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Region-of-Interest Prioritised Sampling for
Constrained Autonomous Exploration Systems

Protim Bhattacharjee , Martin Burger , Anko Börner, and Veniamin I. Morgenshtern

Abstract—Goal oriented autonomous operation of space rovers
has been known to increase scientific output of a mission. In this
work we present an algorithm, called the RoI Prioritised Sampling
(RPS), that prioritises Region-of-Interests (RoIs) in an exploration
scenario in order to utilise the limited resources of the imaging
instrument on the rover effectively. This prioritisation is based
on an estimator that evaluates the change in information content
at consecutive spatial scales of the RoIs without calculating the
finer scale reconstruction. The estimator, called the Refinement
Indicator (RI), is motivated and derived. Multi-scale acquisition
approaches, based on classical and multi-level compressed sensing,
with respect to the single pixel camera architecture are discussed.
The performance of the algorithm is verified on remote sensing
images and compared with the state-of-the-art multi-resolution
reconstruction algorithms. At the considered sub-sampling rates
the RPS is shown to better utilise the system resources for recon-
structing the RoIs.

Index Terms—Autonomous systems, compressed sensing, image
acquisition, space exploration, spatial resolution.

I. INTRODUCTION

IMAGE acquisition in resource constrained environments
is a challenging task. Activities such as space exploration

and investigation of disaster sites are carried out by robotic
platforms that have limited electrical power and payload ca-
pabilities. Being far away from the ground-station/human op-
erator, exploration platforms, e.g., rovers and copters, require
autonomous operation for achieving mission objectives. This
necessitates new on-board sensing protocols, object and event
detection algorithms, and data processing frameworks [1], [2].
The imaging systems on autonomous exploration platforms are
required to acquire maximum information about the scene with
minimum resources. Limitations on electrical power impact the
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number of measurements that can be acquired and the number
of computations that can be performed by the imaging system.
For such constrained systems efficient utilization of their limited
resources is important. The main purpose of the exploring rovers
is to provide a survey of the scene, so as to recognise areas
of importance, and possibly, to provide initial data for further
examination by more precise instruments. This reduces the re-
quirement of acquiring the entire scene at the highest resolution
of the camera on-board the robotic platform. Regions-of-Interest
(RoIs) can be recognized and acquired at the resolution of the
camera leaving the background at lower resolutions.

To ensure that measurements are expended on RoIs with more
information it is necessary to prioritise RoIs for acquisition on
the basis of their information content. Moreover, this should
be performed in an online manner. However, existing methods
of acquisition and reconstruction in constrained systems either
try to reconstruct the entire scene at low resolutions [3], [4] or
require pre-defined resolutions for each RoI [5]. These methods
do not dynamically distribute their measurements among RoIs
based on their information content. Also, they may require prior
information (human intervention or some other source) to decide
on the spatial resolution of each RoI.

Dynamic real-time multi-resolution RoI acquisition based
on the information content of the RoI is an important step
forward for introducing mission oriented autonomy to explo-
ration systems (E4 level autonomy) [6]. There are various ways
of characterising the information content of a scene or RoI.
In this work an adaptive multi-scale approach is used. An
estimator, called the Refinement Indicator (RI), is developed
to estimate changes in the information content of a RoI at
consecutive spatial resolutions. The RoI with the largest change
is refined to a finer spatial resolution. With the help of the
RI and the basic framework for sampling suggested in [7] for
measurement-constrained systems an algorithm for multi-scale
sampling is proposed and named RoI Prioritised Sampling
(RPS). The RI provides a structured way to prioritise RoIs for
acquisition at the cost of a small number of overhead measure-
ments at each spatial resolution. These additional measurements
are also used for reconstruction of the RoIs using compressed
sensing [8], [9].

The main contributions of this work are 1) the development
of an online estimator for information change across spatial
scales for RoIs, 2) the design of an acquisition algorithm for
constrained systems that incorporates this estimator to prioritise
RoIs for acquisition and accordingly distributes the limited mea-
surement budget, and 3) the proposal of multi-scale acquisition
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methodologies based on classical [10], [11] and multi-level
compressed sensing [11]–[13]. The algorithm is tested on im-
ages from airborne Earth observation sensor platforms and the
Mars Science Laboratory (MSL) on-board the Curiosity rover
on Mars. The proposed algorithm is found to perform better at
reconstructing informative RoIs than existing algorithms at the
considered sub-sampling rates.

The next section reviews existing work on autonomous space
exploration and compressed sensing based acquisition in con-
strained systems. Section III discusses the camera model used in
this work and the sampling methodology suggested in [7]. The
RI is motivated and derived in Section IV. Section V discusses
the datasets and results as applied to these datasets. The article
ends with a conclusion and the direction for future work.

II. LITERATURE REVIEW

A. Autonomous Space Exploration

Autonomous Exploration for Gathering Increased Science
(AEGIS) [2] was developed for the Opportunity rover [14] on
Mars to increase the scientific output of the mission by allowing
autonomous acquisition of mission relevant data. The aim of the
AEGIS system is to detect rocks by analysing images from the
navigation camera of the rover and to direct scientific instru-
ments, like the ChemCam [15], to acquire scientific data from
the surroundings of the rover without consultation with Earth
scientists. Earlier all images were downlinked and analysed
on Earth and then the rovers were instructed to perform extra
measurements or revisit an area from which they had moved
away. However, with the AEGIS system new scientific infor-
mation could be gathered autonomously by the rover leading to
increased scientific throughput [16]. The current work builds on
the idea of autonomous scientific data collection and provides
a method for prioritising (ranking) the RoIs based on spatial
frequency variations without any prior knowledge about the
surrounding terrain.

B. Compressed Sensing for Constrained Systems

Multi-resolution techniques have previously been used to
address concerns of constrained systems. In [3] the aim is to
provide low resolution previews in computationally-constrained
and data-streaming systems where computational machinery for
compressed sensing reconstruction is not available. The authors
propose an orthogonal sampling matrix known as the Sum-
To-One (STOne) transform. This matrix allows one to recover
low resolution previews at the Nyquist-rate in real-time. The
sampling matrix contains only ±1 entries and is suitable for im-
plementation on a bi-stable Digital Micromirror Device (DMD)
used in Single Pixel Cameras (SPCs). The nature of sampling
is such that when computational resources are available (at the
ground/base-station) the measurements used for the preview can
also be used to generate a high resolution image at sub-Nyquist
rates. The previews can be generated at any resolution that is a
power of 2 limited by the size of the DMD. The STOne transform
thus tries to acquire and reconstruct the entire scene in a compu-
tationally constrained system. This scenario can also be thought

