took a 2D projection of the generated map along a random view.
All images are resized to 101× 101 dimension. We refer to
these images as Lung, Abdomen, Ellipses and a 2D projection
image of 100S Ribosome (Rib-Proj). We synthesize the real
projection dataset in Hartley domain following (10) where p is
a smooth probability distribution over the viewing angles and
is chosen randomly. To generate the real dataset, we discretize
the projection angle domain [0, π) with 240 equal sized bins
and use non-uniform polar FFT [50] and CST to generate the
projections. We also add the flipped projections to the dataset,
such that θ covers [0, 2π). This means p(θ) = p(θ + π), for
θ ∈ [0, π). Therefore, when estimating p, we only recover p in
[0, π) range. Throughout this draft, we visualize p on [0, π). For
the reconstruction, we consider a coarser grid for the viewing
angles with Nθ = 240 bins for the interval [0, 2π). This way we
are taking into account the approximated discretization of θ at
the reconstruction time which might differ from how the real
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Fig. 2. Samples of clean (blue) and noisy (red) projections in spatial (first row)
and Hartely (second row) domain. For noisy data SNR=3.

viewing angles are obtained. We study two noise regimes: 1) no
noise, and 2) noisy with SNR = 3, SNR denoting the ratio of
signal-to-noise variance of the projections,

SNR =
Var{ζclean}

Var{ζnoisy − ζclean} (31)

where ζclean and ζnoisy stand for the clean and noisy projections
in spatial domain, respectively. Examples of clean and noisy
projections in both spatial and Hartley domains are illustrated
in Fig. 2. In our experiments with clean data, the number of
projections before adding the flipped versions is L = 2× 103,
while for noisy experiments, L = 2× 104.

Training and Network Architecture: We set a batch-
size of B = 200. We fix the regularization weights on the
PMF as γ3 = 0.01 and γ4 = 0.04 unless otherwise stated. For
the Lung and Abdomen images in the clean case, the de-
fault image regularization weights are γ1 = 10−5 and γ2 =
5× 10−5. We set γ1 = 0.001 and γ2 = 0 for Ellipses while
having γ1 = γ2 = 0 for the Rib-Proj reconstruction. In the
noisy case, to obtain the best results in various settings and
take into account the difference in the projection datasets,
we select γ1 from {0.0005, 0.001, 0.002, 0.005} and γ2 from
{0.0005, 0.005, 0.02, 0.04}.

We have separate learning rates for Dφ, c and p denoted by
αφ, αc and αp, but often choose αφ = αc. We select the initial
values of αφ, αc and αp from [0.002, 0.01] with a step-decay
schedule. We update Dφ, c and p using stochastic gradient
descent (SGD) steps. We clip the gradients of Dφ and c by 1 and
10 respectively and normalize the gradients of p to have norm
0.1. We train the critic ndisc=4 times per updates of c and p.
Although, after training for a while, we increase the frequency
of updating c and p by setting ndisc = 2. Once converged, we
use the reconstructed HB expansion coefficients to re-render the
image in spatial domain according to (11).

Our critic consists of four fully connected (FC) layers with
�, �/2, �/4, and 1 output sizes with ReLU [51] in between. We
choose � = 512 for no noise and � = 256 for noisy experiments.
Our justification for adopting a smaller critic network in noisy
case is to avoid overfitting to noisy projections and reduce the
leak of noise in the final reconstruction.

To improve the stability of the GAN training, we use spectral
normalization [42], applied to all critic layers. To enforce p to
have non-negative values while summing up to one, we set it to
be the output of a Softmax layer. We initialize each entry of
c independently with a random variable drawn from N (0, 4×

Fig. 3. Examples of the initialization images used in EM.

10−4). We set p to be a uniform distribution initially. For the
critic, we randomly initialize the weights of the FC layers with
a zero-mean Gaussian distribution and standard deviation 0.05
and set the biases to zero. Our implementation is in PyTorch and
runs on single GPU.

Evaluation Metrics: To assess the quality of the recon-
structed image, we use peak signal to noise ratio (PSNR) and
normalized cross correlation (CC). Higher value of these metrics
signals better quality of the reconstruction. Also, to evaluate p̂
compared to the ground truth p, we use total variation distance
(TV) defined as:

dTV =
1

2
‖p− p̂‖1. (32)

B. Baselines

We benchmark UVTomo-GAN with unknown p against five
baselines, including graph Laplacian tomography GLT [24],
MADE [25] + GL, MMLE with EM, Adapted CryoGAN [32]
and Adapted CryoGAN with unif. p. We defer the details of the
first two baselines to Appendix E.

