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Opto-Acoustic Image Reconstruction and Motion
Tracking Using Convex Optimization

Jason Zalev and Michael C. Kolios , Member, IEEE

Abstract—Opto-acoustic imaging systems detect acoustic waves
produced by optical absorption to visualize molecular contrast in
biological tissue. This permits non-invasive vascular assessment
of benign and malignant tumors. In this article, we describe a
framework to iteratively determine the motion of an opto-acoustic
probe during a minimization-based image reconstruction process.
The probe emits light and uses an ultrasonic transducer array
to acquire data for cross-sectional slices of tissue. To improve
visibility, our technique uses multiple 2D slices to perform 3D
volumetric reconstruction. Our model includes wavelength-specific
optical absorption, position-dependent illumination and a realistic
transducer element geometry. We investigate this technique using
simulated, experimentally collected, and clinically acquired data.
By performing 3D image reconstruction on a digital phantom,
we demonstrate estimation of elevational probe motion without
external sensors. We compare images of a benign lesion from
a clinical breast imaging study and observe significant artifact
reduction and contrast-to-background ratio improvement using
our technique. The approach has potential to improve opto-
acoustic image visibility for assessment of breast cancer or other
diseases.

Index Terms—Convex optimization, linear array trajectory,
motion estimation, multi-wavelength 3D imaging, opto-acoustic
image reconstruction.

I. INTRODUCTION

R ECENT clinical studies have investigated opto-acoustic
imaging (OA) for assessment and diagnosis of breast can-

cer [1]–[11]. OA helps to visualize cancerous lesions, which are
metabolically more active, and tend to have higher vascularity,
irregular blood vessels, and decreased oxygen saturation com-
pared to benign lesions and healthy tissue [12]–[16]. By using
optical absorption to generate acoustic waves, the technology
permits imaging of blood vessels and oxygenation levels in
tumors located several centimeters beneath the skin, without
using harmful ionizing radiation or injected contrast agents [4].

OA reconstruction involves generating images to visualize the
molecular composition of tissue. To achieve this, acoustic trans-
ducer measurements are digitally processed to localize acoustic
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sources based on propagation delays. The use of multiple optical
wavelengths allows molecular constituents to be determined
from their optical absorption spectra. For proper tissue visu-
alization, reconstructed images must have minimal clutter and
distortion. Although several analytic inversion formulas exist
for performing OA reconstruction [17]–[21], these generally
cause distortion unless a reconstructed region of tissue is fully
surrounded by detectors to capture all emitted acoustic waves.
Consequently, the effectiveness of analytic reconstruction ap-
proaches is limited by tissue surface acquisition because com-
plete acoustic capturing is not possible. To permit more accurate
image reconstruction, convex mathematical optimization uses
assumptions about spatial smoothness and image sparsity to
fit reconstructed images onto measured data [22], [23], [23]–
[27]. This can significantly improve contrast and reduce clutter.
However, certain unwanted artifacts remain difficult to suppress,
especially in 2D systems.

In 2D OA imaging, subjects are scanned using a hand-held
probe that incorporates an ultrasonic linear-array transducer with
an integrated light delivery unit [1]–[11]. The light distribution,
which depends on the illumination geometry and optical wave-
length, cannot easily be confined to a 2D slice of tissue. This
results in interfering acoustic waves produced by out-of-plane
optical absorbers. Moreover, light intensity attenuates exponen-
tially, which limits optical penetration and decreases image con-
trast in deep tissue. Obtaining additional surface measurements
can potentially overcome these limitations by improving image
contrast, interference suppression, and acoustic source localiza-
tion. However, with free-hand acquired data, this requires the
linear array’s position and orientation to be known and included
in the reconstruction model. Consequently, there is a need for
approaches that efficiently incorporate a probe’s trajectory into
3D OA reconstruction.

In this article, we propose a method to reduce artifact and
reconstruct 3D images, which simultaneously solves motion of
an OA probe. This enables volumetric reconstruction from mul-
tiple 2D slices, which helps suppress interference and improve
contrast in 2D imaging. The approach uses sequential convex
optimization, and is based on fitting measured acoustic data
onto a model’s predicted response. We propose a novel model
where a wavelength-specific light distribution is delivered from
the probe’s coordinate frame, and predicted acoustic signals are
simulated based on 3D molecular composition of tissue. Fast
computation is developed using a separable acoustic response
matrix, described in our earlier work [28], which includes the
array’s position and orientation. We demonstrate reconstruction
of 2D and 3D images with improved image quality compared to
a formula-based approach.
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To our best knowledge, this is the first work involving
OA, where reconstruction and probe motion are simultane-
ously solved through a combined minimization objective. In the
literature, numerous OA reconstruction approaches have been
studied [17]–[20], [20]–[27], including formula-based back-
projection [17]–[20] and mathematical optimization [22], [23],
[23]–[27]. However, these involve different processing and as-
sumptions compared to our approach. In OA, combined recon-
struction methods have previously been considered to estimate
non-rigid deformation with internal tissue motion [29], [30],
but this is different from solving probe motion and requires
many additional variables. In other work, sensors have been
used to determine OA probe motion [31]. In ultrasound, mo-
tion tracking has been well studied [32]–[40], but previous
sensor-free approaches involving ultrasonic speckle correlation
are not fully applicable to OA. Moreover, out-of-plane artifact
in 2D slices can interfere with correlation-based OA tracking.
To overcome such limitations, one study correlated 3D volumes
obtained with a matrix-array probe [41]. Our approach, which
advantageously is applicable even in the presence of interference
specific to 2D OA imaging, was inspired by combined alignment
and reconstruction used in other modalities [42] and in computer
vision [43]–[45].

