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Vignetting Correction Based on a Two-Dimensional
Gaussian Filter With Harmony for Area Array
Sensors

Hongtao Cao

Abstract—Vignetting is the main factor causing uneven bright-
ness in an image due to the inherent characteristics of the camera
sensor. In radiometric correction-based remote sensing sensors,
vignetting can lead to uncomparable radiation signals within and
between images, and in the processing of remote sensing images,
it leads to an unbalanced color when images are mosaiced. Due
to distortions of optical devices, uneven response of detectors and
other factors, it is difficult to extract the vignetting from complex
reference images and correct it accurately. In this study, a low-pass
Gaussion filter was selected to extract the vignetting from reference
image, and the standard deviation (STD) and mean of the reference
images were used as the factor of harmony to evaluate the strength
of the filter for attaining optimal vignetting background. In experi-
ments, the method proposed was compared with polynomial fitting
method and general Gaussian filter mothed. The results show that
Gaussian filter with harmony method achieves the best effect of
vignetting correction compared with the other two methods.

Index Terms—Remote sensing sensors, vignetting, gaussian
filter, radiometric calibration.

I. INTRODUCTION

ADIOMETRIC calibration involves establishing a cor-
Rrelation between the digital number (DN) of an optical
remote sensor and the illuminance before it is launched into
orbit and is the premise for quantitative remote sensing [1],
[2]. In the process of radiometric calibration, an inaccurate
vignetting correction can lead to radiometric distortion, which
causes the brightness of an image to fade from the middle to
the edges. Theoretically, vignetting is a phenomenon where
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the off-axis image points gradually become darker as the light
beam reaching the detector plane of the CCD/CMOS becomes
gradually narrower due to the existence of an aperture when
object points far away from the optical axis are imaged [3]. Ac-
cording to the theory of geometrical optics, itis usually described
by the cos*a law, which specifies the drop in light intensity
depending on the angle formed between a ray of light entering
the lens and the optical axis of the lens. Moreover, the defects
in the optical components of the sensor can lead to irregular
attenuation of the illumination incident on the detector plane of
the CCD/CMOS, such as lens distortion, uneven filtering, and
optical axis offset [4], [5]. The types of vignetting are listed
below in the order corresponding to the light path from a scene
to the image sensor: mechanical vignetting, optical vignetting,
natural vignetting, and pixel vignetting [6]. For remote sensing
analyses, the vignetting effect not only causes uneven brightness
and color distortion, but also makes it impossible to compare the
radiation features within and between images.

The common vignetting correction methods include the fitting
function method and look-up table (LUT) [7]-[9]. The fitting
function method uses a polynomial model, an exponential poly-
nomial model, a hyperbolic cosine model, a Gaussian function,
or a radial polynomial model to fit the vignetted images ob-
tained under scenes with uniform luminance [10]-[13]; thus, the
correction factors for the entire image plane can be calculated.
Olsen et al. [14] used linear polynomial fitting to correct the
optical vignetting of an agriculture camera with two bands
developed by the University of North Dakota for deployment
on the International Space Station. A nine-order polynomial
curve and a six-order polynomial curve with minimal residual
variances were selected for the near-infrared and red bands,
respectively. Lebourgeois ef al. [15] established a vignetting
correction filter by fitting a polynomial function distribution
onto an average image computed over an entire dataset. This
vignetting distribution function expresses the vignetting factor
for a given position in an image as a polynomial function of the
position (i.e., row and column coordinates). The LUT method
provides a correction factor for each pixel and has the highest
accuracy for vignetting correction. It is a common method to
generate the LUT for vignetting correction, where reference
images obtained under uniform illumination are used to extract
the vignetting background [7], [16]. Subsequently, the vignetting
background is used to generate the LUT, which is typically the
ratio of the maximum value of the reference image to the value of
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each pixel, given the impact of image noise. W. Yu et al. [17] used
the wavelet denoising method to eliminate the noise in reference
images and to improve the accuracy of LUT for anti-vignetting.
Inimplementation of wavelet denoising scheme, the problematic
thresholding selection stage had been entirely ignored, and
only approximation coefficients are employed in the synthesis
stage. F J W-M Leong et al. [16] assumed that vignetting is
an additive low-frequency signal. Therefore, low-pass filtering
can be used to extract it from an image. This filtering can
be achieved by convolving the image with a Gaussian kernel.
Although this study corrected vignetting to a certain extent,
there was an important problem ignored that the strength of
filters may disturb the effective of vignetting correction. If
the filter is not sufficiently powerful, noise will remain in the
vignetting background images. If the filter is too strong, the
vignetting background images will be too smooth to eliminate
the vignetting effect sufficiently. Due to random noise, quantum
response difference, and optical distortion, the vignetting effect
is complex [19]-[21], and the strength of the low-pass filter in
the LUT method affects the quality of the vignetting correction.
Especially, when images are used in radiometric measurement,
it is the premise to improve the radiomtric consistency of pixles
whether vignetting correction is appropriate.