In our first baseline GLT, the projections with unknown views
are sorted following [24] and the image is reconstructed accord-
ingly. Note that compared to [23], [24] is more resilient to noise.

For our second baseline, we combine MADE [25] and graph
Laplacian (GL) to obtain the angle corresponding to each projec-
tion. We name this baseline MADE+GL. Unlike GLT, MADE
uses a moment-based approach to estimate the angular differ-
ences between any two projections. GL is applied to get robust
estimation of individual projection angles from the estimates of
angular differences.

As our third baseline, we compare against MMLE (21) solved
by EM (22)-(23). We initialize EM with 10 random initializa-
tions. We test two different forms of initializations, 1) randomly
located Gaussian blobs with random standard deviations, 2)
initializing each pixel with Uniform distribution within a circular
mask, i.e. I[x, y] ∼ Unif(0, 1). In our experiments, we report the
best results for EM out of these 10 random initializations, hence
the name EM best random init for this baseline. Examples of
initializations for EM are provided in Fig. 3.

To evaluate the effect of estimating the viewing angle distribu-
tion p, we consider two GAN-based benchmarks. In the first, we
assume that p is given in advance. For our second GAN-based
benchmark, we assume p to be a uniform distribution. In both
GAN-based baselines, we follow Algorithm 1. However, we skip
the SGD updates on p and instead sample directly from the GT
p or the uniform distribution and use (15) as the generator loss.
Note that, these two baselines are adapted from CryoGAN [32]
(where the distribution of the latent variables is presumed to be
known or uniform) to the 2D UVT problem. We refer to these
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Fig. 4. Visual comparison of UVTomo-GAN with different baselines in no noise setting and L = 2× 103. The description of the columns: 1) ground truth
image (GT), 2) graph Laplacian tomography (GLT) [24], 3) angular difference estimation [25] + graph Laplacian (MADE+GL), 4) EM with random initialization,
5) Adapted CryoGAN [32], 6) Adapted CryoGAN [32] with uniform p, 7) Ours, UVTomo-GAN with unknown p (jointly recovering c and p). The PSNR and CC
between the reconstructed images and the GT are provided.

baselines as Adapted CryoGAN and Adapted CryoGAN with
unif. p.

C. Experimental Results

1) Quality of Reconstructed Image: Figs. 4–5 (and
Figs. 9–10 in Appendix F) compare the results of UVTomo-
GAN jointly optimizing for c and p against the GT image and
the aforementioned baselines for no noise and noisy scenarios.
We also include the profiles of the middle vertical line of
the reconstructed images against GT in Fig. 6. The results of
UVTomo-GAN jointly optimizing for c and p closely resembles
the Adapted CryoGAN baseline, both qualitatively and quanti-
tatively. However, with unknown p, the reconstruction is more
challenging. Note that, although by assuming p to be uniform
(second to last column in Figs. 4–5, Adapted CryoGAN with
unif. p baseline) the overall shape of the GT image emerges,
the details are not successfully recovered. This highlights the
importance of updating p to retrieve details accurately in the
reconstruction. A similar observation, although in a different
setting is reported in [32], [52].

Furthermore, in the clean case, GLT is able to recover the
correct ordering of the viewing angles. However, as the viewing
angle distribution is non-uniform, assigning equi-spaced angles
to the sorted projections causes a distorted reconstructed image.

On the other hand, MADE+GL is able to reconstruct the image
accurately.

For SNR = 3, while GLT’s performance on the Lung and
Ellipses images is similar to the clean case, GLT’s sorting
of the projections for Abdomen and Rib-Proj images is erro-
neous despite tuning the hyperparameters (see Appendix E).
Furthermore, we find the angle differences output by MADE
for SNR = 3 extremely noisy. This led to an erroneous angular
difference estimation and incorrect projection embedding. As
MADE+GL failed in reconstructing all images at SNR = 3, we
excluded the results of this baseline in Fig. 5.

In the presence of noise, we noticed that to obtain better results
for EM starting from a random initialization, in the E-step (22),
we need to inflate the noise standard deviation σ, otherwise EM
can get stuck easily at poor local optima. In our EM experiments,
we inflated σ by

√
2 for all datasets.