This article is organized as follows. Section II-A provides
theoretical background for opto-acoustic signal generation. Sec-
tion II-B describes image reconstruction based on convex math-
ematical optimization. In Section III, we develop a system
model, which simulates opto-acoustic signals for multiple 2D
slices. Using this model, in Section IV we develop an algorithm
for 3D image reconstruction and motion tracking. Section V
describes the results and implementation. Additional results are
provided as Supplemental Materials. Discussion is provided in
Section VI. We conclude in Section VII. Table I lists symbols
used throughout this work.

II. BACKGROUND

A. Opto-Acoustic Signals

In opto-acoustic imaging, a probe delivers a rapid pulse of
light, at optical wavelength λ, to the tissue surface. The radiant
fluence ϕ(λ, r) is the amount of light that reaches position r
within the tissue. When light is absorbed, it is converted to an
acoustic source distribution called the initial excess pressure
ψ(λ, r), which subsequently propagates as acoustic waves. This
is equal to

ψ(λ, r) = η(λ, r)ϕ(λ, r), (1)

where η(λ, r) is the opto-acoustic conversion efficiency, which
is given by

η(λ, r) = γ(r)μa(λ, r). (2)

Here, η(λ, r) is the product of the tissue optical absorption
coefficient μa(λ, r), which describes conversion of light to heat;
and, the Grüneisen parameter γ(r), which relates added heat
to excess pressure. In tissue, γ typically has a small spatial
variation, and is often assumed to be constant. The parameter μa

depends on the abundance of light-absorbing molecules called
chromophores, which are spatially distributed based on the tissue
composition, and can have widely different wavelength-specific

TABLE I
LIST OF SYMBOLS
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optical properties from each other. In multi-wavelength imag-
ing, this enables visualization of molecular tissue contrast. The
tissue optical absorption μa is determined by a weighted linear
combination

μa(λ, r) =
∑
i

mi(λ)χi(r), (3)

where mi(λ) is the optical absorption at wavelength λ, for the
i-th chromophore, and χi(r) is its volume fraction abundance.

In an acoustically homogeneous medium, pressure waves due
to ψ(r, λ) propagate radially outward from r at a constant speed
of sound c0. The signal measured by an acoustic transducer at
position r0, at time t, is

y(λ, r0, t) =

∫
R3

h(r0 − r, t)ψ(λ, r) dr. (4)

Here, the spatio-temporal impulse response for a transducer
measurement is

h(r, t) =

∫ ∞
−∞

∫
R3

g′(r̃, t̃)fa(r− r̃)α(r̃)β(t− t̃) dr̃ dt̃, (5)

where

g′(r, t) =
∂

∂t

δ (‖r‖ − c0t)
4πt

(6)

is the ideal impulse response for an infinitesimally-sized omni-
directional transducer. In this equation, δ(t) is the Dirac delta
function. In (5), the transducer aperture function fa(r) models
the element geometry. For rectangular elements, this is

fa(r) = rect

(
r1
a1
,
r2
a2

)
δ(r3), (7)

where a1 and a2 represent the element length and width, and
the element is oriented normal to the r3-axis, with coordinates
r = (r1, r2, r3). The obliquity factor

α(r) =
|r · n̂|
‖r‖ (8)

models the transducer directionality. Here, n̂ is the outward
normal to the transducer at r. For an omni-directional trans-
ducer, which does not include directionality, α(r) is set to 1.
The electro-mechanical impulse response β(t) describes the
spatially-independent bandwidth of the receiving element and
system electronics. To model an ideal wide-band response,
where β(t) has no contribution, β(t) can be set to δ(t).

B. Image Reconstruction Using Mathematical Optimization

Images of tissue can be reconstructed from acquired sen-
sor measurements using mathematical optimization algo-
rithms [22], [23], [23]–[27], [46]–[58]. This involves finding an
unknown x that minimizes error between a measured response
y and a predicted response ỹ = Hx. Here, the system matrixH
models the responses that are predicted to be measured for any
given image x. Representing the response of a linear system
by H generally involves converting continuous equations to
discretized matrix form. For example, H can implement trans-
ducers using equation (5) to model an OA system, as detailed in
Section III-B to represent our model.

