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Learning Multiscale Convolutional Dictionaries
for Image Reconstruction

Tianlin Liu , Anadi Chaman, David Belius, and Ivan Dokmanić , Member, IEEE

Abstract—Convolutional neural networks (CNNs) have been
tremendously successful in solving imaging inverse problems. To
understand their success, an effective strategy is to construct
simpler and mathematically more tractable convolutional sparse
coding (CSC) models that share essential ingredients with CNNs.
Existing CSC methods, however, underperform leading CNNs in
challenging inverse problems. We hypothesize that the performance
gap may be attributed in part to how they process images at
different spatial scales: While many CNNs use multiscale feature
representations, existing CSC models mostly rely on single-scale
dictionaries. To close the performance gap, we thus propose a mul-
tiscale convolutional dictionary structure. The proposed dictionary
structure is derived from the U-Net, arguably the most versatile and
widely used CNN for image-to-image learning problems. We show
that incorporating the proposed multiscale dictionary in an oth-
erwise standard CSC framework yields performance competitive
with state-of-the-art CNNs across a range of challenging inverse
problems including CT and MRI reconstruction. Our work thus
demonstrates the effectiveness and scalability of the multiscale CSC
approach in solving challenging inverse problems.

Index Terms—Computed tomography, convolutional neural
networks, convolutional sparse coding, dictionary learning, inverse
problems, multiscale representation, U-Net.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) obtain state-
of-the-art performance in many image processing tasks.

To understand their success, an active line of recent research
reduces CNNs into conceptually simpler and mathematically
better-understood building blocks. Examples of these simpli-
fied convolutional models include convolutional kernels [1]–[3],
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convolutional scattering transforms [4]–[7], and convolutional
sparse coding [8]–[10]. In addition to being mathematically
tractable, these models have achieved remarkable empirical
success, sometimes matching state-of-the-art CNNs.

This work studies convolutional representations arising from
the convolutional sparse coding (CSC) paradigm, which pro-
vides a natural connection between sparse representation models
and CNNs. Indeed, many CNN instances can be interpreted
as optimizing a CSC objective through cascaded layers [8].
Moreover, CSC models compete favorably with state-of-the-art
CNNs in several image processing tasks including denoising,
single image super-resolution, and inpainting [10]–[18].

While these emerging results are promising, the successful ap-
plications of CSC in imaging inverse problems are still confined
to problems with relatively simple forward operators, including
Gaussian noise addition, blurring, and uniformly random pixel
removal. Common to these forward operators is their spatial
locality – they introduce artifacts that are spatially correlated
only, if at all, within small pixel neighbourhoods. By contrast, a
broad range of imaging inverse problems involve forward mod-
els that mix distant parts of the image and are highly spatially
heterogeneous; examples include the Radon transform for com-
puted tomography, which computes line integrals along radiating
paths, and the Fourier transform for magnetic resonance imag-
ing, which computes inner products with globally-supported
sinusoids. Working with these forward models presents different
challenges since they introduce structured noise, such as streak
artifacts, with long-range spatial correlations. We thus ask a
natural question: Can CSC models also yield strong performance
on such inverse problems with non-local operators?

To deal with spatially heterogeneous imagery data, one natural
strategy is to employ multiscale dictionaries. Indeed, seminal
works have shown that multiscale dictionaries, either analytical
or learned, are advantageous in representing and processing
images [19]–[24]. Separating scales is useful because it gives
efficient descriptions of structural correlations at different dis-
tances. Yet, these existing CSC models [10], [25]–[28] mostly
employ single-scale dictionaries, whose dictionary atoms all
have the same size. While there exist proposals for multiscale
CSC architectures, they are tailored for specific tasks [29], [30].
In addition, CSC models do away with flexible skip connec-
tions between non-consecutive layers, which are nonetheless
essential for many successful CNNs such as the U-Net and its
variants [31]–[33] to fuse features across scales. This challenge
of harnessing multiscale features in the CSC paradigm motivates
our work.
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TABLE I
THE NOTATIONS USED IN THIS PAPER

To address the challenge, we introduce a multiscale convolu-
tional dictionary inspired by the highly successful U-Net [31].
We then apply the multiscale convolutional dictionary to chal-
lenging, large-scale inverse problems in imaging. The main
contribution of this paper is twofold:
� We propose a new convolutional dictionary, whose repre-

sentation incorporates atoms of different spatial scales. The
proposed multiscale dictionary augments standard, single-
scale convolutional dictionaries to exploit the spatially-
heterogeneous properties of images.

� We study the effectiveness of the multiscale convolutional
dictionary through experiments on large-scale datasets. We
find that the performance of the multiscale CSC approach is
competitive with leading CNNs on datasets including two
major CT and MRI benchmarks. We additionally show that
our model matches (and slightly improves) the state-of-the-
art performance on the deraining task achieved by a deep
neural network [34]. Notably, the single-scale CSC model
performs significantly worse on this task [27].

Overall, our work makes a step forward in closing the per-
formance gap between end-to-end CNNs and sparsity-driven
dictionary models. At a meta level, it (re)validates the funda-
mental role of sparsity in representations of images and imaging
operators [20], [35], [36].