Fig. 5 (and Fig. 10 in Appendix F) display the effect of noise in
the final reconstruction. We observe that the presence of noise
makes the reconstruction task more challenging and degrades
the reconstruction quality compared to the no noise case. This
happens as the critic is having a harder time distinguishing signal
from noise given the noisy projections. Overall, in the no noise
setting, among baselines with unknown or assumed uniform
projection angle distribution, MADE+GL and our method per-
form the best in terms of PSNR and CC. In the noisy case,



ZEHNI AND ZHAO: ADVERSARIAL LEARNING BASED APPROACH FOR 2D UNKNOWN VIEW TOMOGRAPHY 713

Fig. 5. Visual comparison of UVTomo-GAN with different baselines in noisy setting, i.e. SNR = 3 and L = 2× 104. The description of the columns: 1) ground
truth image (GT), 2) graph Laplacian tomography (GLT) [24], 3) EM with random initialization, 4) Adapted CryoGAN [32], 5) Adapted CryoGAN [32] with
uniform p, 6) Ours, UVTomo-GAN with unknown p (jointly recovering c and p). The PSNR and CC between the reconstructed images and the GT are provided.

Fig. 6. Comparison between the line profile (middle vertical slice) of GT
(blue) versus 1) GLT [24] (green), 2) MADE [25] + GL (red), 3) EM (yellow),
4) UVtomo-GAN jointly optimizing c and p (black).

our approach alongside Adapted CryoGAN with unif. p are the
top-performing methods.

Quality of Reconstructed p: Comparison between the GT
distribution of the viewing angles and the one recovered by
UVTomo-GAN with unknown p is provided in Fig. 7 (and
Fig. 11 in Appendix F). Note that the recovered p matches the
GT distribution both visually and quantitatively in terms of TV
distance. Although, the quality of the recovered PMF in the noisy
cases (Fig. 7-(b), (d), (f), (h)) is not as good as the no noise case,
it still closely resembles the GT projection distribution. This
shows the ability of our approach to recover p accurately under
different distributions and noise regimes.

Fig. 7. Comparison between the original GT p (green) used to sample the
viewing angles from, the empirical sample distribution of the viewing angles
(blue) and the one estimated by our method p̂ (red). In each row, the subplots
share the same vertical axis. For no noise settings, dTV is computed between p̂
(red) and original p (green), while for the noisy case, dTV is computed between
p̂ (red) and sample estimation of p (blue).
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Fig. 8. Convergence of the reconstructed image and the viewing angle distribution throughout different iterations in a no noise setting for 1) UVTomo-GAN
with HB image representation (first row), 2) UVTomo-GAN with pixel domain representation (second row). For each iteration, we report PSNR and CC of the
reconstructed image and TV distance between the recovered p (red) and GT original p (green) from which the viewing angles are sampled, for both pixel and
HB image representation (in second to last and last rows respectively). The sample estimation of p is plotted in blue. The evolution of PSNR throughout training
iterations is plotted in second row, first subplot.

Convergence: To evaluate the effect of using HB represen-
tation on the convergence, we compare against an experiment
with pixel domain representation of the image. We call this
baseline pixel UVTomo-GAN versus our method HB UVTomo-
GAN. In this comparison, we use the same dataset, initialization,
batch-size, learning rate decay and schedules for both pixel and
HB UVTomo-GANs. For HB UVTomo-GAN, to only examine
the effect of the representation, we use no TV regularization
on the image, i.e. γ1 = 0. However, for pixel UVTomo-GAN,
to further help with the convergence, we set a small TV reg-
ularization weight as 5× 10−5 and enforce the image to be
non-negative by defining it to be the output of a ReLU. For
HB UVTomo-GAN, we chooseαφ = αc = 0.008,αp = 0.0008
while for pixel UVTomo-GAN, we fine-tuned these parameters
as αφ = αI = 0.01, αp = 0.001, αI denoting the learning rate
of the image. To implement the projection operator in pixel
domain, we use Astra toolbox [53].

In Fig. 8, we show the results of this comparison. While
both representations lead to accurate image and p recovery, their
convergence behaviours are different. For HB UVTomo-GAN,
as we are operating in Hartley domain and the images tend to
have larger low-frequency components compared to the high-
frequency details, initially the gradients corresponding to lower
frequency components are larger, leading to faster updates of
ck,qs for smaller (k, q)s. This helps in more stable convergence
of HB versus pixel UVTomo-GAN.