At present, UAV equipped with near-infrared sensors is used
for remote sensing monitoring. The vignetting is obvious and
problematic for RS purposes. This study focused on vignetting
correction for a near-infrared remote sensor with a complex vi-
gnetting effect. To realize an accurate correction, a method based
on a Gaussian filter with harmony was used to obtain an accurate
LUT for vignetting correction. The strength of the Gaussian
filter can be adjusted to adapt to reference images. This method
can effectively eliminate noise in images, while maintaining the
irregular vignetting features resulting from various factors. In
this study, we introduced the main factors and its character-
istices of the vignetting effect, and the near-infrared sensor is
introduced briefly in Section II.A. Secondly, the strategy of the
Gaussian filter adapted to the image proposed was described
in Section II.B. The method was to eliminate the vignetting
of the near-infrared sensor step by step and the accuracy of
the method was evaluated and compared with other methods
in Section III. Finally, we discuss and summarize the vignetting
correction method in Sections IV and V.

II. MATERIALS AND METHODS
A. Materials

1) Near-Infrared Sensor: The remote sensing sensor cor-
rected for vignetting is a near-infrared area array sensor with
CMOS detectors having a resolution of 1280x960 pixels, and
its spectral response range is 400-1000 nm. The digital quanti-
zation rate is 16 bit (0-65535). The near-infrared sensor controls
the incident light with a narrow-pass filter. The spectral trans-
mittance of the narrow-pass filter is in the range of 820-860 nm.
The optical components were fixed focus lenses with a focal
length of 8 mm. Fig. 1 shows the structure of the sensor.

Compared to the visible bands, the solar radiation energy in
the near-infrared band is weak, and the quantum efficiency of
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Fig. 1.  Structure diagram of a near-infrared sensor.
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the general the CCD/CMOS sensor is low in the near-infrared
band [22]. And particularly, the vignetting of area array sensor
is more complex than that of linear array. Therefore, the impact
of vignetting in the NIR area array band is more evident.

2) Experimental Instruments: Accurately measuring the vi-
gnetting requires a uniform luminance. An integrating sphere
was selected to output the uniform field of the luminance [23].
The integrating sphere used in the experiment was XTH2000
produced by Labsphere Inc (New Hampshire, USA). The sphere
provided a stable and uniform optical radiation in the wavelength
range of 300-2400 nm. Its aperture was 20 cm, and the optical
uniformity was more than 98%. Fig. 2 shows the integrating
sphere and the layout of the data acquisition process.

3) Vignetting and Its Characteristics: When the integrating
sphere output is stable, the sensor looks at the aperture of the
integrating sphere and collects the brightness images. Three
groups of images with low brightness (quantized value: 0-
15000), medium brightness (quantized value: 15000-30000),
and high brightness (quantized value: 30000-60000) were col-
lected under different output powers of the integrating sphere. To
avoid the slightly uneven brightness of the integrating sphere,
each group of images was collected twice in the vertical and
horizontal positions of the sensor. In this study, we selected
the vignetting of the high-brightness image as the object of
introduction; the processing of the low-brightness and medium-
brightness vignetted images is similar. Fig. 3 shows the vignetted
images.