The rest of this article is organized as follows. In Section II,
we first briefly review the sparse representation model and its
relationship to CNNs. Section III explains how we incorporate
multiscale atoms in a dictionary model; we also explain how to
learn the multiscale dictionary from data under the task-driven
dictionary learning framework. Section IV reports experimental
results on tasks including CT reconstruction and MRI recon-
struction.

II. BACKGROUND AND RELATED WORK

In this section, we briefly review the related work; a summary
of notation is given in Table I.

A. Sparse Representation Models

Sparse representation has been extensively studied and widely
used in imaging inverse problems [37]–[39]. It is motivated by

the idea that many signals, images being a prime example, can
be approximated by a linear combination of a few elements from
a suitable overcomplete basis. The sparse representation frame-
work posits that we can decompose a signal of interest1 z ∈ Rd

as z = Dα, where D ∈ Rd×N is an overcomplete dictionary
of N atoms (N > d) and α ∈ RN is a sparse vector with few
non-zero entries. Learning a sparse representation model thus
comprises two sub-problems: (i) given a dictionary D, encode
the signal z into a sparse vector α (the sparse coding problem),
and (ii) given a set of signals, learn an appropriate dictionary
D that sparsifies them (the dictionary learning problem). We
briefly review these two problems and show how they are related
to neural network models such as CNNs.

B. The Sparse Coding Problem

The sparse coding problem is often formulated as basis pursuit
denoising [40] or Lasso regression [41]. Most relevant to our
work is its formulation with non-negative constraints on the
sparse code α:

minimize
α≥0

1

2
‖z −Dα‖22 + λ ‖α‖1 . (1)

Here, the first term 1
2‖z −Dα‖22 ensures that the code α yields

a faithful representation of z, the second term λ‖α‖1 controls
the sparsity of the code, and the two terms are balanced by
a parameter λ > 0. An effective solver for the minimization
problem (1) is the iterative shrinkage-thresholding algorithm
(ISTA) [42], which executes the following iteration

α[k+1] := S(α[k], z;D,λ)

:= σ(α[k] + ηD�(z −Dα[k])− ηλ), (2)

where the superscript [k]denotes the iteration number,η is a step-
size parameter, λ is a vector whose entries are all λ, and σ(x) :=
max(x, 0) is a component-wise rectifier function. For simplicity,
we use S(α, z;D,λ) to denote one execution of ISTA with
measurement z, sparse code α, dictionary D, and threshold λ.
The ISTA algorithm is a composition of such executions; we
write ISTAK for the K-fold composition of S with itself:

ISTAK(z;D,λ)

:=
(
S(·, z;D,λ) ◦ · · · ◦ S(·, z;D,λ)

)
︸ ︷︷ ︸

K times

(α[0]), (3)

where α[0] is the initial sparse code; throughout this work, this
initial code α[0] is assumed to contain zero in all entries. We
emphasize that ISTA is a nonlinear transform of its input z.

C. The Task-Driven Dictionary Learning Problem

We now briefly recall the task-driven dictionary learning
framework [43]. Consider a supervised learning setting, in which
we aim to identify a parametric function that associates each
input z (e.g., a corrupted image) with its target x† (e.g., a

1For simplicity we write all signals as 1 d vectors, but the formulation is valid
in any dimension.
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Fig. 1. Schematic illustration of the U-Net (left panel) and the dictionary model considered in this work (right panel). (a): The U-Net processes input images
using convolution, scale separations, and skip connections in conjunction with ReLU non-linearities and batch-normalization (BN) modules indicated by colored
arrows. The multi-channel feature maps produced by these operations are illustrated as boxes with the channel numbers indicated on the top of these boxes.
Dark grey boxes indicate the feature maps produced by the encoding branch of the U-Net, which are sent to the decoding branch either through channel-wise
concatenation (“skip connection”) or through the bottleneck layer. (b): The dictionary considered in this work is a simplification of the decoder branch of the U-Net:
We retain convolution and multiscale representation from the decoder branch of the U-Net but remove all non-linearities, batch-normalization, and additive biases;
additionally, we remove a convolution at each spatial resolution level and halve the number of convolutional channels for all convolutions. Grey boxes indicate
the multiscale sparse code α = (α0, . . . ,α4) that the dictionary takes as input. Dashed boxes indicate the position that each αi feed into the dictionary. (c): The

proposed as a computational graph that uses multiscale dictionaries Denc, D̃enc, and Ddec; although each dictionary is linear, the computational graph is nonlinear
due to the thresholding operator.

clean image) for all (z,x†) ∈ Rd × Rd drawn from some joint
distribution. In the task-driven framework, we proceed by first
representing the signal z by a sparse code αz with respect to a
dictionary D. One way to achieve this is to let

αz := arg minα≥0

1

2
‖z −Dα‖22 + λ ‖α‖1 , (4)

which can be approximated by K iterations of ISTA as in (3).
Next, we approximate the desired targetx† using the sparse code
αz through a regression model f(·,w)with learnable parameter
w. For instance, f(·,w) could be a linear regression model with
weights and biasesw. The model output f(αz,w) thus depends
on the regression model parameters w as well as the sparse
code αz , which in turn depends on the dictionary D through
the ISTA iterations. In this way, the regression parameters w
and dictionary D can be jointly optimized, for instance, with
respect to the quadratic loss objective evaluated on a dataset of
M input-target pairs {(zi,x

†
i)}Mi=1:

minimize
w,D

1

2M

M∑
i=1

‖f(αzi
,w)− x†

i‖22. (5)

Importantly, the task-driven objective in (5) implies that the
dictionary D is optimized to solve the supervised learning task
and not just to sparsely represent data.