To solve x, a general approach that covers many applications
in image and signal processing [47]–[50], [53]–[55] involves

minimizing a convex optimization problem of the form

minimize ‖Hx− y‖22 + ϑ(x)

subject to x ∈ C (9)

When an optimization problem is convex, its global optimal
solution can be found iteratively by computing a converging
sequence of solutions. Here, ‖Hx− y‖22 is a fidelity function
that matches measured data to the model. The regularization
function ϑ(x) penalizes unwanted solutions, occurring due
to noise amplification, which otherwise might minimize (9).
Different regularization functions can be used depending on
anticipated properties of the reconstructed image. Generally,
ϑ(x) has a corresponding proximal operator that can be com-
puted efficiently, as described in Appendix A. For example,
in 1-minimization, ϑ(x) promotes sparse solutions, with few
non-zero elements, by using an 1-norm ‖ · ‖1. The 1 proximal
operator is a simple soft-thresholding function. Our approach
uses total-variation (TV) regularization [27], [48], [49], which
involves a weighted 1-norm to enforce sparseness in the spatial
gradient ofx, promoting image smoothness. This helps to reduce
noise when visualizing tissue. In equation (9), the convex set
C represents constraints, restricting the allowed values of x.
For example, C = {x |x ≥ 0} will permit only non-negative
values in x, which is useful when the unknown variable must be
positive.

Equation (9) can be solved by several techniques, including
the alternating direction method of multipliers (ADMM) [52],
[55], and accelerated proximal gradient (APG) [27], [47]–[50],
[53]–[55]. Mathematical details of these minimization algo-
rithms, as used in our approach, are provided in Appendix A.

To perform motion tracking, additional variables representing
probe position and orientation must be solved. When these are
included, the system matrixH becomes non-linear (with respect
to these variables), which makes solving equation (9) more
difficult compared to conventional image reconstruction. In this
case, sequential convex optimization [42]–[45], [59], [60] can
be used, which iteratively computes a sequence of linearized
convex subproblems, as described in Section IV-C.

III. SYSTEM MODEL

A. Frames Collected by Linear Array

In this work, a system model is developed by extending
equation (4) to multiple frames. This is applicable in 2D clinical
imaging, where a hand-held probe with linear transducer array
is manually scanned along the surface of a subject’s tissue. The
probe delivers light through an optical source aperture (e.g. a
transparent window) adjacent to the array. Following illumina-
tion by an optical pulse, the array records acoustic signals to
capture a frame of data. In 2D imaging, each frame corresponds
with a tissue slice in the probe’s imaging plane. Figure 1 illus-
trates frames acquired at two alternating wavelengths along the
probe’s trajectory.

By extending equation (4), the opto-acoustic signals for the
j-th frame are

yj(rl, t) =

∫
R3

h(rl − r, t)ψj(r) dr, (10)
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Fig. 1. Illustration of (dual-wavelength) multi-frame acquisition. Frames at
alternating optical wavelengths λ1 (red) and λ2 (blue) are acquired as linear
array transducer follows a trajectory at the surface of a subject’s tissue (not
shown). Transducer elements are shown as dots at the tissue surface.

where rl is the position of the l-th transducer element in the
probe’s local coordinate system, and t is time elapsed since illu-
mination. Since the probe can move, the frame’s acoustic source
distributionψj is defined relative to the probe’s coordinates, and
depends on the probe’s illumination of tissue. This is equal to

ψj(r) = η(λj , τj(r))ϕ(λj , r), (11)

where the rotation and translation for each frame are represented
using a rigid affine transform function

τj(r) = Ajr+ bj , (12)

with rotation matrix Aj and translation bj . Thus, τj converts
η from global coordinates to the probe’s local coordinates. In
global coordinates, by combining (2) and (3), η is given by

η(λj , r) = γ(r)
∑
i

mi(λj)χi(r), (13)

where λj is the optical wavelength of the j-th frame. In a
dual-wavelength system, λj sequentially alternates between two
different values. Since the optical source aperture moves with
the probe, the light distributionϕ is assumed to remain stationary
in the probe’s coordinates.

B. Forward Model

The forward model predicts the data received by the probe.
In equations (10) to (13), the opto-acoustic signals yj depend
on: i) the volume fraction abundances χi, for chromophores i =
1, . . . , nμ; and, ii) the probe’s orientation Aj and position bj ,
for frames j = 1, . . . , nf. These parameters correspond to inputs
in our forward model, but also represent the unknown variables
solved during image reconstruction. The other parameters, mi,
ϕ and γ, are treated as constants that are determined in advance.

1) Volume Fraction Abundance of Chromophores in Tissue:
To model the tissue, it is subdivided into voxels, arranged on
a 3D grid. Each voxel is associated with a set of chromophore
abundances. The total number of voxels is nv = nxnynz, where
nx, ny and nz are the number of voxels along the x-, y- and
z-axes. For the i-th chromophore, the volume fraction abundance
is represented as a vector xi ∈ Rnv . Thus, the tissue can be rep-
resented by a matrix variableX = [x1,x2, . . . ,xnµ

] ∈ Rnv×nµ ,
where nμ is the number of chromophores. For convenience, this
is vectorized to x = vec(X) ∈ Rnvnµ .