of as a measurement-constrained problem where the limited
measurements are designed such that the exploration system
can produce low resolution images for autonomous functions
and high resolution recovery is possible only at a ground-station.
Authors in [4] cast the measurement-constrained reconstruction
problem into a Multi-Resolution Approximate Message Passing
(MR-AMP) framework. The measurement model is transformed
in such a way that the low resolution image is an optimization
variable. Properly designed down-sampling and up-sampling
matrices are required to map the image from the native res-
olution of the sensor to the lower resolution and vice-versa. A
down-sampling factor can be used to choose the down-sampling
ratio according to the available number of measurements. As in
the case of the STOne transform, MR-AMP tries to reconstruct
the complete scene at the desired resolution. Multi-resolution in
RoIs in the context of compressed sensing camera architectures
was proposed in [5]. Measurements for the entire scene are
acquired at the native resolution of the DMD. The original image
is then split into a number of pre-defined RoIs, and with the
help of down-sampling and up-sampling matrices, different RoIs
are reconstructed at different resolutions. The RoIs need to be
chosen off-line and are reconstructed from the same measure-
ments. The three techniques described model the reconstruction
problem in a manner that enables multi-resolution recovery.
In [7], the authors propose a different acquisition approach for
measurement-constrained systems. A three-step methodology
for acquiring RoIs in a scene is proposed that includes a “Low
resolution acquisition and reconstruction” step, “RoI detection
and segmentation” step, and a “Multi-level sampling” step.
The entire process is online; it is performed in-situ without
any external guidance or human intervention. The segmentation
procedure is performed on the basis of mission objectives and
multi-level compressed sensing is used to recover the RoIs. Each
RoI is assigned a measurement budget on the basis of its size and
is acquired individually. However, the RoI selection procedure
is empirical and the algorithm acquires RoIs based on their sizes
and tries to reconstruct each RoI at the native resolution of the
DMD in one shot with no regard to the information content
of the RoI. We propose to estimate the change in information
content across spatial scales in the RoIs in an online fashion and
distribute the measurement budget accordingly. A step-by-step
increase in resolution is obtained in the RoIs by acquiring them
at different resolutions instead of reconstructing them directly
from measurements at the native resolution of the DMD.

C. Bregman Distance

In this work, Bregman distance [17] will be used to calculate
error estimates. For a convex functionalJ with a subgradient p ∈
∂J(x), the (generalized) Bregman distance between two vectors
z and x is defined as Dp

J (z, x) = J(z)− J(x)− 〈p, z − x〉,
where ∂J(x) is the subdifferential of J at x. The Bregman
distance is the distance between J(z) and the tangent to J
at x evaluated at z. This is shown in Fig. 1. For a convex
functional J , the non-negativity is evident from the defini-
tion of J . However, the Bregman distance is not necessarily
symmetric; a symmetric Bregman distance [17] with respect
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Fig. 1. Bregman Distance is the distance, displayed in red, between J(z) and
the tangent to J(·) at x evaluated at z.

to two subgradientsof J , p ∈ ∂J(z) and q ∈ ∂J(x), is de-
fined as Dp,q

J (z, x) = Dp
J (x, z) +Dq

J (z, x) = 〈p− q, z − x〉.
This symmetric form of the Bregman distance will be used to
estimate the error in reconstruction of RoIs at various spatial
scales. Similar methods for deriving error estimates for regu-
larisation problems [18] and image restoration problems [19]
based on Bregman distances have been studied previously. For
l1 regularised problem, common in compressed sensing, the
Bregman distance is related to the sparsity of the signal [19,
Proposition 8.2].

III. SINGLE PIXEL CAMERA MODEL AND ACQUISITION

METHODOLOGY

A. Single Pixel Camera

Different applications require acquisition of the scene at dif-
ferent wavelengths of the electromagnetic spectrum. For exam-
ple, fire or temperature detection of objects require near-to-mid
infrared imaging [20]. Terahertz radiation is used in security
applications [21]. Building large sensor arrays for imaging in
longer wavelengths is difficult and expensive. The alternative is
to use a single detector appropriate for the incident wavelength.
Such a detector when calibrated is known as a radiometer [22]–
[24]. A mechanical system can be used to raster scan the scene
with the radiometer to generate a 2D image of the scene. How-
ever, in space applications mechanical systems are susceptible
to damage due to stress and vibrations during rocket launch and
landing. SPCs [25] are best suited for such exploration scenarios
as they avoid large sensor arrays and mechanical scanning.
In this work, the SPC architecture is used as the model for
the imaging system. It consists of a camera lens that focusses
the incoming radiation onto the spatial light modulator that is
placed at the virtual imaging plane of the camera lens. The
DMD [26] is used as the spatial light modulator. It provides
the necessary “software” scan of the scene replacing mechanical
raster scanning. The modulated radiation from the DMD may be
filtered through a wavelength selective filter or a colour filter. The
collective optics focusses the modulated filtered radiation onto
the single pixel detector. At each measurement step, the DMD
implements a measurement mask and the incoming radiation

Fig. 2. Single Pixel Camera model.

is encoded with the mask. This encoded radiation is received
by the detector and generates one measurement. A sequence of
such masks is displayed on the DMD with each mask generating
a new measurement. A bi-stable DMD where the micromirrors
can only have an ‘ON’ or ‘OFF’ state is used. By convention, the
‘ON’ state directs the incident radiation towards the detector and
the ‘OFF’ state deflects radiation away from the detector. For
a measurement mask consisting of 0/1 entries, the “0” pixels
are mapped to the ‘OFF’ state and the “1” to the ‘ON’ state.
Such masks are used to perform random-macro-pixel sampling
as discussed in the next subsection. To implement ±1 entries
of a measurement mask, two physical measurement cycles are
required on the DMD. The first cycle maps all +1s to the ‘ON’
state and the −1s to the ‘OFF’ state. In the next measurement
cycle all the +1s are mapped to the ‘OFF’ state and the −1s to
the ‘ON’ state. Subtracting the two measurements thus obtained
leads to one measurement generated by the measurement mask
with ±1 entries. Walsh transforms [27] require such implemen-
tations on the DMD. The basic single pixel camera model is
shown in Fig. 2.

The scene is acquired using the three step acquisition method-
ology proposed in [7]. The first step is the low resolution acqui-
sition that is performed using macro pixels formed by binning
micromirrors of the DMD. A 8× 8macro pixel is formed by bin-
ning 64 micromirrors underlying a 8× 8 window on the DMD
and assigning them the same ‘ON’ or ‘OFF’ state. A 256× 256
DMD has 1024 non-overlapping 8× 8 macro pixels. Similarly,
it has 4096 non-overlapping 4× 4 macro pixels. For each mea-
surement, these macro pixels are randomly assigned the value of
0/1 or±1 to simulate random-macro-pixel sampling. Details on
the low resolution reconstruction will follow in Section III-D.
The second step is the detection and segmentation based on
the low resolution reconstruction. This process depends on the
mission objectives. For example, in infrared imaging, one may
use temperature as a parameter for detection and segmentation of
RoIs; in visible wavelength imaging, one may use the contrast of
the scene. The process is same as in [7]. First, the low resolution
reconstruction is resized to its macro pixel image dimensions.
For example, a 256× 256 image with a macro pixel size of
8× 8 would be resized to a 32× 32 image by averaging each
8× 8 block in the low resolution reconstruction. A seed pixel is
assigned to be the brightest pixel in the resized image. A square
region is grown around the seed pixel by increasing the region
size by one pixel in each direction until the contrast of the region
is higher than a user defined threshold. This forms one RoI.
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Fig. 3. Proposed acquisition methodology.