D. Convolutional Sparse Coding

Our work is inspired by the convolutional sparse coding (CSC)
model [8], [44]–[47], which bridges deep CNNs and sparse
representation models. Concretely, Papyan et al. [8] noticed
that if the dictionary D has a convolutional structure and if the
sparse code α is assumed to be non-negative, a single iteration

of ISTA withα[0] initialized as a zero vector and step-size η = 1
is equivalent to the forward pass of a single-layer convolutional
network

α = σ(D�z + b), (6)

where b is a vector whose components are−λ (cf. Equation (2)).
This single-layer formulation can be extended to characterize a
deep CNN of multiple layers. Specifically, the forward-pass of
a deep CNN of L-layers can be interpreted to approximate the
sparse codes α1, . . . ,αL sequentially with respect to different
dictionaries D1, . . . ,DL; the back-propagation pass is inter-
preted as an update to these dictionaries{Di}Li=1 in a task-driven
way.

E. CNNs for Solving Inverse Problems

Deep CNNs achieve state-of-the-art performance in many im-
age processing tasks [48]–[51]. In particular, the U-Net [31] and
its variants [32], [33], [52] are among the most extensively used
CNN architectures in solving image-to-image learning tasks.
U-Nets represent images via multiscale features computed from
measurements using an encoding (or downsampling) branch
and a synthesized into an estimated image in a decoding (or
upsampling) branch (Fig. 1a). In the downsampling branch, the
spatial resolutions of feature maps are reduced while the number
of feature maps is increased; in the decoding branch, these
features are recombined with previous high-resolution features
via channel concatenation (“skip connections”) and convolution.
Heuristically, low-resolution feature maps of a U-Net capture
large-scale image properties, whereas the high-resolution fea-
ture maps capture more fine-grained image properties [52]. In
a related line of work, Ye et al. [53]–[55] proposed to use
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the framelets formalism [56] to study aspects of U-Net-like
encoder-decoder CNNs. A key observation they make is that a
U-Net model is closely related to convolutional framelets whose
frame basis selection depends non-linearly on input data.

III. CSC WITH MULTISCALE DICTIONARIES

The structure of a convolutional dictionary is crucial to a
CSC model since the dictionary atoms characterize the signals
that can be represented sparsely. In the existing formulation of
CSC, atoms of a convolutional dictionary have a single scale, in
the sense that they all share the same spatial shape. However,
many image classes and imaging artifacts exhibit structured
correlations over multiple scales. To exploit these correlations
in imaging inverse problems, we construct multiscale convolu-
tional dictionaries.

Our construction is based on the U-Net reviewed in Sec-
tion II. Indeed, the tremendous success of U-Nets has in part
been attributed to their ability to represent images at multiple
scales [33], [55], which is achieved by using up- and downsam-
pling operations together with skip connections as in Fig. 1a.
Another property of the U-Net is its shared parameters across
scales: Low-resolution features (the grey boxes at the bottom
of Fig. 1a) and high-resolution features (the grey boxes at
the top of Fig. 1a) undergo an overlapping synthesizing path
parameterized by shared weights. This weight-sharing strategy
has not been employed by existing proposals for multiscale
CSC dictionaries [29], [30]. In what follows, we describe the
construction process of a linear dictionary inspired by and
closely following the standard U-Net.

A. Encoder–Decoder Dictionaries

We denote the encoding branch of the U-Net by fenc(·,θenc) :
Rd → RN with parameters θenc; the encoding branch maps
the input z ∈ Rd to convolutional feature maps αz =
fenc(z,θenc) ∈ RN , illustrated as the dark grey boxes in Fig. 1a.
Note that, for a U-Net, the intermediate feature map dimension
N (number of scalar coefficients in α) is typically much greater
than the image dimension d. These feature maps are then fed
into the decoding branch of the U-Net either through skip
connections or through the bottleneck layer. To describe this
process, we write the decoding branch of the U-Net as a function
fdec(·,θdec) : RN → Rd with parameters θdec. That is, the func-
tion fdec(·,θdec) takes the convolutional feature maps produced
by the encoding branch and transforms them to produce the
model output. We can thus write the output produced by a U-Net
as

ẑ := fdec(αz,θdec) = fdec (fenc(z,θenc),θdec) .

We now focus on the image synthesis process of the U-Net,
described by the decoding function fdec(·,θdec). This function
synthesizes convolutional feature maps at different spatial scales
through skip connections and upsampling. As such, the decoding
branch of the U-Net approximates an image x† ∈ Rd using
multiscale feature maps αz ∈ RN of a much higher dimension,
so that x† ≈ fdec(αz,θdec). Conceptually, this representation

is similar to the sparse and overcomplete representation in a
dictionary, except that the U-Net decoder is non-linear.