2) System Matrix: For a tissue represented byx ∈ Rnvnµ , the
predicted opto-acoustic signals for the j-th frame are represented

by a vector ỹj ∈ Rnm . The number of measurements nm is equal
to the number of transducer channels nc times the number of
samples per channel ns. For each frame, a system matrix Hj ∈
R(nm)×(nvnµ) is used to represent the linear discretized operator
corresponding to equation (10). Thus, the predicted response is

ỹj = Hjx.

In our model, the operator Hj , which is composed of four
components, is defined as

Hj = H0 Φλj
Tpj

Mλj
, (14)

where Mλj
∈ R(nv)×(nvnµ) is the absorption matrix for wave-

length λj , which contains optical absorption coefficients of each
chromophore;Tpj

∈ Rnv×nv is the transformation matrix for the
configuration vector pj ∈ Rnp , which describes probe position
and orientation;Φλj

∈ Rnv×nv is the optical illumination matrix
for wavelength λj , describing the radiant fluence distribution;
and, H0 ∈ Rnm×nv is the acoustic response matrix. These are
described below.

To compute signals from multiple frames, the overall system
matrix H ∈ R(nmnf)×(nvnµ) is given by

H =

⎡
⎢⎢⎢⎢⎣
H1

H2

...
Hnf

⎤
⎥⎥⎥⎥⎦ . (15)

Thus, we can write

ỹ = Hx, (16)

where Ỹ = [ỹ1, ỹ2, . . . , ỹnf ] ∈ Rnm×nf and ỹ = vec(Ỹ ).
3) Absorption Matrix (Mλj

): To derive Mλj
, equation (13)

is used. It is assumed that each chromophore index i ∈
{1, . . . , nμ} has a known absorption coefficient mi(λj) at the
wavelength index λj ∈ {1, . . . , nλ}. We define the optical ab-
sorption vector mλj

∈ Rnµ at wavelength λj as

mλj
=
[
m1(λj),m2(λj), . . . ,mnµ

(λj)
]T
. (17)

Next, by applying equation (13) in matrix form, the abundance
matrix X ∈ Rnv×nµ can be used to find the opto-acoustic con-
version efficiency by computing

ΓXmλj
. (18)

Here, Γ ∈ Rnv×nv is a diagonal matrix, representing the
Grüneisen parameter γ(r), which applies pointwise multipli-
cation to each voxel. To reorder (18), we use the vectorization
identity, vec(UV ) = (V T ⊗ Ik) vec(U), which is valid for any
matricesU ∈ Rk×l and V ∈ Rl×m, where Ik represents the size
k identity matrix and ⊗ is a Kronecker tensor product. This
yields ΓXmλj

= Γ(mT
λj
⊗ Inv) vec(X). Accordingly, we can

write (18) as a matrix operator that is applied to x = vec(X).
Also, for simplicity, we assume that γ(r) does not vary spa-
tially, and is represented by a constant γ0, such that Γ = γ0Inv .
Therefore, the optical absorption matrix for (14) is given by

Mλj
= m̃T

λj
⊗ Inv , (19)

where m̃λj
= γ0 mλj

. This has a simple interpretation, which is
that equation (19) replicates mλj

for each voxel and multiplies
by γ0.
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4) Transformation Matrix (Tpj
): In each frame, the probe

has a different position and orientation. The rotation matrix
Aj ∈ R3×3 and the translation bj ∈ R3 of equation (12) can
be generated by a list of parameters pj ∈ Rnp called the con-
figuration. There is some flexibility in how Aj and bj are
generated from the configuration, depending on the permitted
probe motions. The number of parameters np is equal to the
degrees of freedom. We use the configuration pj = (θj ,bj),
which has six parameters: the three translations for bj , and
three Euler angles θj ∈ R3 to represent roll, pitch and yaw. The
rotation matrix is

Aj = R1(θj,1)R2(θj,2)R3(θj,3), (20)

where R1, R2 and R3 represent rotations about the three coor-
dinate axes. If fewer degrees of freedom are required, then any
of the configuration parameters can be replaced with constants
to constrain the trajectory.

In earlier work [28], we described probe orientation Aj and
position bj , and the conversion between different coordinates.
Here, we define the transformation matrix Tpj

∈ Rnv×nv for
(14) as an operator that transforms voxels in Rnv according to
the configuration pj . In other words, Tpj

applies Aj and bj to
each voxel in an image. This (inversely) rotates and translates
the tissue so it is situated in the local coordinate frame of the
probe. In practice, the matrixTpj

can be implemented efficiently
using a custom function on a CPU or GPU.