Note that, for HB UVTomo-GAN, we obtain a reasonable
image and PMF at early stages of training, i.e., after 20k-40k
iterations (which takes roughly 6-12 minutes). As expected, the
image is further refined with more training iterations. In addition,

we compare the convergence of our method versus Adapted
CryoGAN in Fig. 12 in Appendix G.

VII. DISCUSSION AND FUTURE WORK

As noted in [24], the angular estimation problem in 2D
UVT is more challenging than the 3D problem (such as the
cryo-EM single particle reconstruction) when the distribution
of the viewing angles is non-uniform. In the 3D problem, the
central slice theorem implies that any two central slices share a
common line of intersection that can be used to find the unknown
imaging directions even when they are not uniformly distributed.
However, in the 2D problem, since central slices all intersect
at the origin, we can’t directly use the corresponding geometric
relation found in 3D. In this paper, we show that even though the
distribution of the viewing angles is non-uniform, our adversarial
learning based approach can simultaneously recover both the
underlying object and the distribution of the viewing angles and
provide theoretical justification for this.

Our framework can handle the uncertainty of various latent
variables, such as rotations and translations, i.e. elements in
SE(2) group. Such latent variables also encode the rigid motion
of an object in 2D. Furthermore, our approach can be extended
to various imaging inverse problems, including 3D UVT. This
can be explained through Fig. 1, where for a general imaging
inverse problem, Hθ and θ represent the forward operator and
the underlying random (multi-dimensional) latent variables with
unknown distribution. These extensions are beyond the scope of
this paper and we defer their study to future work.
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VIII. CONCLUSION

In this paper, we present an adversarial learning approach for
the 2D unknown view tomography problem. Since the view-
ing angles and their distribution are not known a-priori, we
simultaneously recover the unknown image and the distribution
of the viewing angles via a distribution matching formulation
solved through a min-max game between a critic and a generator.
To improve the computational efficiency and regularize the
image, we employ a Fourier related representation of the image
with truncated Hartley-Bessel expansion. For the GAN training,
we show that the original loss function at the generator side
is non-differentiable with respect to the viewing angle distri-
bution. Thus, we use the Gumbel-Softmax approximation of
samples from discrete distributions to allow the gradient update
of the viewing angle distribution. Our analysis demonstrates
that asymptotically unique recovery of the image and viewing
angle distribution is achieved. Moreover, our simulation results
show that our method outperforms the state-of-the-art methods
in recovering the images from noisy projections.

APPENDIX

A. Computational Cost of UVTomo-GAN

Cost of Projection Generation: To generate Nθ = O(m)
projection templates following (9), we first compute the inner
summation over q, i.e.

fk(ξj) =

pk∑
q=1

ck,qJk,q(ξj). (33)

On the radial line, we have O(m) equally spaced points ξj .
Given that Kmax = O(m) and pk = O(m), computing fk(ξj),
∀k, j requires O(m3) computations.

Next, using fk(ξj) we compute the outer sum in (9) with
respect tok forNθ viewing angles. A naive matrix multiplication
implementation for this step leads to O(m3) cost (multiply-
ing two matrices of size O(m)×O(m)). This can be further
reduced using FFT to O(m2 logm). Finally, the total cost of
generating Nθ projections using (9) is O(m3).

B. Proof of Theorem 1

First we prove:

P clean
f,pf

= P clean
g,pg

⇒ [f ] = [g]. (34)

From P clean
f,pf

= P clean
g,pg

, it is implied that the support of the two
distributions are the same. This means that f and g have the
same projection set. In other words, {Pθif}Nθ

i=1 = {Pθ̂j
g}Nθ

j=1

where θ̂ = {θ̂j}Nθ
j=1 can be a shuffled version of θ = {θi}Nθ

i=1.
Intuitively, one can imagine two objects f and g which have the
same projections, however the order of the viewing angles of
f can be a shuffled version of the viewing angles for g. Now
the question that arises is: Given the class of functions f and g
belong to, is it possible to have two distinct objects that produce
identical projection sets?