To construct a multiscale dictionary, we thus consider a
stripped-down version of the image synthesis process of U-Net
by removing all non-linearities, batch normalization, and addi-
tive biases from the function fdec(·,θdec), as shown in Fig. 1b;
to further simplify the architecture, at each spatial scale, we
additionally remove a convolution and halve the number of con-
volutional channels for all convolutions. The resulting function
is then simply a linear transformation

α := (α0, . . . ,α4) 	→ Ddecα, (7)

where α0, . . . ,α4 are sparse code having different resolutions
(visualized as the grey boxes in Fig. 1b). This dictionary shares
the essential ingredients of convolution, multiscale represen-
tation, and skip connections with the U-Net decoding branch
and therefore we refer to it as the decoder dictionary. A precise
definition of the decoder dictionary Ddec through convolution
and upsampling is provided in Appendix A.

B. The Dictionary-Based Sparsity Prior

With a given decoder dictionary Ddec to describe the image
synthesis process, we next consider how to infer an associated
sparse code α, so that Ddecα is a good approximation of
the image we wish to model. In a supervised learning setting
where the input image z is given, it is natural to interpret α
as an encoded representation of z. Since the encoding must
produce a coefficient vector whose structure is compatible with
α, we endow an encoder dictionaryDenc ∈ Rd×N with the same
structure of Ddec albeit with a different set of atoms. This setup
is analogous to U-Net’s encoding and decoding branches: the
encoder and decoder dictionaries Denc and Ddec are employed
to process input signals and produce output signals, respectively.
The sparse codeαz induced by an inputz and the encoder dictio-
nary Denc then facilitate the subsequent task for approximating
the ground-truth image x:

z
Sparse coding with Denc−−−−−−−−−−−−−−→ αz

Synthesis with Ddec−−−−−−−−−−−→ x̂ := Ddecαz.
(8)

In what follows, we derive a supervised learning method that
turns each z into a prediction x̂ using encoder and decoder
dictionaries.

C. The Task-Driven Dictionary Learning Objective

Under the task-driven framework introduced in Section II,
we formulate a supervised learning problem via sparse coding
and dictionary learning. We consider the following minimization
problem over a dataset of M input-target pairs {(zi,x

†
i)}Mi=1:

minimize
{Denc,Ddec},λ>0

1

2M

M∑
i=1

‖Ddecαzi
− x†

i‖22

where αzi
:= ISTAK(zi;Denc,λ). (9)

The objective in (9) penalizes the discrepancy between the
ground-truth signal x† and the model prediction Ddecαz , where
the latter is a signal synthesized from a sparse code αz via the



LIU et al.: LEARNING MULTISCALE CONVOLUTIONAL DICTIONARIES FOR IMAGE RECONSTRUCTION 429

decoder dictionary Ddec; the code αz is a sparse representation
of the input image z with respect to the encoder dictionary
Denc by unrolling a fixed number K of ISTA iterations. The
sparsity-controlling parameter λ is multi-dimensional, weight-
ing codes component-wise. The intuition behind this choice
is that the different convolutional features, especially those at
different scales, should be thresholded differently. The sparse
code α, illustrated as the grey boxes in Fig. 1b, is a collection
of multi-dimensional tensors, each corresponds a spatial scale.

The task driven objective (9) defines a computational graph
that transforms an input image z into a prediction Ddecαz .
We term this computational graph MUSC, since it involves
multiscale U-Net-like sparse coding. We note the MUSC is an
instance of optimization-driven networks [26] derived by un-
rolling an optimization algorithm. It incorporates two modules
with meaningful objectives, one implementing sparse coding
and the other dictionary-based synthesis. This composition is
arguably conceptually more interpretable than end-to-end lay-
erwise composition of deep networks.

While a traditional compressed sensing approach uses a single
dictionary for reconstruction, our approach uses two dictionaries
Denc and Ddec in the task-driven learning objective (9). This
discrepancy is due to different assumptions in measurement-
to-image reconstruction (the compressed sensing approach)
and image-to-image reconstruction (our approach). Consider
an inverse problem with a forward operator A, a unknown
ground-truth signal x†, and measurements y := Ax†; in CT
reconstruction, A is the Radon transform and y is the measured
sinogram. The compressed sensing approach estimates x† as
Dα∗ for some dictionary D, where

α∗ = arg min
α

‖ADα− y‖2 + λ ‖α‖1 (10)

is the inferred sparse code based on the dictionary D. Note that
(10) and the synthesis Dα∗ require only a single dictionary D.
However, this approach assumes that we know the measurements
y and the forward operator A.

If we were to apply a single dictionary D := Denc = Ddec in
our image-to-image learning approach in (9), we would find a
sparse code α such that Dα ≈ x† and Dα ≈ A+Ax†. This is
difficult whenA+A significantly differs from the identity opera-
tor as in the case of highly ill-posed problems. On the other hand,
using two dictionaries Denc and Ddec in (9) requires finding a
sparse code α such that Ddecα ≈ x† and Dencα ≈ A+Ax†,
a formulation that is more flexible when A+A substantially
differs from the identity. Experiments in Section IV-E confirm
that allowing Denc �= Ddec yields better performance. We note
that our approach is morally related to setting Denc = AD in
(10), but since we do not know A we have to learn Denc from
samples together with Ddec. Such a learned encoder dictionary
captures information aboutA, entangled with information about
the data distribution.