5) Optical Illumination Matrix (Φλj
): In our model, light

is delivered by an optical aperture that remains stationary in
the probe’s local coordinates. Thus, for wavelength λj , it is
assumed the fluence profileϕ remains fixed relative to the probe.
This permits pre-computing Φ once per wavelength, rather than
solving it at each probe position. As described in our earlier
work [28], this approximation assumes tissue heterogeneities
and deformation that impact ϕ are negligible. According to
equation (1), the optical illumination matrixΦλj

∈ Rnv×nv must
apply a diagonal weighting, corresponding to pointwise multi-
plication of each voxel. Thus, Φλj

= diag(ϕλj
), where ϕλj

∈
Rnv is a vector representing the fluence profile. This is governed
by the radiation transport equation and can be determined in
several ways, including diffusion approximations [61]–[64],
finite-element models [65], or Monte Carlo based methods [66],
[67]. Our implementation uses analytic expressions based on
the diffusion approximation [28], [63] with optical properties
for breast tissue [4].

6) Acoustic Response Matrix (H0): The acoustic response
matrix H0 ∈ Rnm×nv implements equation (5) in linear dis-
cretized form, as described in the next section.

C. Separable Operator for Linear Array

In earlier work [28], we proved that a mathematical operator
corresponding to equations (10) to (12) is separable. For each
transducer, this implements the spherical volume integration of
equations (4) to (6) to model acoustic wave propagation in a
more efficient manner. By generalizing this to matrix form, the
acoustic response matrix H0 ∈ Rnm×nv can be represented as

Fig. 2. Separable acoustic response matrix [28]. To improve computational
efficiency for a linear array, the response matrixH0 = F0 G0 performs spherical
volume integration of equation (5) in two stages. To model time-domain signals
for all transducer elements (black dots), the matrix factor F0 integrates along
arcs that span a 2D plane (white) corresponding to a cross-sectional slice of
tissue. The slice is generated by the matrix factor G0, which integrates along
independent perpendicular planes (gray), spanning the 3D volume. Since the
transducer elements are co-linear, all signals in F0 require the same planes
from G0 (repeated at consecutive offsets as shown), so intermediate data can be
shared. Thus, by splitting H0 into factors F0 and G0, redundant computation
is eliminated.

the product of two matrices. This is written1

H0 = F0G0. (21)

Here, the matrix factor F0 ∈ Rnm×nm′ acts on the probe’s 2D
imaging plane. The factor G0 ∈ Rnm′×nv acts along planes per-
pendicular to it, spanning a 3D volume. This is illustrated in
Figure 2. In the matrices, the intermediate number of measure-
ments nm′ is different from nm.

By representing (21) as sparse matrices, the separable form
permits higher computational efficiency because H0 is non-
factorized and less sparse than F0 and G0. The performance
improvement for factorized sparse matrices is similar to the
case for discretized analytic equations (described in our earlier
work [28]) because the sparsity pattern yields the same number
of operations.

We can apply separability to the overall system matrix H of
equation (15). By substituting (21) into (14), for frame j, we
have

Hj = F0G0 Φλj
Tpj

Mλj︸ ︷︷ ︸
Gj

, (22)

where Gj is defined as

Gj = G0 Φλj
Tpj

Mλj
. (23)

Accordingly, (15) can be written as

H = F G, (24)

where the overall separable factors F and G are

F = F0 ⊗ Inf =

⎡
⎢⎢⎢⎢⎣
F0 0 · · · 0

0 F0 · · · 0
...

...
. . .

...
0 0 · · · F0

⎤
⎥⎥⎥⎥⎦ , (25)

1The matrix equation H0 = F0 G0 corresponds to the compositionally sep-
arable operatorH = G̃ ◦ G, which is described in [28] .
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and

G =

⎡
⎢⎢⎢⎢⎣
G1

G2

...
Gnf

⎤
⎥⎥⎥⎥⎦ . (26)

Using the separable form of equation (24) (instead of per-
forming a volume integration that encounters each voxel for
every transducer), reduces the computational complexity of each
frame from O(n3) to approximately O(n2), where n3 = nv is
the number of voxels in a 3D image (assuming the number
of transducers nc ≈ n) [28]. For a 3D image with dimensions
100× 100× 100, this represents 100 times computational sav-
ings, compared to a non-separable approach.

IV. IMAGE RECONSTRUCTION AND MOTION TRACKING

A. Image Reconstruction

Image reconstruction using the separable operator described
in Section III-C is performed by substituting (15) into (9) to
obtain the convex optimization problem

minimize
x

‖FGx− y‖22 + ϑ(x)

subject to x ∈ C (27)

Herex represents the volume fraction abundances of the tissue
chromophores, which have non-negative values. Accordingly,
our implementation specifies C with x ≥ 0. To solve (27), we
use a minimization algorithm [53], [55] that requires a proximal
operator of the indicator function IC to confine x to C. This
corresponds to a simple replacement of negative values with
zero after each iteration. If desired, additional constraints can be
used, such as ensuring the volume fractions sum to less than one,
consistent with physical principles. An overview of constraints
used in optimization-based spectral unmixing is provided by
Chouzenoux et al. [68].