A new seed pixel is assigned to be the brightest pixel outside
the already selected region. Regions within a merge radius of
each other are coalesced forming a larger RoI. This seed pixel
selection and region growing is continued until the user defined
total number of RoIs is reached. Once all the RoIs are selected,
the segmented image is resized to the original size of the low
resolution reconstruction, equal to the DMD size. Thereafter,
each RoI is expanded to its immediate higher dyadic size. If
this leads to more than 99% overlap between RoIs, they are
merged once more. The total number of regions to be selected,
the contrast cut-off, the merge radius, and the overlap in the
dyadic sizes are user defined. Fig. I in the supplementary material
describes the process. The third step of the algorithm in [7] is
the sequential acquisition of RoIs detected in the second step at
the full resolution of the DMD using multi-level sampling [12].
The RoIs are arranged in a decreasing manner according to their
size and are resolved to their full resolution in a one-shot manner.
In this work we propose to estimate the change of information
content in spatial scales of the RoIs and develop a procedure for
step-by-step increase in the resolution of the RoIs. We propose
two ways in which this step-by-step increase can be performed.
One is through multi-scale random-macro-pixel sampling and
the other is through the Walsh transform. The RoIs are acquired
sequentially based on their information content and the number
of measurements needed at each spatial scale depends on the
RoI size and the current spatial resolution. The workflow of the
proposed acquisition methodology is shown in Fig. 3. We first
discuss the methods of acquisition of higher spatial frequencies
as it will be required for the development of the estimator.

B. Multi-Scale Random-Macro-Pixel Sampling

The process of binning DMD micromirrors to form macro
pixels was discussed in the previous section. Each macro pixel
sums the incoming radiation from its field of view and the
reciprocal of the size of the macro pixel acts as a cut-off for the
spatial frequencies acquired by the measurement masks of that
macro pixel size. By reducing the macro pixel size one acquires
higher spatial frequencies. The macro pixel size of 1× 1 defines
the native resolution of the DMD. Examples of DMD mirrors
binned by different macro pixel size are shown in Fig. 4. This
method of multi-scale random-macro-pixel sampling will be
used to acquire RoIs at different spatial resolutions.

C. Multi-Scale Multi-Level Sampling With Walsh Transform

An alternate way to sample in a multi-scale manner is to
use structured matrices like the Walsh transform. Structured
matrices have been used in compressed sensing acquisition

Fig. 4. Illustration of macro pixels. Top panel: Example of macro pixel
measurement masks formed by binning DMD micromirrors. The macro pixels
are randomly assigned 0 or 1 values. Bottom panel: Macro pixel representation
of the Cuprite Vis dataset obtained by replacing each macro pixel block with
the mean of the corresponding block from the original image. Macro pixel size
(a) 1× 1 (Original), (b) 2× 2, (c) 4× 4, and (d) 8× 8.

Fig. 5. Walsh transform multi-level sampling maps for RoI of size (a)32× 32,
(b) 64× 64, and (c) 128× 128. Top left corner denotes the DC frequency.
Number of measurements for each size is 20% of the total number of pixels in
the RoI. The Walsh frequency grids are scaled to the same size for visualisation.

as they can be implemented on bi-stable DMDs, and have
fast forward and inverse transform implementations [11], [28].
Another advantage of using Walsh transforms and other struc-
tured matrices is that their multi-scale decomposition can be
adapted to best leverage the sparsity structure of the signal to be
acquired. Multi-level sampling was suggested in [11] and was
further developed in [12], [13], [29]. In multi-level sampling the
frequency space of the measurement matrix is divided into a
number of levels or regions based on its coherence structure and
the number of measurements are assigned to these levels in an
asymptotically decreasing manner. The Transform Point Spread
Function (TPSF) [29] is used as a metric to generate sampling
maps for different sized RoIs. In this work, square regions (as
shown in Fig. 5) were chosen instead of the regular circular
regions as they allowed easier decomposition of the frequency
space into multiple levels. The Walsh frequency grid for each
RoI is divided into three levels corresponding to low, mid, and
high spatial frequencies. To perform multi-scale sampling we
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start from the low frequency region followed by level-wise
spatial Walsh frequency measurements to achieve a step-by-step
increase in resolution. The term multi-scale is a misnomer for
multi-level sampling as multi-level sampling itself is defined in
a multi-scale manner; however, we use it in the current context to
make the stepwise multi-scale acquisition of the scene explicit.
Sampling maps for three different size of RoIs are shown in
Fig. 5. The spatial frequency regions may be divided into more
than three regions depending upon the application at hand. More
information about the number of measurements performed in
each spatial frequency region is provided in Section V.

D. Compressed Sensing Algorithms

To complete the discussion on acquisition methodology the
compressed sensing reconstruction algorithms used are dis-
cussed. Two algorithms are used, the Analysis BPDN [30], [31]
and the Analysis+TV [29], [30]. The Analysis BPDN can be
written as

minimize
x

‖Wx‖1 + γ‖y −Ax‖22, (1)

where A is the measurement matrix with normalized columns,
W is the sparsity basis, y is the vector of measurements, x is
the signal to be recovered, and γ is the regularisation parameter.
For a signal x = [x1, x2, . . . , xN ]T of length N , the l1 norm
is defined as ‖x‖1 =

∑
i∈N |xi| and the l2 norm is defined as

‖x‖2 =
√∑

i∈N |xi|2. Algorithm (1) is used for reconstruction
of the low resolution image in the first step of the acquisition
process with 2D-DCT as the sparsity basis.

The Analysis+TV algorithm

minimize
x

β1‖Wx‖1 + β2‖x‖TV

subject to ‖y −Ax‖22≤ η, (2)

adds a Total Variation (TV) regularisation term to the
Analysis BPDN. The TV norm for images is calculated
along the horizontal and vertical directions [32], ‖x‖TV =∑

i,j∈N
√|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2. Such a model is

used when the smoothness, promoted by the TV norm, and
sparsity constraints, promoted by the W basis, are required
simultaneously. The terms β1 and β2 are used to balance the
contributions of the two prior terms, and η is used to control the
size of the noise.

In this section the camera model and the methods for step-
by-step increase in the acquisition of spatial frequencies were
discussed. The next section motivates and derives the informa-
tion change estimator, which is used to develop the proposed
RoI prioritisation and acquisition algorithm.