D. Relaxation on Dictionaries

We now describe computational techniques that stabilize the
gradient-descent-based dictionary learning of MUSC. Follow-
ing earlier work [6], [10], [25], [26], [57], we untie the encoder

dictionary from its adjoint during dictionary update. That is, we
replace the execution in (2) by

S̃(α, z;Denc, D̃enc,λ) := σ(α+ ηD̃
�
enc(z −Dencα)− ηλ),

(11)
where the dictionary D̃enc is initialized to be identical toDenc but
is allowed to evolve independently during training. Even though
the theoretical effects of this relaxation remain unclear, the
dictionary D̃enc can be interpreted as a learned preconditioner
that accelerates training [25], [26]; see also the investigation
in [6], [58], [59]. The learned ISTA (LISTA) algorithm [57]
corresponding to (11) is written as

LISTAK(z;Denc, D̃enc,λ) :=(
S̃(·, z;Denc, D̃enc,λK) ◦ · · · ◦ S̃(·, z;Denc, D̃enc,λ1)

)
︸ ︷︷ ︸

K times

(α[0]),

(12)

where λ1, . . . ,λK are the soft-thresholding parameters for each
ISTA execution. Note that, in (12), the soft-thresholding param-
eters {λi}Ki=1 depend on the execution step. As shown in [6],
incorporating step-dependent soft-thresholding parameters can
be beneficial. While [6] uses a homotopy continuation strategy to
adjust these parameters we treat them as learnable parameters for
simplicity. Taking these considerations into account, we define
a new regression loss:

L(Denc,Ddec,λ) :=
1

2M

M∑
i=1

‖Ddecαzi
− x†

i‖22,

where αzi
= LISTAK(zi;Denc, D̃enc,λ). (13)

Unless mentioned otherwise, we use the loss (13) to train MUSC
throughout our paper. In Section IV-E, we compare the perfor-
mance of trained model using (13) and (9).

E. Training the MUSC

Training the MUSC entails the following three steps:
1) Dictionary initialization: We randomly initialize the dic-

tionary Denc and initialize Ddec, and D̃enc as identical
copies of Denc.

2) Model forward pass: For each input image zi, we evaluate
the model prediction Ddecαzi

as in (13). For ISTA exe-

cutions, we initialize all sparse code α
[0]
z as a collection

of all-zero tensors; the ISTA step-size parameter η is
initialized as the inverse of the dominant eigenvalue of
the matrix D�

encDenc, which can be approximated using
by power iteration (Appendix C).

3) Task-driven dictionary learning: For a mini-batch of
input-target pairs, solve the optimization problem in (13)
with gradient descent.

IV. EXPERIMENTS

We report the performance of MUSC on deraining, CT re-
construction, and MRI reconstruction tasks. The motivations for



430 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

choosing these tasks are as follows. First, we note that single-
scale CSC models have recently been applied to the deraining
task, achieving performance slightly worse than state-of-the-art
deep networks [27]; we thus aim to test the capability of our
multiscale approach on the same task. We additionally choose
CT and MRI reconstruction tasks as there exist challenging,
large-scale, and up-to-date benchmark datasets for these tasks.
Two such datasets that we use are the LoDoPaB-CT [64] and
the fastMRI [65]. An additional strength of these two datasets
is that the model evaluation process is carefully controlled: The
evaluation on the challenge fold (for LoDoPaB-CT) or the test
fold (for fastMRI) is restricted through an online submission
portal with the ground truth hidden from the public. As a result,
overfitting to these evaluation folds is difficult and quantitative
comparisons are transparent.

Throughout this section, we use the MUSC architecture
whose encoder and decoder dictionaries are displayed in Fig. 1b
and mathematically defined in Appendix A. Hyper-parameter
choices for the experiments are provided in Appendix D. For
each task, we use well-known CNN models as baselines. We
note that, for the CT and MRI reconstruction tasks, there are
two major approaches to employ CNNs. In the first, model-based
approach, one applies neural networks on raw measurement data
(sinogram data in CT and k-space data in MRI) by embedding
a task-dependent forward operator (the Radon transform for
CT and the Fourier transform for MRI) into multiple layers or
iterations of the network. Learning methods of this approach
can be highly performant at the cost of being computationally
expensive, especially during training, since one needs to apply
the forward operator (and the adjoint of its derivative) repeat-
edly [49]. In the second, model-free approach, the (pseudoin-
verse of the) forward operator is used at most once during data
preprocessing and is never used during subsequent supervised
training. These preprocessed images contain imaging artifacts.
During supervised learning, one applies a CNN directly on these
preprocessed images. The proposed MUSC is in this sense a
model-free approach and we compare it to model-free baselines.
We note that in this case one does not need to know the forward
operator at all. The leading model-free baseline CNN methods
in this approach are typically U-Net variants tuned to the task
at hand. For a more thorough comparison, we also implemented
the original U-Net architecture proposed in [31] (schematically
illustrated in Fig. 1a) in these tasks as additional baselines.