As shown in Fig. 3(a), the vignetted image taken by the
near-infrared sensor is bright in the middle and dark at the four
corners. Moreover, the lower corners of the image are brighter
than the upper corners. Due to the imperfections induced during
the manufacturing process of the optical device, the optical
center of the image is inconsistent with the center of the CCD
detector shown in Fig. 3(b).
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Fig. 3. Vignetted images: (a) Original gray vignetted image; (b) Vignetted
image color rendered.
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Fig. 4. Characteristics of pixels with the vignetting effect: (a) pixel values of

the diagonal of the vignetted image, (b) pixel values of the middle row of the
vignetted image.
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Fig.5. Random noise in a vignetted image: (a) 3D visualization of vignetting;
(b) histogram of image.
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Fig. 4 shows that vignetting has asymmetric characteristics in
terms of the diagonal pixel values, and the vignetting gradient is
not smooth. Based on the image statistics, the maximum value
of the vignetted image was found to be 3.4 times the minimum
value. These vignetting characteristics make it difficult for stan-
dard functions to fit it.

We assumed that vignetting of the image is smooth and
belongs to the low-frequency component of the image, whereas
noise was considered the high-frequency component [15], [16].
Figs.4 and 5 show that the noise in the vignetted image is random
and that it conforms to a normal characteristic. In other words, it
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belongs to Gaussian noise. This is suitable for Gaussian filtering.
Accordingly, it is feasible to eliminate the noise and obtain a
smooth vignetting background using the image acquired under
uniform luminance of the integrating sphere.

B. Method of Vignetting Correction

1) Low-Pass Gaussian Filter: To eliminate the impact of ran-
dom noise on the vignetting factors, it is necessary to eliminate
the noise before calculating the LUT of the vignetting correction.
Here, we choose a low-pass Gaussian filter suitable for Gaussian
noise to eliminate the random noise in the vignetted image and
obtain a smooth vignetting background [24]. The expression of
the Gaussian kernel (radial basis function (RBF)) is as follows
[25], [26]:

1 22442

Gxy) =5-—75€ =~ ey

T 27102

G(x,y) is the Gaussian kernel function;

x,y is the location of the pixels;

o is the standard deviation, depends on image features and
the smoothness desired.

Based on the RBF, the width of the Gaussian filter, which
determines the degree of smoothness, is represented by the
parameter o, and the relationship between o and the degree of
smoothness is simple. The greater the o value, the wider the band
of the Gaussian filter and the better the degree of smoothness
[26], [27], as shown in Fig. 6. By adjusting the smoothing degree
parameter o, we can achieve a compromise between the over
blurring (over smoothing) of the image features and the many
undesirable abrupt variables (under smoothing) caused by noise
and fine textures in the smoothed image.

2) Building Filters With Harmony: For vignetted images
with different brightness values, we expect that the filter strength
can not only effectively eliminate noise, but also help retain the
vignetting characteristics and brightness of the original images
as much as possible when filtering. Therefore, it is important
to control the parameter o of the Gaussian filter to adapt to
vignetted images.

The smoother the image, the lower the image variance. The
greater the strength of the Gaussian low filter, the lower the
average value of the image. Here, the smoothing degree of the
vignetting background is evaluated using the standard deviation
(STD) and mean of the images(MEAN). Thus, we expect to
establish a functional relationship f(o), g¢(o) between the
filter parameter o and the STD and MEAN of the vignetting
background.