IV. ROI PRIORITISED SAMPLING FOR CONSTRAINED SYSTEMS

A. Refinement Indicator

After the “RoI detection and segmentation” step in the pro-
posed acquisition scheme shown in Fig. 3, we must distribute
the limited measurement budget among the RoIs based on their
information content or, in other words, prioritise the RoIs for
sequential acquisition. Let x ∈ RN be the RoI to be acquired at

the finest resolution. Let us start by acquiring some coarse mea-
surements. The system of equations for the coarse measurements
is

yC = ACx + ηC , (3)

where AC = (aCi )i=1,...,m ∈ RN is the coarse resolution mea-
surement matrix, the coarse measurements are yC , and ηC

is an additive noise component. Denoting the solution to the
regularised problem as xC , we have

xC =argmin
z

1

2
‖ACz − yC‖22 + αJ(z), (4)

where J is a regularisation functional like total variation or
a wavelet norm and α ≥ 0 is a regularisation parameter. The
optimality condition for (4) [33], [34] is given by

(AC)∗(ACxC − yC) + αpC = 0, pC ∈ ∂J(xC), (5)

where pC is a subgradient [34] of J at xC and ∂J(xC) denotes
the subdifferential [34] of J at xC . The adjoint of AC is denoted
by (AC)∗. Let us ignore the noise term for the moment so that
yC = ACx. To improve the resolution we acquire extra mea-
surements with a refinement matrix B. This matrix is composed
of sampling patterns that acquire finer spatial frequencies than
AC . For example, if measurements in AC have a macro pixel
size of 8× 8 then B would contain random measurements with
macro pixel size of 4× 4. The measurement matrix with the
additional refined measurements can be written as

AR =

(
AC

B

)
. (6)

The refined measurements are given by yR = ARx. Again the
refined solution xR satisfies the optimality conditions

(AR)∗(ARxR − yR) + αpR = 0, pR ∈ ∂J(xR), (7)

where pR is a subgradient of J at xR and ∂J(xR) is the
subdifferential of J at xR. To be explicit the refined solution xR

contains spatial frequencies unique to the acquisition through B
along with those acquired previously through AC . To estimate
the change in information of the RoI when acquired at different
resolutions we would like to derive an a-posteriori error estimate
between the coarse solution, xC , and the refined solution, xR,
without the evaluation of the latter. This would quantify the
information change across scales for the RoI. We follow the
procedure for calculating error estimates in [17], [18]. From (6)
we get,

(AR)∗AR = (AC)∗AC +B∗B. (8)

Subtracting (7) from (5) we get,

(AC)∗ACxC − (AC)∗yC + α(pC − pR)

−(AR)∗ARxR + (AR)∗0. (9)

Using yC = ACx, ARx, and the value of (AC)∗AC from (8)
we get,

(AR)∗AR(xC − xR) + α(pC − pR) = B∗B(xC − x).
(10)
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Taking a scalar product of the above with (xC − xR) yields

‖AR(xC − xR)‖22 + αDJ (x
C , xR)

= 〈B(xC − x), B(xC − xR)〉, (11)

where DJ = 〈pC − pR, xC − xR〉 is the symmetric Bregman
distance [17]. Applying Young’s Inequality, 〈u, v〉 ≤ 1

2‖u‖22 +
1
2‖v‖22, to the right hand side of (11) yields

‖AR(xC − xR)‖22 + αDJ (x
C , xR)

≤ 1

2
‖B(xC − x)

∥∥∥∥22 +
1

2

∥∥∥∥B(xC − xR)‖22. (12)

Using the fact that, ‖Bv‖22 ≤ ‖Bv‖22 + ‖ACv‖22 = ‖ARv‖22 for
any v, (12) becomes

1

2
‖AR(xC − xR)‖22 + αDJ (x

C , xR) ≤ 1

2
‖yB −BxC‖22,

(13)

where yB = Bx are the novel measurements. The second term
on the left-hand side, DJ(x

C , xR), is the error between the
two solutions at coarse and fine resolutions with respect to the
functional J . For J = ‖.‖1, the symmetric Bregman distance,
DJ (x

C , xR) = 2Σsign(xC
i ) 	=sign(xR

i )|xR
i − xC

i |, measures the
deviation between entries of the two solutions that differ in their
signs [17], [18]. For a wavelet norm, the symmetric Bregman
distance will measure the deviation in the sparsity pattern of the
wavelet representations of the two solutions [19]. If the entries of
the wavelet representations have the same sign, DJ (x

C , xR) =
0 and it is non-negative if the entries differ in their signs. Further,
the first term on the left-hand side of (13) measures how well
we estimate the magnitudes of the entries of each of the two
solutions, the residual between the two solutions. The behaviour
of the Bregman distance with respect to the parameter α and
its asymptotic are well understood and not further discussed
here, see [17]. The right-hand side of (13) is an a-posteriori
estimator for the change between xC and xR given only the
coarse solution xC . It is an a-posteriori error estimator in the
computational sense, it can be computed without solving a
fine (the refined) scale problem. It is not an a-posteriori in
the measurement sense, since we need to collect at least some
fine scale measurements (refined measurements). Taking into
consideration that B is random, we can take expectation on both
sides of (13)

1

2
E[ ‖AR(xC − xR)‖22] + αE

[
DJ

(
xC , xR

)]

≤ 1

2
E[ ‖yB −BxC‖22] . (14)

This shows that in expectation the maximum error between xC

and xR occurs when the expected deviation between yB and
BxC is maximal. Thus, the Refinement Indicator (RI) can be
defined as ‖yB −BxC‖22. The RI can be calculated for each
RoI in the scene and the RoI with the largest value of RI
can be refined. Explicitly, to refine an RoI is to calculate the

higher spatial resolution solution from the measurements yR

obtained through the measurement matrix AR. Intuitively, for a
flat region, xC will be a good approximation of the underlying
region, therefore, the novel measurements,yB , and the simulated
measurements obtained through B by assuming xC to be the
groundtruth; i.e. BxC , will be similar and the value of RI will
be small. On the other hand, if the underlying region is textured,
xC will be a poor approximation to the region and the novel
measurements and simulated measurements will differ leading
to a larger value of RI. Thus, the RI can be used to prioritise
RoIs for acquisition.

B. Adaptive Refinement of Measurements

The RI developed in the previous section is used to develop
an acquisition algorithm for measurement-constrained systems.
The three step sampling procedure discussed in [7] and further
developed in Section III is used as the basic framework for
acquisition. The inputs to the algorithm are the initial macro
pixel size of the low resolution acquisition in the first step and a
fixed number of measurements, called the measurement budget.
After the “Low resolution acquisition and reconstruction” and
“RoI detection and segmentation” steps we obtain the acqui-
sition masks for each RoI. Coarse measurements for each RoI
are performed and the coarse solution xC is calculated. These
coarse measurements differ from the ones acquired in the “Low
resolution acquisition and reconstruction” step because the low
resolution measurements are multiplexed measurements from
the entire scene and recovering individual RoIs from multiplexed
measurements is not possible. Additional random measurements
yB refining the previous coarse measurements are acquired for
each RoI. The RI is calculated for all the RoIs, the RoI with the
largest RI is chosen and the refined solution, xR, is calculated
for that RoI and it is set as the new coarse level for the chosen
RoI. New refinement measurements are acquired at a higher
spatial resolution for the current refined RoI and the new RI is
calculated from the new refined measurements. RI values for the
other RoIs are brought forward and again the RoI with the largest
value of RI is chosen for refinement. This process continues until
all the RoIs are in the native resolution of the DMD or until the
measurement budget is exhausted. This results in prioritisation
of RoIs in terms of the information content change across spatial
resolutions. The limited measurements are spent on RoIs with
greater change in information content. If measurements are not
available for refining a particular RoI then it is removed from the
prioritisation list and the RIs of the remaining RoIs are compared
for refinement. The complete algorithm is shown in Fig. 6 and
is named RoI Prioritised Sampling (RPS).