This question is related to the feasibility of unique angle re-
covery in unknown view tomography, comprehensively studied

in [20], [21]. Based on our discussions so far, we seek to prove
the following:

{Pθif}Nθ
i=1 = {Pθ̂j

g}Nθ
j=1 ⇒ [f ] = [g]. (35)

In (35), the LHS implies that f and g have the same set of projec-
tions, in other words we have: ∀γ ∈ {Pθif}Nθ

i=1, γ ∈ {Pθ̂j
g}Nθ

j=1

and ∀γ′ ∈ {Pθ̂j
g}Nθ

j=1, γ′ ∈ {Pθif}Nθ
i=1. To prove the above, we

borrow the definitions and various theoretical results in [20].
Helgasson–Ludwig (HL) consistency conditions [54] link the
geometric moments of a 2D object to its projections. Let v and
μ define the geometric moment of the image f and its projection
as:

vi,k(f) =

∫ 1

−1

∫ 1

−1

xiykf(x, y)dxdy (36)

μd(θ; f) =

∫ 1

−1

xd{Pθf}(x)dx. (37)

Object moments of order d are the ones that satisfy i+ k = d.
Let v(f), denote the set of geometric moments of order d ∈ D
for object f . Given the object moments v(f), we construct a
family of trigonometric polynomials as:

Qd(θ;v(f)) =

d∑
r=0

(
d

r

)
vr,d−r(f) (cos θ)

r(sin θ)d−r. (38)

Given the definition (38), we state the HL conditions as:

Qd(θ;v(f)) = μd(θ; f). (39)

We have defined equivalence for 2D images before. If two im-
ages are equivalent, then they are related through a rotation and
reflection. Similarly, we can define equivalence on the viewing
angles. Assume two vectors of viewing angles of length Nθ,
θ, θ̂ ∈ [−π, π]Nθ . θ is said to be equivalent to θ̂, i.e. θ ∼ θ̂, if
∃η ∈ {−1, 1} and α ∈ [−π, π] such that θ̂i = ηθi + α+ 2πni,
for ni ∈ Z.

As the projection set for f and g objects are the same (based
on (35)), we conclude ∀θ, ∃θ̂ such that:

μd(θ; f) = μd(θ̂; g). (40)

After invoking HL conditions (39) for object f on the RHS
of (40) we get:

Qd(θ;v(f)) = μd(θ̂; g), ∀d ≥ 0. (41)

Note that, we have narrowed down the identical projection sets
for f and g to (41). Now we restate our question as: what is the
relationship between θ and θ̂?

To find the answer to this question, we first limit the set of
moment orders to d ∈ D = {1, 2} (as (41) holds for ∀d ≥ 0, we
can simply do this). Note that for θ ∈ [0, 2π), the projections
corresponding to θ ∈ [π, 2π) are a flipped version of projections
associated to θ ∈ [0, π) and do not constitute new informa-
tion [20]. Thus, in [20], the authors limit their analysis to the
projections that are π-distinct, i.e., there are no two angles that
are different by a factor of π. Following the same lines, given
the projection sets corresponding to θ, θ̂ ∈ [0, 2π), we select a
π-distinct projection subset by choosing a set of projections that
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have positive (or negative) 1st order geometric moment. We now
invoke Corollary 5 of Theorem 9 in [20]. We restate this corollary
in the following.

Corollary 1 (Corollary 5 of Theorem 9 [20]): Suppose θ is
a set of π-distinct view angles and Nθ > 8. Suppose v satisfies
the following condition: � ∃β, γ ∈ R such that,

Q2(θ;v) = β (Q1(θ;v))
2 + γ, ∀θ ∈ [0, π] (42)

or equivalently,

det

⎡⎢⎣ v21,0 v2,0 1

2v1,0v0,1 v1,1 0

v20,1 v0,2 1

⎤⎥⎦ �= 0. (43)

If θ �∈ UAS(v) with UAS (unidentifiable angle set) defined as:

UAS(v) =

{
arg

(√−c∗1
c1

)
, arg

(
−
√−c∗1

c1

)}
(44)

where,

c1 =
1

2
(v1,0 − i v0,1) (45)

then, the only view angles θ̂ that produce the same projection
moments of order D = {1, 2} are equivalent to θ. This implies
that θ ∼ θ̂. �

Adhering to Corollary 1, ifv(f) satisfies the conditions in (42)
or (43), then for d ∈ {1, 2}, the only viewing angles θ̂ for
which (41) holds are equivalent to θ and thus θ ∼ θ̂. On the
other hand, based on Corollary 1, the viewing angles recovered
for f , i.e. θ, are equivalent to the GT viewing angles θ̌ used
for generating the projections of f , i.e θ ∼ θ̌. Based on the
transitivity property of equivalence relation, this leads to θ̂ ∼ θ̌

Given θ ∼ θ̂ ∼ θ̌ and the fact that the projection sets corre-
sponding to the objects f and g are identical, the objects f̂ and ĝ
reconstructed from the projection sets and viewing angles would
also be the same (up to a rotation and reflection), i.e. [f̂ ] = [ĝ].
We now link the reconstructed objects and their ground truths.