When solving (27), we used a regularization function ϑ that
included isotropic TV as well as 1-minimization. Our imple-
mentation specified

ϑ(x) = α1‖x‖1 + α2

nµ∑
i=1

‖Dxi‖2,1, (28)

where α1 and α2 are regularization parameters, and D =
(Dx, Dy, Dz) ∈ R(3×nv)×nv is a linear matrix operator for TV
regularization that computes spatial gradients in the x, y and
z directions. Here, D is applied to each chromophore xi. In
equation (28), the ‖ · ‖2,1 group-norm has a dual-proximal
operator that facilitates using isotropic TV with 3D volumes.
Minimizing this type of equation can be performed efficiently
with dual-proximal methods, such as TFOCS [53], [57] (as
described in Appendix A), or by using similar approaches in-
volving primal-dual optimization [56]. If desired, anisotropic
TV can be implemented by using the 1-norm ‖ · ‖1 in (28)
instead of ‖ · ‖2,1, which may reduce visual performance, but is
computationally simpler.

B. Two-Stage Iterative 3D Opto-Acoustic Image
Reconstruction

To improve computation of equation (27), a two-stage it-
erative 3D reconstruction is proposed, where separable parts
are solved independently. The sequence, which is performed
iteratively, involves first reconstructing a monochrome (single-
wavelength) 2D slice for each frame, followed by 3D volumetric
reconstruction of chromophores.

Using the separable operator of Section III-C, equation (27)
is split into two parts. From (22) and (23), when Hj is applied
to x, we can write

Hjx = F0Gjx︸︷︷︸
zj

= F0 zj , (29)

where zj ∈ Rnm′ is a new variable, defined by

zj = Gjx. (30)

We write Z = [z1, . . . , znf ] ∈ Rnm′×nf and z = vec(Z). Thus,
for the overall system matrix,

Hx = FGx = Fz, (31)

where Gx = z. Using this substitution, equation (27) becomes

minimize
x,z

‖Fz− y‖22 + ϑ(x)

subject to z = Gx, (32)

where the constraint x ∈ C is omitted for clarity.
Equation (32) can be solved with the ADMM splitting al-

gorithm, as described in Appendix A. The result obtained by
applying (32) to (A.5) is presented as Algorithm 1. An interesting
interpretation of Algorithm 1 is that there is an intermediate
variable zj for each frame, corresponding to a monochrome
2D reconstructed image. Each reconstructed zj requires no
inherent positional information, since it is in the probe’s local
coordinates. Algorithm 1 performs an outer loop, with two
separate inner minimizations. First, the algorithm reconstructs
a 2D image zj for each frame. Then, once zj is formed for all
frames, the 3D volume x is reconstructed from the intermediate
variables, using each frame’s position and orientation. Since the
positional information is not required until the second stage,
motion tracking can be solved using data computed from the
first stage, as described in Section IV-C.

C. Image Reconstruction Combined With Motion Tracking

Motion tracking is developed from equation (9), using the
system matrix H of equation (15), which depends on the
configuration parameters p = (p1, . . . ,pnf) that describe the
probe orientation and position for each frame. To highlight the
non-linear dependence ofH on p, we write the system matrix as
H ≡ Hp. To simultaneously perform reconstruction of x, while
determining probe configuration p, it is desirable to solve

minimize
(x,p)∈C

‖Hp x− y‖22 + ϑ(x) (33)

However, due to the form of Hp, which is non-linear in p,
equation (33) is not convex, which makes finding a solution
difficult.

To convert (33) to a form that can be solved, a linear approx-
imation to Hp around an initial estimate of p is used. For an
incremental change in configuration parameters Δp ∈ R(npnf),
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Algorithm 1: Two-Stage Iterative 3D Opto-Acoustic Image Reconstruction.

Input: y = (y1, . . . ,ynf) ∈ Rnfnm

Output: x ∈ Rnvnµ

Require: F0 ∈ Rnnm×m′ , G = (G1, . . . , Gnf) ∈ Rnfnm′×nvnµ , ϑ : Rnvnµ → R, ρ ∈ R+

1: function TWO STAGE RECONSTRUCT(y1, . . . ,ynf )
2: x(0) ← 0, u(0) ← 0 � Initialize x and u
3: for n = 0 . . . nmax − 1 do
4: for j = 1 . . . nf do � Perform 2D reconstruction for each slice
5: z

(n+1)
j ← RECONSTRUCT2D(yj , Gjx

(n) + u
(n)
j )

6: end for
7: z(n+1) ← (z

(n+1)
1 , z

(n+1)
2 , . . . , z

(n+1)
nf )

8: x(n+1) ← RECONSTRUCT3D (z(n+1) − u(n)) � Reconstruct 3D volume using all slices
9: for j = 1 . . . nf do � Update dual variables