C. Discussion

One can consider a naïve approach in which one acquires
RoIs at the coarse resolution, performs coarse reconstructions
and acquires further refined measurements for all the RoIs. One
can reconstruct all the RoIs at this refined resolution and then
select the RoI that produced maximum change in information
content between the coarse and the refined image of the RoI
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Fig. 6. RPS Algorithm for RoI prioritisation using RI in measurement-
constrained autonomous exploration systems.

for further refinement, expecting the trend of increase in infor-
mation content over scales to continue. However, the decision
on which RoI should be refined further can only be made after
the reconstruction of all RoIs at the refined resolution. The extra
reconstructions may be expensive for a constrained system. This
problem is alleviated with the RPS, as RI allows us to make the
same decision without calculation of the refined solution for all
RoIs. In limited measurement settings, like remote exploration,
acquired refined measurements can be sent to a ground-station
where resources would be available for reconstructions. Thus,
we focus specifically on a measurement-constrained setting.
Also, the RPS is concerned with utilising the limited measure-
ment budget optimally and not specifically with reducing the
number of measurements required to acquire the scene/RoI.

V. RESULTS

To demonstrate that the RI does in fact quantify information
content change at different spatial scales, three different regions

Fig. 7. Top Panel: Three different RoIs from the cameraman image with
different amount of textures. Bottom Panel: The three-level Haar wavelet decom-
position of the corresponding RoIs. (a) RoI with minimal textures (flat region),
(b) RoI with some textures, and (c) RoI with rich textures.

TABLE I
RI VALUES FOR ROIS FROM FIG. 7 CALCULATED AT SPATIAL RESOLUTIONS OF

8× 8, 4× 4, AND 2× 2 MACRO PIXELS. RANDOM-MACRO-PIXEL

MEASUREMENTS WITH 0/1 ENTRIES WERE USED FOR EACH SPATIAL

RESOLUTION. THE NUMBER OF REFINED MEASUREMENTS AT EACH MACRO

PIXEL RESOLUTION FOR EACH ROI IS 409

of the cameraman image were selected with varying amount of
textures. The RoIs and their three-level Haar wavelet decompo-
sitions are shown in Fig. 7. Random-macro-pixel measurements
with 0/1 entries are performed on each RoI starting from a
macro pixel size of 8× 8 and the 8× 8 reconstruction is cal-
culated. Thereafter, a refinement matrix B is generated by using
random-macro-pixel sampling with a macro pixel size of 4× 4
and novel measurements are generated for each RoI. Simulated
measurements are also generated using the reconstruction of
the 8× 8 macro pixel acquisition and the refinement matrix B.
The two measurements are subtracted and the l2 norm of the
error vector is calculated to form the RI. The process is repeated
for macro pixel size of 2× 2. The RI values for the RoIs are
recorded in Table I. The RI for spatial resolution 8× 8 denotes
the information change in a RoI when measurements are refined
from a resolution of 8× 8 to 4× 4. The last row in the table
defines the RI value of refining a RoI from 2× 2 to 1× 1, the
native resolution of the DMD, and there is no RI for spatial
resolution of 1× 1 macro pixel. The largest change in the value
of the RI is consistently obtained for the RoI that has the largest
number of high frequency components, i.e., for RoI (c) in Fig. 7.
The smallest change in RI value is observed for RoI (a) that has
the smallest number of high frequency components. Thus, the
RI estimates the change in information content across spatial
scales and is a relevant metric that can be used to prioritise RoIs
for acquisition in measurement-constrained systems.
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Further, the RPS algorithm developed in the previous section
was tested on images derived from different sensors. The exper-
iments are designed to reflect remote exploration scenarios from
Earth observation applications and extra-terrestrial exploration.
After a short overview of the datasets the results of applying
RPS on the datasets will be discussed and the efficacy of the pro-
posed method in prioritising RoIs in measurement-constrained
systems will be verified. The algorithm was implemented in
MATLAB 2018a and simulations were performed on a Windows
system with 16 GB RAM and an Intel(R) i7-6700 CPU @
3.4 GHz. Code for reproducing the results can be found at
https://github.com/protim1191/RoI-Prioritised-Sampling.git.

A. Datasets

1) Cuprite: The Cuprite geological dataset is a snapshot of
the cuprite ores in the state of Nevada, USA. The hyperspectral
datacube was acquired by the AVIRIS [35] sensor that collects
data in the wavelength range of 400 to 2500 nm with a nominal
channel bandwidth of 10 nm. The ground sampling area is 20 m2

and the radiometric resolution is 16 bits. The datacube is divided
into two, the visible and the infrared. The visible section consists
of wavelengths 400 to 800 nm and is called the “Cuprite Vis”
dataset; the infrared dataset consists of wavelengths from 900 to
2500 nm and is called the “Cuprite IR” dataset.

2) Gulf of Mexico: The Gulf of Mexico dataset is a part of
baseline datasets provided by SpecTIR [36]. The sensor acquires
data in the wavelength range of 395 to 2450 nm with a nominal
channel bandwidth of 5 nm. The ground sampling distance is
2 m. As before the datacube is divided into visible and infrared
regions. The visible region consists of wavelengths from 400 to
800 nm and is called the “Gulf Vis” dataset. The infrared region
consists of wavelengths from 900 to 2400 nm and is called “Gulf
IR” dataset. Only the Gulf Vis dataset is used for experiments
as the spatial variations in the two datasets are similar.

3) University of Pavia: This scene was acquired by the RO-
SIS sensor [37] during a flight campaign over Pavia in northern
Italy. The detector is sensitive to wavelengths ranging from 430
to 860 nm with a nominal bandwidth of 5 nm. Certain pixels
did not contain any information and were discarded. The entire
dataset is considered to be a part of the visible wavelengths and
is called “Pavia” in this work.

4) MSL ChemCam Images: Two images from the
Mars Science Laboratory (MSL) [38] on the Cu-
riosity rover 0133_crc_ccam01133_rowatt .png and
0121_crc_ccam01121_stanbridge.png have been used to
test the RPS algorithm. The test images are called “Mars1” and
“Mars2” respectively. These are shown in Fig. 9.

B. Preprocessing of Datasets and Algorithm Parameters

For all the datasets a 256× 256 section was used. After
removing corrupted bands, pixel values in each spectral band
were converted to be between 0 and 1 by using min-max normali-
sation. A single channel image was formed from the normalised
spectral image by averaging across the spectral dimension of
each pixel. The SPC architecture described in Section III-A
was used to simulate the acquisition process. The measurement

Fig. 8. Remote sensing datasets used for evaluation of RPS. (a) Cuprite Vis
dataset, (b) Cuprite IR dataset, (c) Gulf Vis dataset, and (d) Pavia dataset.