STD =
MEAN

f (o) (2)
= g(o) 3)

Based on the above analysis, we predict that the variance of the
vignetted image is positively correlated with the Gaussian filter
parameter 0. When o is sufficiently high, the high-frequency
information passes through completely, and the variance remains
unchanged. The relationship between the mean value of the
vignetted image and the Gaussian filter parameter o is similar.
We selected a vignetted image and analyzed the correlation
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Fig. 7. Relationship between the filter parameter o and the STD and MEAN

of the vignetting background: (a) Trend chart of the variance between the filter
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o and mean value of the vignetting background.
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Fig. 9. Flowchart of Gaussian filtering in the frequency domain.

between the parameter o of the Gaussian filter and the mean
and STD of the image. Fig. 7 shows this correlation.

As shown in Fig. 7, the correlation is consistent with the above
prediction. Therefore, the change rate of the correlation is used
as the judgment factor for the Gaussian filter harmony. Filtering
inevitably causes the distortion of image information. Here, D4
and D ,eqn 1S defined as the factors to weigh image distortion.

STD.;,
Dy = 4
W= STD,. 4
MEAN,,
Dupean = ————— 5
0 = MEAN,, ®)

STDy, and MEAN, are the STD and MEAN of image filtered
by the Gaussian filter respectively; STD,, and MEAN,, are the
STD and MEAN of original image respectively.

We expect that the smaller the distortion, the better, when the
image noise is fully eliminated by Gaussian filter. As seen in
Fig.7, when o decreases to a certain extent, the decrease of STD
and MEAN gradually intensifies. The parameters D, Diean Of
image distortion shall not be less than 99%, following formula
is used to control the change.

og=MIN (0) Dgg> 99% and Dyean> 99% (6)

oq is the min of o, when Dygq> 99% and Dpean> 99%.

3) Extending Image-Edge: The filter may be beyond the
image. Therefore, the extension method is often used to solve the
outer boundary problem. There are four common methods: zero
filling, repetition, symmetry, and circulation. In this research,
the repetition method was selected to supplement the border.
The rules are as follows:

1) The expansion distance of the four edges of the image is

the integer of og;

2) The row is first expanded and then the column, or vice

versa;

3) The repeated value is the boundary pixel value of the

original image, and the equation is as follows:

Iext (ua V)

Ioriginal (ua V) u < [UG} v < [JG]
Ioriginal (u_ [UG] yV.— [UG]) [UG] <u< M+ [UG] ’
= [oc] < v < N+ [og]
Lorigina (U — 20G, v — 20¢) u > M+ [og]
xs,v > N+ [o¢]
(7N

Loriginat s the original image which has not been extended;

Texc 1s the image extended;

u, v is the location of pixel. Fig. 8 is used to display the mode
of image expansion.

4) Filtering in the Frequency Domain: Gaussian filtering of
a vignetted image is performed in the frequency domain to
improve the efficiency. First, the image is transformed by Fourier
transform (FFT) and filtered using the Gaussian filter (GF). The
inverse Fourier transform (IFFT) is used to transform the image
[25], [28]. The process of Gaussian filtering in the frequency
domain is shown in Fig. 9.

f(x,y) is the original images in spatial domain; F(u,v) is the
images in frequency domain; G(u,v) is the images filtered by
Gaussion function in frequency domain; g(x,y) is the images
which has been filtered and converted back to spatial domain.

5) Normalization and Equalization: The vignetted image is
normalized as the correction factors [15], [29].

Norm_V (z,y) = L@.y) 8)

Imal‘

I(x,y) is the pixel value in the vignetting background; I,
is the maximum pixel value within the vignetted im-
age; Norm_V(x,y) is the factor of vignetting correction
normalized; x, y is the location of pixel.

Several normalized vignetted images were obtained at differ-
ent incident radiation levels. The effective LUT of vignetting
correction is the mean image of these images.

The method and experiments described in the paper are im-
plemented according to the flow of Fig. 10.