While model-free approaches perform somewhat worse than
model-based ones, our purpose here is to show that a general-
purpose multiscale convolutional model can perform as well
as convolutional neural networks ceteris paribus, rather than to
propose state-of-the-art reconstruction algorithms for specific
problems. This general-purpose approach further allows us to
tackle structured denoising problems such as deraining where
the forward operator is simply the identity.

A. Deraining

Image deraining aims to remove rain streaks from an image.
Formally, a rainy image z is expressed as z = x† + s, where

x† is a clean image and s is the rain streaks component. The
goal is to reconstruct the clean image x† based on the rainy
image z. Recently, single-scale CSC models have been applied
to the draining task [27]. Despite theoretical progress, these
single-scale CSC models still fall short competing with leading
deep learning models, as remarked in [27]. In this section, we
demonstrate that our multiscale CSC model closes this perfor-
mance gap.

Throughout this subsection, we follow the experiment setup
of [27]. We use 200 clean and rainy image pairs as the training
dataset. A rainy image is created by adding synthesized rain
streaks to its clean version. We use two test sets, Rain12 [60]
and Rain100L [63], to benchmark our results. Similar to [27],
we train our model to restore rain streaks based on rainy images;
a derained image is then the difference between a rainy image
and the restored rain streaks. To be consistent with [27], [34],
[63], the evaluation result is calculated after transforming the
image into the luma component in the YCbCr domain using the
software provided by [34]. Additional details of the experiment
are provided in Appendix D.

We report the reconstruction performance in Table II and
visualize the reconstruction results in Fig. 2. Our multiscale
convolutional dictionary approach matches or outperforms base-
line methods. Notably, it improves upon the LGM method (the
single-scale CSC approach of [27]) by a non-trivial margin.

B. CT Reconstruction

Computed tomography (CT) aims to recover images from
their sparse-view sinograms. We use the LoDoPaB-CT
dataset [64] to benchmark our results. This dataset contains
more than 40000 pairs of human chest CT images and their
simulated low photon count measurements. The ground truth
images of this dataset are human chest CT scans corresponding
to the LIDC/IDRI dataset [66], cropped to 362 × 362 pixels.
The low-dose projections are simulated using the default setting
of [64].

To train our MUSC, we use the default dataset split as rec-
ommended in [64]: The dataset is divided into 35820 training
samples, 3522 validation samples, 3553 test samples, and 3678
challenge samples. Here, the ground-truth samples from the
challenge dataset are hidden from the public; the evaluation on
this fold is performed through the online submission system of
the LoDoPaB-CT challenge2.

We compare the reconstruction performance of MUSCs with
five modern CNN baselines, namely CINN [67], U-Net++ [68],
MS-D-CNN [69], U-Net [31], and LoDoPaB U-Net [64]; the
LoDoPaB U-Net refers to a modified U-Net architecture tai-
lored to the LoDoPaB-CT task. Fig. 3 shows the reconstruction
results of a test sample. In Table III, we quantitatively compare
MUSC with two classic methods (FBP and TV) together with
five CNN baseline methods mentioned above. As shown in
Table III, MUSC outperforms all baselines. The metrics PSNR
and PSNR-FR are taken from [49]: For a ground-truth signal x†

2https://lodopab.grand-challenge.org/challenge/

https://lodopab.grand-challenge.org/challenge/


LIU et al.: LEARNING MULTISCALE CONVOLUTIONAL DICTIONARIES FOR IMAGE RECONSTRUCTION 431

TABLE II
PERFORMANCE ON THE DERAINING TEST SET. BOLDFACE INDICATES THE BEST PERFORMANCE; SECOND-BEST RESULTS ARE HIGHLIGHTED IN GREY. ALL

RESULTS ARE COLLECTED FROM [34] AND [27] EXCEPT MUSC.

Fig. 2. Reconstructions of a test sample from the Rain12 dataset.

Fig. 3. Reconstructions of a test sample from the LoDoPaB-CT dataset.

and its approximation x̂, we define

PSNR
(
x̂,x†) := 10 log10

(
max(x†)−min(x†)

MSE (x̂,x†)

)
,

PSNR-FR
(
x̂,x†) := 10 log10

(
1

MSE (x̂,x†)

)
.

C. MRI Reconstruction

We further considered the task of accelerated magnetic
resonance imaging (MRI) reconstruction using the fastMRI
dataset [65] procured by Facebook and NYU. Specifically, we
used the single-coil knee dataset with a 4-fold acceleration
factor. This dataset contains 973 volumes or 34742 slices in
the training set, 199 volumes or 7135 slices in the validation set,
and 108 volumes or 3903 slices in the test set. The ground-truth
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TABLE III
PERFORMANCE ON THE LODOPAB-CT CHALLENGE SET. ALL VALUES ARE TAKEN FROM THE OFFICIAL CHALLENGE LEADERBOARD

Boldface indicates the best performance; second-best results are highlighted in grey.