Fig. 9. Datasets from the Mars Science Laboratory on the Curiosity rover used
for evaluation of RPS. (a) Mars1 and (b) Mars2.

budget was different for each dataset and is specified along with
their respective results. The number of low resolution measure-
ments in the first step was fixed at 1000 and the macro pixel size
used was 8× 8. The number of regions selected during the “RoI
detection and segmentation” procedure was fixed at 10. Regions
detected within 1 pixel radius of each other were merged. Thus,
the final number of RoIs available for refinement is different
for each dataset. The acquisition and recovery of each RoI is
independent of the other RoIs, therefore, the overlap regions
common to two RoIs is sampled twice at the same resolution.
However, due to budget considerations if only one of the RoIs
can be acquired, then the overlap region will be at higher resolu-
tion for the unacquired RoI as well. As the algorithm keeps track
of the resolution of each RoI, further visualization or analysis of
the overlap region can be restricted to the higher resolution
RoI. The number of measurements used to calculate the RI

https://github.com/protim1191/RoI-Prioritised-Sampling.git
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Fig. 10. Low resolution reconstruction and RoI detection and segmentation
process for Cuprite Vis dataset. (a) Original, (b) low resolution reconstruction
from 1000 measurements, (c) detected and segmented RoIs, and (d) merged
RoIs. The three gray-levels represent three different RoIs for which the RI will
be calculated.

was fixed at 10% of the total number of pixels in the RoI
for random-macro-pixel sampling and at 20% for multi-scale
multi-level sampling. The RoI with the largest value of RI is
chosen for refinement at each step.

Upon experimentation algorithm (1) was found to be better at
the initial low resolution reconstruction of the entire scene with
2D-DCT as the sparsity basis. For subsequent reconstruction
of individual RoIs using RPS, algorithm (2) was used with
Daubechies-8 wavelets [39] as the sparsity basis. The algorithms
were implemented in the TFOCS [32] toolbox. The maximum
number of iterations was fixed at 20000, the algorithm used
was ‘N07,’ continuation was set to ‘True’ and the number of
continuation iterations were set to 3, the regularisation param-
eters β1 and β2 from (2) were set to 1 and 0.4 respectively
for random-macro-pixel sampling and β1 = 1 and β2 = 0.6 for
Walsh measurements. The measurement and sparsity operators
were implemented in the SPOT toolbox [40]. The results of “Low
resolution acquisition and reconstruction” and “RoI detection
and segmentation” process for Cuprite Vis dataset is shown in
Fig. 10. Results after segmentation are discussed next.

C. Results on Remote Sensing Datasets

This section discusses the results for the remote sensing
datasets, i.e., Cuprtie Vis, Cuprite IR, Gulf Vis, and Pavia,
shown in Fig. 8. For the following results multi-scale random-
macro-pixel sampling with 0/1 entries was used. The results of
applying the RPS algorithm on the Cuprite Vis dataset is shown
in Fig. 11. The first image from the left in the top row is the low
resolution reconstruction. The second image from the left in the
top row shows the coarse reconstruction of all the detected RoIs.
Continuing from left to right and top to bottom, the prioritisation
of the RoIs and their refined reconstructions with the progress of
the RPS is shown. Table II records the change in the RI values and
the choice of RoI made at each iteration of the algorithm along
with the number of available measurements at each iteration that
decides whether further refinement is possible for a RoI. For the
Cuprite Vis dataset a total of 9600 measurements was used for
acquisition, which is 14.6% of the total number of pixels in
the scene. The number of low resolution measurements is 1000
and these are used to acquire the entire scene at 8× 8 macro
pixel resolution. Three RoIs of size 128× 128, 64× 64, and
32× 32 are selected after the “RoI detection and segmentation”
process (Fig. 10). A total of 2149 (1638 + 409 + 102) coarse
measurements were used.

Fig. 11. Prioritisation of RoIs with RI for Cuprite Vis dataset. The total number
of measurements is 9600 (14.6% of the total number of pixels).

TABLE II
EVOLUTION OF RI FOR CUPRITE VIS DATASET. THE HIGHLIGHTED ROI

INDICATES THE ONE SELECTED AT EACH ITERATION. THE REFINED MACRO

PIXEL RESOLUTION OF THE SELECTED ROI IS TABULATED. THE TOTAL

NUMBER OF MEASUREMENTS IS 9600

Another 2149 measurements were used for the initial RI
values for the three RoIs. These values indicate the change
in information content for each RoI when refined to a macro
pixel resolution of 4× 4 from their current 8× 8 macro pixel
resolution. The 128× 128 sized RoI, marked in red in Fig. 11,
is selected for refinement as it has the largest RI value. Upon
calculation of the refined solution of the selected RoI the number
of available measurements is checked to decide whether enough
measurements is available for calculation of the new RI for the
selected RoI, which would estimate the change in information
one could expect when the RoI is refined to a macro pixel
resolution of 2× 2 from the current 4× 4. As there are 4302
available measurements at iteration 1 and 1638 measurements
are required for the selected RoI, refined measurements are
performed on the selected RoI and the new RI is calculated. At
the second iteration the same sequence of steps is followed, the
RoI with the largest value of RI is selected for refinement and the
new RI is calculated subject to the availability of measurements.
The last RI calculation is done for estimating the change in
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TABLE III
ERROR METRICS FOR THE ROIS FOR CUPRITE VIS DATASET AT VARIOUS

MACRO PIXEL RESOLUTION

information when refining from 2× 2 to 1× 1 macro pixel
resolution. If the number of available measurements allowed
this acquisition then the 1× 1 solution is always calculated,
which may also be performed at the ground-station as the
measurements for this reconstruction step have already been
acquired for the calculation of the RI. Once a RoI is resolved
to 1× 1 macro pixel resolution it is replaced with a ‘-’ in the
table. This can be seen in iteration 6 and 7 in Table II where at
iteration 6 the red RoI is selected for refinement to a macro pixel
resolution of 1× 1 and replaced with a ‘-’ in iteration 7 but no
measurements are utilised as no further refinement is possible
for this RoI. As a result, the same number of measurements is
available at iteration 7 for RI calculations as at iteration 6.

The refinement measurements used to calculate the RI are also
used for calculating the refined solution. Table III records the
quality of reconstruction of the selected RoIs at different macro
pixel resolutions. The quality of recovery for each RoI improves
with acquisition of higher spatial frequency components. Two
error metrics are used, namely the Normalised Mean Squared
Error (NMSE) and the Structural SIMilarity Index (SSIM) [41].
NMSE between a vector x and its estimate x̂ is defined as ‖x̂−
x‖22/‖x‖22. SSIM is a full referential perceptual visual quality
metric that considers local luminance, contrast, and structural
variance to calculate similarity between the estimate and the
reference image. The visual improvements in the reconstructions
can be seen in Fig. II in the supplementary material.

Results of applying RPS on the Cuprite IR dataset are shown
in Fig. 12. As shown in Table IV, the online distribution of
measurements is more evident here. After coarse reconstruction
the RI values for each RoI is calculated. The RoI with the largest
RI value, marked in red, is selected for refinement. The available
number of measurements allows to calculate the RI for a macro
pixel resolution of 2× 2. In the second iteration, the RoI of
size 64× 64, marked in orange in Fig. 12, has the largest value of
RI and is refined to a macro pixel resolution of 4× 4. In the third
iteration, the red RoI has the largest RI value and is refined to a
macro pixel resolution of 2× 2. However, there is not enough
measurements to calculate the RI for a refinement to a macro
pixel resolution of 1× 1. Therefore, the red RoI is removed
from the list of RoIs due to unavailability of measurements
and replaced with a ‘-’. The same number of measurements is
available at iteration 4 as at iteration 3 because no refinement
measurements were used in iteration 3. Thereafter, the process
of selecting the RoI with the largest value of RI, calculation
of the refined solution, and calculation of the RI subject to

Fig. 12. Prioritisation of RoIs with RI for Cuprite IR dataset. The total number
of measurements is 8060 (12.3% of the total number of pixels).