If we have sufficiently large Nθ, we can directly recover HB
expansion coefficients c by solving a set of linear equations link-
ing the projections to the HB expansion coefficients. Given the
HB expansion coefficients, we have a continuous representation
of the image as defined in (11). This leads to f̂ = f and ĝ = g
and finally concludes [f ] = [g].

As [f ]=[g], ∃Γ∈O(2) such that g=Γf . P clean
f,pf

=P clean
g,pg

im-
plies the TV distance between the two probability distributions
is zero, i.e.

TV (P clean
f,pf

, P clean
Γf,pg

) = 0. (46)

Invoking Lemma 1 (stated in Appendix D), we know P clean
Γf,pg

=

P clean
f,Γ−1pg

, therefore (46) becomes,

TV (P clean
f,pf

, P clean
f,Γ−1pg

) = TV (pf ,Γ
−1pg)

=
1

2
‖pf − Γ−1pg‖1. (47)

Following (46), the LHS of (47) is 0. Thus, based on the non-
negativity property of ‖.‖1 norm, we have,

pf = Γ−1pg ⇒ pg = Γpf (48)

implying [pf ] = [pg]. �

C. Proof of Theorem 2

Our proof follows closely the proof of Theorem 1 in [32]. We
first show that,

P noisy
f,p = P noisy

f̃ ,p̃
⇒ P clean

f,p = P clean
f̃ ,p̃

. (49)

According to the forward model (3), we have ζ = Pθf + ε
where ε[n] ∼ qε an IID additive noise which is independent of f
and θ ∼ p. Note that we are considering a general model for the
noise and not confining it to be a Gaussian. As ε is independent
of the image and viewing angles, we have:

P noisy
f,p = P clean

f,p ∗ qε (50)

In Fourier domain, (50) becomes:

F{P noisy
f,p } = F{P clean

f,p }F{qε}. (51)

We have assumed ε to have full support in Fourier domain,
therefore we can divide both sides of (51) by F{pε}. Therefore
given F{P noisy

f,p }, we have F{P clean
f,p } and (49) is proved. Now,

we show:

P clean
f,p = P clean

f̃ ,p̃
⇒ f̃ = Γf and p̃ = Γp (52)

for a unique Γ ∈ O(2). To prove (52), we invoke Theorem 1.
Theorem 1 states that if the two images f and f̃ have the same
distribution of the clean projections, then the objects and their
associated projection angle distributions are equivalent up to a
rotation and reflection. This confirms [f ] = [f̃ ], and [p] = [p̃],
i.e. f̃ = Γf and p̃ = Γp, for a Γ ∈ O(2). �

D. Lemma 1

Assume f ∈L1(B2) ∩ L2(B2), viewing angles θ are dis-
tributed following p, i.e. θ ∼ p and Γ ∈ O(2). Then,

P clean
f,Γ−1p = P clean

Γf,p (53)

Proof: For a given (f , pf ), if γ ∈ O(2) is applied to both f
and p, then the induced probability distribution of the projections
would be the same, i.e.P clean

f,p = P clean
Γf,Γp. After changingp′ = Γp,

we have P clean
f,Γ−1p′ = P clean

Γf,p′ , thus concluding the proof.

E. Details on Baselines

GLT [24]: For this baseline, a graph is constructed based
on the pairwise distances of the compressed denoised projec-
tions. The tunable parameters in GLT are 1) number of nearest
neighbors (NN) and, 2) Jaccard index threshold (β). The choice
of NN affects the connectivity of the constructed graph (be-
fore denoising). On the other hand, Jaccard index thresholding
reduces the shortcut edges in the graph. For the clean case,
we choose NN = 111 and β = 0.41 for all images except for
the Shepp-Logan for which we set NN = 68 and β = 0.03.
In the noisy case, we set NN = 111 and β = 0.21, β = 0.31
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Fig. 9. Visual comparison of UVTomo-GAN with different baselines in no noise setting and L = 2× 103. For description of each column and the evaluation
metrics refer to Fig. 4 and Sections VI-A, VI-B.

and β = 0.41 for Lung, Abdomen and Rib-Proj images, re-
spectively. For the rest of the images, we set the parameters
as, Ellipse: NN = 50, β = 0.25, 80S: NN = 1111, β = 0.3,
Lung II: NN = 1111, β = 0.3, Walnut: NN = 50, β = 0.25,
Shepp-Logan: NN = 222, β = 0.11.