III. RESULTS

A. Harmony of Gaussian Filter

Based on the method described in Section I1.B, the correlation
between the STD and the mean value of the three vignetted
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and Gaussian filter parameter o: (a) Correlation between the STD of the
vignetted image and Gaussian filter parameter o and the value of o satisfying
the requirement; (b) Correlation between the mean of the vignetted image and
Gaussian filter parameter o and the value of o satisfying the requirement.
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Fig. 12.  Fitting performance of vignetting background with high brightness

when o = 17 (red) and original vignetted image (blue): (a) Pixel value of the
diagonal of the image; (b) Pixel values of the middle row of the image.

images with different brightness values and the Gaussian filter
parameter o is calculated and shown in Fig. 11. The value of the
parameter o was determined based on the conditions of Dgq >
99% and D,ean > 99%.

After filtering using the Gaussian filter with harmony in
the frequency domain, a smooth vignetting background was
obtained. Figs. 12, 13, and 14 show the fitting performance of
the vignetting background and original vignetted images.

ness when o = 18 (red) and original vignetted image (blue): (a) Pixel values of
the diagonal of the image; (b) Pixel values of the middle row of the image.

0 200 400 600 800 [ 200 400 600 800 1000 1200

X X
(a) (b)
Fig. 14.  Fitting performance of vignetting background with low brightness

when o = 23 (red) and original vignetted image (blue): (a) Pixel value of the
diagonal of the image; (b) Pixel values of the middle row of the image.

As shown in the figures above, the noise in the vignetted
image with different brightness values was eliminated, and the
vignetting features were preserved. The vignetting background
effectively fits the vignetted image.

Moreover, another near-infrared camera was selected for fur-
ther experiments to confirm the practicability of the method.
The near-infrared camera had 964 x 1292 pixels, and its band
response range was 740-760 nm with quantization of 12 bits.
Fig. 15 shows the adaptive parameter o of the Gaussian filter.

After the harmony analysis, the Gaussian filter with the pa-
rameter 0 = 14 was used for vignetting correction. Fig.16 shows
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diagonal of the image; (b) Pixel values of the middle row of the image.

DN

Normalized LUT of vignetting correction factors.

Fig. 17.

the fitting performance of the vignetting background and original
vignetted image.

Fig. 16 shows that the Gaussian filter with the proposed
harmony achieves a good fitting effect.

B. LUT Obtained By Gaussian Filter With Harmony

Multiple vignetting backgrounds with different brightness
values were normalized and averaged. Fig. 17 shows the final
normalized vignetting correction factor.

The LUT normalized recorded the correction factors of the
vignetting correction for each pixel. When correcting an image,
the pixel value of the image I, igina; is used to divide the
correction factors I,,igina of the corresponding position (x,y)
in the LUT [30], [31].
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Fig. 18.  Comparing the performance of vignetting correction methods: (a)
Original image; (b) Image corrected by Gaussian filter with harmony when o =
14; (c) Image corrected by polynomial fitting method; (d) Image corrected by
general Gaussian filter when o = 8.
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Fig. 19. Maximum, average and minimum values of corrected image and
original image.

C. Comparison With Conventional Method

To validate the performance of the method proposed, we
compared it with the conventional methods. The polynomial
fitting method and general Gaussian filtering method were used
for vignetting correction. The polynomial fitting equation [9],
[14], [32] is as follows:

f (@)= pler(z,y)® + p2*r(z,y)° + p3xr(z,y)’

+pd e r(z,y) +p5 x 7 (z,y)% +p6xr (z,y) + p7
(10)

Y

Here, r(x,y) is the distance from the pixel (x,y) to the
optical center ab (centerX, centerY), and pl — p7 represent
the coefficients of the polynomial fitting.

Fig. 18 shows that the three methods are effective for vi-
gnetting correction. Comparing the performance of vignetting
correction in Fig. 18(b), (c¢), and (d), we find that the image
corrected by the Gaussian filter with harmony is the smoothest.
Figs. 19 and 20 presents the statistical characteristics of the
original and corrected images.