TABLE IV
EVOLUTION OF RI FOR CUPRITE IR DATASET IN FIG. 12. THE HIGHLIGHTED

ROI INDICATES THE ONE SELECTED AT EACH ITERATION. THE REFINED MACRO

PIXEL RESOLUTION OF THE SELECTED ROI IS TABULATED. THE TOTAL

NUMBER OF MEASUREMENTS IS 8060

available measurements continues till iteration 7. At iteration 7
the yellow RoI uses the last measurements to calculate the RI for
a refinement to a macro pixel resolution of 1× 1. At iteration 8
the orange RoI is resolved to 1× 1 macro pixel resolution as the
required measurements were already acquired at iteration 5. At
iteration 9 the green RoI is resolved to a macro pixel resolution
of 2× 2 but further refinement is not possible as the measure-
ment budget has been exhausted. Therefore, the final macro pixel
resolution of the green RoI is 2× 2. Finally, the yellow RoI
is resolved to the native resolution of the DMD by using the
refinement measurements collected at iteration 7. This shows
the dynamic distribution of the measurements across the RoIs
by the RPS algorithm. For acquisition of all the RoIs at the native
resolution of the DMD, one would need 10000 measurements.
Thus, the RPS algorithm selects the most informative RoI at
each iteration and better utilises the limited measurement budget
(8060 measurements).
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Fig. 13. Prioritisation of RoIs with RI for Cuprite Vis dataset with random-
macro-pixel Rademacher measurements. The total number of measurements is
9188 (14% of the total number of pixels). The number of physical measurements
is 18376 (28% of the total number of pixels).

TABLE V
ERROR METRICS FOR THE ROIS FOR CUPRITE VIS DATASET WITH

RANDOM-MACRO-PIXEL RADEMACHER MEASUREMENTS (FIG. 13).
RESOLUTION IS IN MACRO PIXEL SIZE

Due to space limitations the application of RPS on the Gulf
Vis dataset is shown in Fig. III and Table A in the supplementary
material. The results for Pavia are provided in Fig. IV and
Table B in the supplementary material. In the case of Pavia
we can see that a smaller RoI (RoI 1 and RoI 4) with more
information change across the spatial scales is prioritised over a
larger sized RoI (RoI 3).

D. Experiments With Different Measurement Matrices

The RPS is agnostic to the nature of the measurement matrix.
The only requirement is that the measurement ensemble can be
deployed in multi-scale manner. Fig. 13 shows the result of ap-
plication of the RPS on the Cuprite Vis dataset with Rademacher
(±1 with equal probability) [42] random-macro-pixel measure-
ments. The RoIs and their order of prioritisation changes, though
the overall result is similar to0/1 random-macro-pixel sampling.
The corresponding error metrics are shown in Table V. The
first step of low resolution acquisition for detecting RoIs is
still performed with 0/1 random-macro-pixel sampling. Imple-
mentation of Rademacher random-macro-pixel measurements
requires two acquisition cycles on the DMD due to the ±1
nature of the Rademacher random variable. The total number of
physical measurements required for Rademacher measurements
is twice the number of realisations of the measurement vectors.

TABLE VI
NUMBER OF MEASUREMENTS PER SPATIAL FREQUENCY BAND IN WALSH

SAMPLING MASKS

Let the number of measurements required for calculation of RI
at each spatial scale for the ith RoI be pi% of the total number
of pixels in the RoI. Then, for M RoIs with R resolution levels,
the total number of 0/1 random-macro-pixel measurements will
be CM +R

∑M
i=1
 pi

100ni�, where CM is the number of low
resolution measurements common for all RoIs and ni denotes
the total number of pixels in each RoI. For Rademacher random-
macro-pixel measurements, the total number of physical mea-
surements, i.e., the number of acquisition cycles performed on
the DMD, will be equal to CM + 2R

∑M
i=1
 pi

100ni�.
One can also use Walsh transforms in a multi-scale manner.

The Walsh sampling masks from Fig. 5 are used. The number of
Walsh measurements in each spatial frequency band is provided
in Table VI. For each RoI size the total number of Walsh mea-
surements is fixed beforehand while determining the sampling
map. The number of measurements required for RPS with Walsh
ensemble is equal to CM +

∑M
i=1
 pi

100ni�. The total physical
measurements cycles on the DMD is twice the second term, as
the Walsh ensemble consists of ±1 measurements, plus the low
resolution measurements for the entire scene. The low resolution
acquisition is performed with 0/1 random-macro-pixel mea-
surements. For RoI reconstruction only the Walsh measurements
are used. For calculating the initial RI values, the low frequency
Walsh measurements are used as the refined measurements and
the low resolution regions corresponding to the RoIs from the
low resolution reconstruction are used as the coarse reconstruc-
tion for the simulated measurements. For further refinement
the Walsh reconstructions at different spatial scales are used
as the coarse reconstructions for the simulated measurements.
The results with multi-level Walsh measurements are shown
in Fig. 14 and in Table VII. The reconstruction metrics are
recorded in Table VIII. The advantage of using the concept
of multi-level sampling with the concept of RI is evident from
comparing the results in Table V and Table VIII. Multi-level
Walsh measurements with RI achieve similar performance as
random-macro-pixel Rademacher measurements with a smaller
measurement budget.

E. Results on MSL Images

This section reports the results of using RPS to reconstruct
the Mars1 and Mars2 images from Walsh measurements. The
prioritisation of RoIs for Mars1 image is shown in Fig. 15.
The evolution of RI values and RoI prioritisation are recorded
in Table IX. A limited budget experiment is also conducted
with the Mars1 image where the number of measurements is
not enough to resolve each RoI to the native resolution of the
DMD. Fig. 16 and Table X show the prioritisation of the RoIs
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Fig. 14. Prioritisation of RoIs with RI for Cuprite Vis dataset with Walsh
measurements exploiting multi-level sampling. The total number of measure-
ments is 5300 (8.1% of the total number of pixels). The number of physical
measurements is 9600 (14.6% of the total number of pixels).

TABLE VII
EVOLUTION OF RI FOR CUPRITE VIS DATASET WITH WALSH MEASUREMENTS

USING MULTI-LEVEL SAMPLING (FIG. 14). THE HIGHLIGHTED ROI INDICATES

THE ONE SELECTED AT EACH ITERATION

and the evolution of the RI values respectively. The orange RoI
is resolved using only the low frequency Walsh measurements
denoted by the green region in Fig. 5(c) and the corresponding
number of measurements is given in Table VI. As there is not
enough measurements for further refinement of the orange RoI, it
is not resolved using the higher frequency Walsh measurements
and is removed from the list. Only the red RoI is resolved to the
native resolution of the DMD. Thus, the RI is able to prioritise
RoIs on the basis of the information change across spatial scales
of the RoIs from Mars rover camera images as well. Error metrics
for both measurement budget scenarios of the Mars1 image are
provided in Table C and Table D in the supplementary material.
The result of applying the RPS on the Mars2 image is shown
in Fig. 17. The evolution of the RI and RoI selection is shown
in Table E in the supplementary material. The error metrics are
recorded in Table F in the supplementary material.