10: u
(n+1)
j ← u

(n)
j + (Gjx

(n+1) − z
(n+1)
j )

11: end for
12: u(n+1) ← (u

(n+1)
1 ,u

(n+1)
2 , . . . ,u

(n+1)
nf )

13: end for
14: return x(n+1)

15: end function
16: function RECONSTRUCT2D(y0,u0)
17: return argmin

z0

{‖F0z0 − y0‖22 + ρ
2‖u0 − z0‖22}

18: end function
19: function RECONSTRUCT3D(z̃)
20 return argmin

x
{ρ2‖Gx− z̃‖22 + ϑ(x)} � 3D volumetric recontruction of chromophores

21: end function

Algorithm 2: Opto-Acoustic Image Reconstruction with Motion Tracking

Input: y = (y1, . . . ,ynf) ∈ Rnfnm

Output: x ∈ Rnvnµ , p ∈ Rnpnf

1: procedure: RECONSTRUCTIONANDTRACKING(y)
2: x(0) ← 0, p(0) ← 0 � Initialize x and p
3: for k = 0 . . . kmax − 1 do
4: for j = 1 . . . nf do
5: H

(k)
pj ← H0 Φλj

T
(k)
pj Mλj

� Update the system response of frame j from (14)

6: J
(k)
pj ←

∂H
(k)
pj

x(k)

∂pj
|
p

(k)
j

� Update Jaccobian of frame j

7: end for
8: (x(k+1),Δp(k+1))← argmin

(x,Δp)∈Ck
{‖H(k)

p x+ J
(k)
p Δp− y‖22 + ϑ(x)} � Update x and Δp from (34a)

9: p(k+1) ← p(k) +Δp(k+1) � Update p from (34b)
10: end for
11: end procedure

the linear approximation is

H(p+Δp) ≈ Hp + Jp Δp,

where Jp = ∂
∂p(Hpx) ∈ Rnm×(npnf) represents the Jaccobian

derivative of Hp at x with respect to each parameter in p.
This permits iteratively solving a relaxed approximation to
(33), where each iteration is a two step process. This two
step approach is known as sequential convex optimization. At
the k-th iteration, first, solutions for x(k+1) and Δp(k+1) are
simultaneously solved. Then, p(k+1) is solved by incrementally
updating p(k) with Δp(k+1). Thus, each iteration consists of

the following two steps:

Step 1:[
x(k+1)

Δp(k+1)

]
(34a)

= argmin
(x,Δp)∈Ck

{
‖H(k)

p x+ J (k)
p Δp− y‖22 + ϑ(x)

}
Step 2:

p(k+1) = p(k) +Δp(k+1) (34b)

This is illustrated in Algorithm 2.
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To constrain for constant velocity motion estimation, Ck can
projectp(k) onto a linear trajectory along the probe’s elevational
axis after each iteration using robust fitting.

D. Efficient Implementation of Reconstruction and Tracking

By combining separability of Section III-C with Algorithm 2,
additional advantages can be achieved. For example, when a 2D
slice is separately reconstructed using data from each frame, this
can be used to determine an initial estimate of motion along the
lateral axis of the probe. We modify equation (32) into a split
form similar to equation (34a). The split form permits applying
the Jacobian matrix Jp in the 2D image-domain of z, rather
than in the time-domain of measurement data y, which leads to
a more efficient implementation. With these modifications, our
implementation of Step 1 becomes

minimize
x,z,Δp

‖Fz− y‖22 + ϑ(x)

subject to z = G(k)
p x+ J (k)

p Δp,

x ≥ 0, (35)

where ϑ(x) is the same as equation (28).
As described in Appendix A, the TFOCS algorithm performs

minimization using first-order iterations with an accelerated
proximal gradient (APG) method [53], [69]. The approach can
handle convex optimization problems in block-composite form
(BCF), which is described in equation (A.6). However, to solve
a problem in BCF form, it is manually converted to its dual form,
described in equation (A.7). To represent equation (35) in BCF
form, we use a primal variable v = (z,x,Δp). The result is
illustrated in Algorithm 3, which combines Algorithm 1 with
Algorithm 2. At the k-th (outer) iteration, the block-composite
system matrix L(k) is

L(k) =

⎡
⎢⎢⎢⎣
−1 G

(k)
p J

(k)
p

F 0 0

D 0 0

1 0 0

⎤
⎥⎥⎥⎦ , (36)

where D is the linear operator for TV regularization, as used in
equation (28). The offset constant for (A.6) isc = (0,y, 0, 0). To
encode (35), the function map ξ = [I0, ‖ · ‖2, ‖ · ‖2,1, ‖ · ‖1]
is used, which implements ϑ(x). Here, I0 encodes the equality
constraint. The proximal operator proxξ0(v) and dual-proximal
operator proxξ∗(u), which are required in equation (A.7), are

proxξ0 =

⎡
⎢⎢⎣
proxIRn

+

proxIRn
+

proxIRn

⎤
⎥⎥⎦ , proxξ∗ =

⎡
⎢⎢⎢⎣

prox�2
proxIRn

prox�2,∞(α2)

prox�∞(α1)