MADE [25] + GL: To find the angular differences between
any two projections we use MADE. The tunable parameters
for MADE are similar to GLT. For the Lung, Abdomen and
Walnut images, we set the number of nearest neighbors NN = 70
while NN = 90 for the rest. For all the images, we set β = 0.1.
After obtaining the angular differences between the neighbor
projections, through a shortest path algorithm, i.e. Djikstra,
the absolute angle differences between any two projections are
obtained. Next, we construct a weight matrix E based on the
angle differences from MADE as:

E(i, j) =

{
e−

|θi−θj |2
ε , |θi − θj | ≤ 5◦

0. o.w.
(54)

where θi denotes the angle corresponding to the i-the projection.
In our experiments, we set ε = 20. Next, we normalizeE similar
to [24] and perform eigenvalue decomposition. In the clean
case, the top two non-trivial eigenvectors of the normalized
matrix form the embedding of the projections which is a cir-
cle. The angle of the i-th projection embedded on the circle

is assigned as θi. Based on the assigned viewing angles, the
image is reconstructed. For both GLT and MADE+GL baselines,
after the estimation of the projection ordering and angles, we
reconstruct the image via a TV regularized optimization solved
by ADMM [55] using GlobalBioIm library [56].

F. Additional Numerical Results

In this section, we provide additional results on four other
images described as: 1) 80S: We generated the 3D map of 80S
Ribosome [57] using its protein sequence in Chimera [49] and
took a central slice of the 80S Ribosome molecule. 2) Lung II: A
lung CT scan [12]. 3) Walnut: Tomographic X-ray reconstruction
of a walnut. We used the projection data and code provided
in [58]1 to generate this image. 4) Shepp-Logan phantom. We
generated the projection datasets for both clean and noisy cases
as described in section VI.

Figs. 9–10 compares the results of UVTomo-GAN jointly
optimizing c and p versus several benchmarks, in clean and noisy
(SNR = 3) settings. Furthermore, in Fig. 11 we evaluate the
performance of UVTomo-GAN in terms of the quality of the
recovered projection angle distribution p. We notice that for the
Walnut and Shepp-Logan images, in the noisy case, as shown in

1http://www.fips.fi/dataset.php

http://www.fips.fi/dataset.php
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Fig. 10. Visual comparison of UVTomo-GAN with different baselines in no noise setting and L = 2× 104. For the description of each column and the evaluation
metrics, please refer to Fig. 5, Sections VI-A, VI-B.

Fig. 11. Comparison between the original GT p (green) used to sample the
viewing angles from, the empirical sample distribution of the viewing angles
(blue) and the one estimated by our method p̂ (red). For more details on the
computation of dTV , refer to Section VI-A and Fig. 7.

Fig. 12. Convergence results for the no noise and noisy (SNR = 3) experi-
ments. The setting of the experiments are the same as the ones in Figs. 4–5. We
compare UVTomo-GAN jointly optimizing for c and p (green) versus Adapted
CryoGAN [32] (blue) and Adapted CryoGAN [32] with unif. p (red). Vertical
axis shows the PSNR in dB and the horizontal axis is the training iteration
number. The subplots in each row share the same vertical and horizontal axis.

Figs. 10–11, the reconstruction is less sensitive to the quality of
the estimated p.

G. Convergence Results

We exhibit the convergence curves in terms of PSNR versus
training iteration for no noise and noisy experiments in Fig. 12.
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To obtain this curve, at each iteration, we align the reconstruc-
tions with the GT. We compare the convergence of UVTomo-
GAN versus Adapted CryoGAN and Adapted CryoGAN with
unif. p baselines.

For Adapted CryoGAN with unif. p baseline, after a certain
number of iterations, we see no improvement in the recon-
structed image. This is attributed to having an inaccurate PMF
which hinders the correct distribution matching of synthetic and
real measurements. Thus, the high frequency details in the final
reconstructed image do not appear correctly (as also seen in
Figs. 4–5, 9–10). This once again indicates the importance of
recovering p to have high quality reconstructions.
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