TABLE VIII
ERROR METRICS FOR THE ROIS FOR CUPRITE VIS DATASET WITH WALSH

MEASUREMENTS (FIG. 14) USING MULTI-LEVEL SAMPLING IN THE RPS
ALGORITHM

Fig. 15. Prioritisation of RoIs with RI for Mars1 image. The total number of
measurements is 7552 (11.5% of the total number of pixels).

TABLE IX
EVOLUTION OF RI FOR MARS1 IMAGE WITH WALSH MEASUREMENTS USING

MULTI-LEVEL SAMPLING (FIG. 15). THE HIGHLIGHTED ROI INDICATES THE

ONE SELECTED AT EACH ITERATION. THE TOTAL NUMBER OF MEASUREMENTS

IS 7552

TABLE X
EVOLUTION OF RI FOR MARS1 IMAGE WITH WALSH MEASUREMENTS USING

MULTI-LEVEL SAMPLING (FIG. 16) WITH LIMITED MEASUREMENT BUDGET.
THE HIGHLIGHTED ROI INDICATES THE ONE SELECTED AT EACH ITERATION.

THE TOTAL NUMBER OF MEASUREMENTS IS 6301
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Fig. 16. Prioritisation of RoIs with RI for Mars1 image with limited mea-
surement budget. The total number of measurements is 6301 (9.6% of the total
number of pixels).

Fig. 17. Prioritisation of RoIs with RI for Mars2 image. The total number of
measurements is 5299 (8.1% of the total number of pixels).

F. Discussion: Noisy Measurements and Processing Time

In case of noisy observations, the RPS is still applicable. The
error estimate can be used in the same way, since the RI only
takes into account the given data independent of their model. The
reason is that we approximate regularised solutions at finer levels
(that is an estimator based on the given noisy data) instead of
an idealised solution. Consequently, the output of the “detection
and segmentation” step may lead to different RoI selections with
the noise realisations, but we expect the first ones to remain
more stable. Deviations from an idealised solution are rather
a model error than due to our adaptive algorithm, the issue of
simultaneously treating modelling errors is beyond the scope
of the paper and left to future research. Examples of RPS with
noisy observations using the Cuprite Vis dataset are provided
in Fig. 5, 6, 7, and 8 in the supplementary material. In case of
low light conditions, if the photon count is not too low then the
noise can be modelled as a Gaussian with a variable variance and
the RI is applicable. Analysing scenarios dominated by Poisson

TABLE XI
ERROR METRICS FOR COMPARISON OF RPS WITH CLASSICAL AND

MULTI-LEVEL COMPRESSED SENSING (CS)

noise is beyond the scope of the article, it will be considered in
future work along the lines of [43].

The required processing time depends on the underlying
compressed sensing solver. This can be tailored to the required
application and may be iterative or learned in nature. If the
application admits structured measurement matrices, such as
the Walsh or Fourier matrices, then the FFT algorithm can
be exploited to accelerate the reconstruction. The complexity
analysis of compressed sensing solvers can be found in [32] and
the references therein. Calculation of the RI involves a vector
subtraction that takes N FLOPs and a calculation of a squared
l2 norm that takes 2N − 1 FLOPs, where N is the total number
of pixels in the RoI. The total number of FLOPs required for RI
calculation is 3N − 1.

G. Comparison With Other Techniques

As discussed previously, for exploration scenarios region
based acquisition is preferred over acquisition of the complete
scene due to limited resources. Also a region based approach
provides the opportunity to acquire the RoIs with greater preci-
sion. A comparison of the RPS with classical compressed sens-
ing [8], [9] and multi-level compressed sensing [13] with Walsh
measurements is done in Table XI. The measurement budget is
5300 for all three acquisition methods and algorithm (2) is used
with Daubechies-8 wavelets as the sparsity basis.

Rademacher measurements are used for classical compressed
sensing. On its own classical compressed sensing and multi-level
compressed sensing recover the entire scene at the native reso-
lution of the DMD. As expected the RoIs are best reconstructed
by the RPS, as in that case the RoIs are recovered in a dedicated
manner. As the background is left at a lower resolution in the RPS
algorithm the recovery of the background is best with multi-level
compressed sensing. Table XI shows that in an exploration
scenario with limited measurement budget, region based acqui-
sition, like the RPS, is able to distribute the measurement budget
intelligently and acquire better quality RoIs, as measured by
NMSE and SSIM. Fig. 9 in the supplementary material shows the
reconstruction comparison from the three considered methods.

Fig. 18 and Fig. 19 show the multi-resolution compressed
sensing reconstructions from MR-AMP [4], [44] and the STOne
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Fig. 18. MR-AMP reconstruction for Cuprite Vis dataset. From left to right
down-sampling factor: 8, 4, 2, and 1. The total number of measurements is 9600
(14.6% of the total number of pixels).

Fig. 19. STOne transformation reconstruction for Cuprite Vis dataset.
(a) Low resolution reconstruction with 1024 measurements, (b) high resolution
reconstruction of (a), low resolution reconstruction with 4096 measurements,
and (d) high resolution reconstruction of (c).

transform [3], [45] respectively for the Cuprite Vis dataset. MR-
AMP used the same number of measurements for reconstruc-
tion at different down-sampling factors as the RPS algorithm
illustrated in Fig. 11. For STOne transformation the number of
measurements must be a power of 2, therefore, we use 1024 and
4096 measurements to reconstruct two different low resolution
images. These comparisons show that at the considered sub-
sampling rates, a step-wise resolution refinement procedure, like
the RPS, works better. No codes were provided by the authors
of [5], therefore, no comparison was possible.

VI. CONCLUSION

This work proposes a procedure for RoI prioritisation in
constrained systems. An estimator for the change in information
content across spatial resolutions is developed. The Refinement
Indicator (RI) evaluates the importance of a RoI for refine-
ment to a finer resolution by calculating the error between
the novel refined measurements and simulated high resolution
measurements obtained by considering the coarse resolution
reconstruction as the groundtruth. Thus, the calculation of the
refined higher spatial resolution reconstruction is not required
to estimate the change in information content across scales.
The RI is used to prioritise RoIs for sequential acquisition
through the RPS algorithm. Experiments show that the RPS
algorithm is able to distribute the limited measurement budget
in constrained systems in an organized manner across the dif-
ferent RoIs. At the considered sampling rates, the RoI based
step-wise resolution refinement performs better at acquiring
mission relevant RoIs than the state-of-the-art multi-resolution
reconstruction techniques that recover the complete scene at a
low resolution. Multi-scale multi-level compressed sensing with
Walsh measurements is employed in the RPS framework and
provides similar performance to random-macro-pixel sampling
using Rademacher measurements with smaller measurement

budgets. The RI thus provides a method for dynamic measure-
ment budget allocation in constrained systems, which increases
the capabilities of autonomous systems in exploration scenarios.

In the future, the work may be extended to multispectral
scenarios and to low photon count environments. Methods for
sequential compressed sensing reconstruction [46] may be stud-
ied for this application.
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