TABLE IV
PERFORMANCE ON FASTMRI SINGLE-COIL KNEE VALIDATION DATA. RESULTS ARE COLLECTED FROM [65] EXCEPT U-NET AND MUSC. THE FASTMRI

U-NET-32 MODEL REFERS TO A U-NET VARIANT DEFINED IN [65] WHOSE OUTPUT AFTER THE FIRST CONVOLUTION HAS 32 CHANNELS. OTHER MODELS ARE

DEFINED SIMILARLY. PDFS AND PD CORRESPOND TO TWO MRI ACQUISITION PROTOCOLS WITH FAT SUPPRESSION (PDFS) AND WITHOUT FAT SUPPRESSION

(PD) [65]

Boldface indicates the best performance; second-best results are highlighted in grey.

Fig. 4. Reconstructions of a test sample from the fastMRI single-coil knee dataset.

images in the test set are not provided to the public and the
evaluation must be made through the fastMRI online submission
system3.

Following the training protocol of [65], we first transformed
the undersampled k-space measurements into the image space
using zero-filled Inverse Fast Fourier Transform (IFFT); we use
the transformed images as input to MUSC and other CNN base-
lines. Consistent with previous work [65], we found that U-Net
variants deliver exceptional performance on validation samples
(Table IV). Remarkably, MUSC performs on-par with U-Net
variants, yielding visually indistinguishable results (Fig. 4). We
next evaluate the U-Net and the MUSC on test samples through
the fastMRI submission system. On the test data, the proposed

3https://fastmri.org/

MUSC produces results comparable to the best-performing
U-Net result (fastMRI U-Net-256) provided by the fastMRI
challenge organizer while having an order of magnitude fewer
parameters (Table V).

D. Single-Image Super-Resolution

We have additionally tested the MUSC on a standard super-
resolution task, whose results are deferred to Appendix G. The
goal of this task is to recover a high-resolution image from its
degraded, low-resolution version. Unlike tasks such as CT and
MRI reconstruction, in which the image degradation processes
introduce long-range spatially correlated noise like streak arti-
facts, the blurring process in the super-resolution task is spatially
local.

https://fastmri.org/


LIU et al.: LEARNING MULTISCALE CONVOLUTIONAL DICTIONARIES FOR IMAGE RECONSTRUCTION 433

TABLE V
PERFORMANCE ON SINGLE-COIL KNEE TEST DATA. RESULTS ARE COLLECTED FROM THE FASTMRI PUBLIC LEADERBOARD

Boldface indicates the best performance; second-best results are highlighted in grey.

Fig. 5. Ablation study on how different choices of model components affect the overall performance. Left panel shows the PSNR (evaluated on validation
samples) of six trained models as the training progresses; right panel shows the configuration of each trained model, where Case 2 corresponds to the usual setting
used in other sections of this paper. For training, we used first 10% of training samples of the LoDoPab-CT dataset; the validation samples are 50 samples in the
validation fold of the dataset.

In this case, we do not observe a performance gain of using a
multiscale model – either U-Net or MUSC – over state-of-the-art
single-scale CSC models. Interestingly, MUSC outperforms the
U-Net, but is up to 0.5 dB worse than single-scale CSC.

In subsection IV-F, we study this phenomenon by analyzing
the sparse code yielded by MUSC. In the super-resolution tasks,
the nonzeros in sparse codes are confined to high-resolution
channels, or, equivalently, small filter supports which only lever-
age local information. This is well aligned with the intuition that
the blurring forward operator mixes information only locally.
It suggests that the right strategy is to use a large number of
small-support filters just like CSC does, instead of “wasting”
trainable parameters on unused large scales. We similarly find
that a single-scale CSC model works better than MUSC on
a denoising (Gaussian noise removal) task. Together, these
findings suggest that multiscale features are no panacea for
imaging inverse problems; the configuration of scales needs to
resonate with the task-dependent forward operator that we aim to
invert.

E. Ablations on the Choices of Model Components

In Fig. 5, we show ablation experiments that demonstrate
how different choices of model components affect the overall
performance. There, Case 2 is the off-the-shelf setup we have
used in all other sections of this paper; this option has the
fastest learning speed and highest end-point accuracy. Consistent

with findings in [6], [25], [26], we find it advantageous to
use untied adjoints as described in (11): Untied dictionaries
(Cases 1, 2, and 4 in Fig. 5) in general perform much bet-
ter than tied dictionaries with D̃enc = Denc = Ddec (Cases 5
and Case 6). What is more, we find that learnable threshold
λ gives better results than fixed threshold. The non-negative
constraint of sparse code α ≥ 0 does not greatly influence
the end-point performance of models, although with the con-
straint the model learns slightly faster (Case 2) than without
(Case 1).