As shown in Fig. 19, the deviation of maximum, average and
minimum values of image corrected by the method proposed is

r(z,y) = \/ (x — centerX)? + (y — centerY)?
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the smallest. In Fig. 20, the standard deviation (STD) of the im-
age corrected by the Gaussian filter with harmony is the lowest.
These demonstrates that the DN of pixels in image corrected
by the proposed method are the most balanced. Overall, the
Gaussian filter with harmony proposed for vignetting correction
exhibited the best performance.

Furthermore, five districts(100x 100 pixel window) of image
were extracted to comparing the mean value and STD of them.
The five districts are top left(TL), top right(TR), middle, bottom
left(BL), bottom right(BR) respectively, as shown in Fig. 21.

Fig. 22 shows that the mean values of five districts in image
corrected using Gaussian filter with harmony were almost equal;
Fig. 23 shows that the STDs of five districts in image corrected
using Gaussian filter with harmony were the lest. Therefore, we
can be fully convinced that Gaussian filter with harmony has
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Fig. 24.  Aerial remote sensing images obtained by the near-infrared sensor:
(a) Original image; (b) Corrected image.

achieved good vignetting correction effect both globally and
locally.

D. Validating the Performance of LUT

Aerial remote sensing images obtained using the near-infrared
sensor based on an unmanned aerial vehicle were used to test the
actual performance. Fig. 24 shows the images before and after
the correction.

The brightness of the aerial remote sensing image becomes
more balanced after correction. In particular, the contrast at the
four corners and in the middle of the image was reduced. This
confirms the effectiveness of the proposed vignetting correction
method.

IV. DISCUSSION

Vignetting correction is the most important task in the ra-
diometric calibration and image dodging of the remote sensing
sensor. In addition to causing visual imbalance, the correction
accuracy directly determines the performance of remote sensing
quantitative inversion and image interpretation. Moreover, with
the wide application of computer vision technology in target de-
tection and defect recognition, vignetting also brings challenges
to the rationality of the recognition algorithm and algorithm
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parameters. Effectively eliminating the vignetting effect will
promote the development and application of the remote sensing
technology and computer vision technology.

Currently, the function fitting method is commonly used for
the vignetting correction of sensors, while this type of ideal
equation cannot completely eliminate irregular vignetting. In
particular, it is difficult to fit near-infrared and thermal infrared
images exhibiting a more complex vignetting effect. The LUT
method has the best vignetting correction accuracy, because it
provides each pixel with the most appropriate correction factor.
To avoid the impact of image random noise and response noise,
the image filtering algorithm is often used in vignetted image
processing to obtain a smooth vignetting background when
calculating the LUT of the vignetting correction. The key to
obtain an accurate LUT is to adjust the filter strength reasonably,
which is ignored in most of the current vignetting correction
research. Therefore, we proposed a Gaussian filter with harmony
for vignetting correction. The method proposed was to determine
the optimal parameter ¢ of the Gaussian filter kernel using the
relationship between it and the STD and mean of the images.
Through experiments, we found that the vignetting background
obtained using this method fits the original vignetting image
well and achieves a good vignetting correction. Furthermore, this
method is suitable for filtering vignetted images with different
brightness values of the same sensor, as well as vignette images
of other sensors, such as visible light remote sensing sensors and
digital cameras.

In addition, this method requires a lot of calculation to find
the optimal fitness value. We will improve the computational
efficiency in further research. And the step of the ¢ may caused
deviation, need to be researched future.

V. CONCLUSION

The Gaussian filter with harmony is a simple and efficient
method for vignetting correction and can be used to obtain
a high-precision LUT for vignetting correction. The harmony
helps avoid the cumbersome task of repeated parameter ad-
justment experiments and the deviation due to unreasonable
parameters. This method can quickly determine the optimal
Gaussian filter parameter for different images and different
sensors. Compared with the polynomial fitting method and
the general Gaussian filtering, the images corrected using the
Gaussian filter with harmony were found to be smoother, and the
standard deviation was lower. The mean values of five districts
in image corrected using Gaussian filter with harmony were
almost equal; And the STD of five districts in image corrected
using Gaussian filter with harmony were the lest.
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