F. Probing Multiscale Dictionary-Based Representations

Thus far, we have shown that our proposed multiscale CSC ap-
proach, dubbed MUSC, performs comparably to state-of-the-art
CNNs in a range of imaging inverse problems. This is notewor-
thy, as the strong performance is achieved simply by employing
a multiscale dictionary – as opposed to a single-scale one – in
an otherwise standard CSC paradigm. The strong performance
suggests the usefulness of the multiscale representation. We
now analyze our learned dictionaries and their induced sparse
representations.

a) Visualizing dictionary atoms: We visualize dictionary
atoms of the MUSC. To extract a dictionary atom from a
dictionary D, we first prepare an indicator code δ, which is
a collection of multichannel tensors that takes a value 1 at a
certain entry and 0 elsewhere; a dictionary atom corresponds
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Fig. 6. Atoms in a randomly initialized (panel a) and learned decoder dictionary based on the derain dataset (panel b), LoDoPab-CT (panel c) and fastMRI
(panel d) dataset. For all panels, each row corresponds to a support size (denoted by s) of atoms. Top rows are atoms that have a small support size; bottom rows are
atoms that have a large support size. In each row, atoms are displayed in a sorted order of decreasing �2 norm; for the visualization purpose, they are normalized
into the range [−1, 1].

to that entry is computed as Dδ. Note that, different positions
of the nonzero entry may give rise to atoms of different sup-
port sizes. This can be seen in Fig. 1b: The indicator code is
illustrated as the grey boxes; depending on the grey box the
nonzero entry resides in, the sparse code activates different
receptive fields under composite convolutions and transposed
convolutions. If the nonzero entry resides in the top-most box,
then the support of the atom is 3 as it undergoes only a sin-
gle 3 × 3 convolution; if the nonzero entry is in one of the
lower boxes, the support of the atom is larger as the code
undergoes multiple convolutions and one or more transposed
convolutions.

In Fig. 6, we show samples of multiscale atoms in Ddec

of varying sizes – we crop these atoms to only show their
nonzero support regions. As can be seen in Fig. 6b-d, the
learned dictionaries contain Gabor-like or curvelet-like atoms
with different spatial widths, resolutions, and orientations. Thus

the learned dictionaries indeed exploit multiscale features. For
comparison, we also show a randomly initialized dictionary
(Fig. 6a). Unlike a learned dictionary, a random dictionary
does not exhibit structures in atoms. We also visualize atoms
of encoder dictionaries Denc and D̃enc in Appendix E Using a
similar technique, we also probe the multiscale representations
learned by U-Nets in Appendix F.

b) Sparsity levels of representations: We anticipate that the
trained dictionaries induce different sparsity levels at different
resolution levels in a task-dependent manner: More non-zeros
associated with large-support atoms are useful when imaging
artifacts have long-range correlations (e.g., streak artifacts in
CT) than when the artifacts are localized (e.g., deraining or
super-resolution).

Fig. 7 shows the sparsity levels across tasks, both before
and after dictionary learning. We observe that, prior to any
learning, the sparsity levels induced by randomly initialized
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Fig. 7. Sparsity of dictionary-induced convolutional features maps. Each bar corresponds to the sparsity level of a feature map tensor from the “deepest” activations
corresponding to large-support atoms (“Middle”) to the “shallowest’ activations corresponding to small-support atoms (“Up-4”).

dictionaries (grey bars) are approximately uniform across scales.
After learning, the sparsity levels of feature maps differentiate
in a task-dependent way (orange bars in all panels). This task-
dependent differentiation suggests the usefulness of multiscale
representations – the learned sparsity levels are neither collapsed
to a single scale nor remain uniform across spatial scales;
instead, they are weighted and combined across scales in a
problem-dependent way. A curious effect of multiscale learning
arises in super-resolution (panel d): the activations are nonzero
only in high-resolution features (“Up-2,” “Up-3,” and “Up-4”),
corroborating the intuition that low-resolution features are not
important for this task. Additionally, comparing the “Middle”
bars across panels, we see that CT and MRI reconstruction tasks
indeed use more nonzero coefficients on large-support atoms
than tasks such as deraining and super-resolution.

V. DISCUSSION

The CSC paradigm provides a natural connection between
sparse modeling and CNNs. Despite being mathematical prin-
cipled, existing CSC models still fall short competing with
CNNs in terms of empirical performance on challenging inverse
problems. In this work, we report one simple and effective way

to close the performance gap between CSC and CNN models:
incorporating a multiscale structure in the CSC dictionaries.
Crucial to our approach is the structure of our constructed multi-
scale dictionary: It takes inspiration from and closely follows the
highly successful U-Net model. We show that the constructed
multiscale dictionary performs on par with leading CNNs in
major imaging inverse problems. These results suggest a strong
link between dictionary learning and CNNs – in both cases,
multiscale structures are essential ingredients.

Beyond empirical performance, we believe that the inter-
pretability of the proposed MUSC is showing the way towards
an interpretable deep learning model. An interpretable model
consists of components whose objectives and functionality have
nominal values. The MUSC fulfills this desideratum by incorpo-
rating two modules with well-understood objectives, one imple-
menting sparse coding and the other dictionary-based synthesis.

Overall, our work demonstrates the effectiveness and scal-
ability of CSC models on imaging inverse problems. While
deep neural networks are profoundly influencing image recon-
struction, our work shows promise in a different direction: the
principles of sparsity and multiscale representation developed
decades ago are still useful in designing performant, parameter-
efficient (compared to mainstream CNNs), and interpretable
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architectures that push the current limits of machine learning
for imaging inverse problems.
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