⎤
⎥⎥⎥⎦ . (37)

Here, the function proxIRn
+

represents projection into the pos-

itive halfspace Rn
+, which implements the constraint x ≥ 0,

replacing negative values with zero. The unconstrained primal
variables are represented by proxIRn . In (37), proxξ∗ converts
the remaining terms in equation (35) to dual form. Here, the
2-norm ‖ · ‖2 is self-dual, so its dual-proximal operator is
prox�2 ; the 1 minimization term’s dual is prox�∞ ; and, dual
for the ‖ · ‖2,1 group-norm in (28) is prox�2,∞ . The constants α1

and α2 correspond to the regularization parameters in (28).

Fig. 3. Jacobian matrices for 6 acquired frames of digital phantom. The
differences Jx, Jy , Jz , Jψ , Jθ , and Jφ correspond to unit changes in z due to
x, y, and z axis translations, roll, pitch, and yaw rotations.

Fig. 4. A 3D digital phantom with chromophores oxy-hemoglobin (green)
and deoxy-hemoglobin (red). The phantom contains two spheres and two links,
arranged symmetrically and assigned opposite chromophores. The probe moves
along a curved trajectory and acquires 14 OA frames with alternating optical
wavelengths (represented by blue and orange planes). Position of linear array at
tissue surface corresponds to blue and orange lines.

In Algorithm 3, at iteration k, the Jacobian matrix J (k)
p can be

computed by finite difference with respect to changes in p(k).
For illustration, Figure 3 shows Jp, computed in the 2D image
domain of z, obtained from a digital phantom (described in
Section V-A) using 6 frames. When solving equation (35), since
the image x is initially unknown, J (0)

p is initialized to zero and
updated each iteration.

V. RESULTS AND IMPLEMENTATION

A. 3D Reconstruction of Digital Phantom

In this section, 3D multi-chromophore reconstruction is
demonstrated using the digital phantom shown in Figure 4. To
model different chromophores, the phantom contains inclusions
consisting of oxy-hemoglobin (HbO2) and deoxy-hemoglobin
(HHb). The phantom’s geometry is intended to be suggestive
of a tumor, with a network of arteries and veins. Two spheres
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Algorithm 3: Alternate Implementation of Image Reconstruction With Motion Tracking.

Input: y = (y1, . . . ,ynf) ∈ Rnfnm

Output: x ∈ Rnvnµ , p ∈ Rnfnp

1: procedure RECONSTRUCTIONANDTRACKING(y)
2: z(0) ← 0, x(0) ← 0, p(0) ← 0 � Initialize z, x and p

3: ξ ←
[
I0 ‖ · ‖2 ‖ · ‖2,1 ‖ · ‖1

]
4: for k = 0 . . . kmax − 1 do

5:

⎡
⎢⎣ z(k+1)

x(k+1)

Δp(k+1)

⎤
⎥⎦← argmin

(z,x,Δp)∈Ck

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ξ

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
−1 G

(k)
p J

(k)
p

F 0 0

D 0 0

1 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ z

x

Δp

⎤
⎥⎦−
⎡
⎢⎢⎢⎣
0

y

0

0

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ � Solve Eq. (35)

6: p(k+1) ← p(k) +Δp(k+1) � Update trajectory
7: end for
8: end procedure

Fig. 5. 3D reconstruction of digital phantom of Figure 4.

and two links (ring shapes) of each chromophore are arranged
symmetrically, as shown. The spheres have diameter 2 mm and
are centered at depth 15 mm. The links are rotated ±45◦ about
the z-axis, have a 2 mm ring-diameter, a major-axis length of
18 mm, and are centered at depth 15 mm.

Acquisition was modeled for a 2D OA probe with linear-array
transducer. The illumination ϕ was pre-computed by assuming
two rectangular optical apertures adjacent to the probe, with
an effective optical attenuation for tissue of μeff = 1.2 cm−1
at each wavelength. As shown in Figure 4, the probe follows
a curved trajectory to acquire frames. Alternating 757 nm and
1064 nm optical pulses were modeled using a non-uniform pulse
sequence, which involved a shorter delay after the first pulse than
the second pulse. This type of sequence is used in conventional
2D image formation because motion artifacts are minimized
by rapid acquisition of successive wavelengths, and the pulse
repetition rate is limited by safety. Thus, our model includes
frame positions that depend on probe trajectory as well as pulse
timing.

The phantom was simulated with a 3D volume of 256×
256× 128 voxels for each chromophore, with grid spacing
0.23 mm/voxel. Transducer elements were modeled using a
line-aperture for fa with 4 mm elevational width, cosine di-
rectionality α, and ideal electro-mechanical response β, per
equation (5). A dataset of acoustic signals with added white
noise was generated for 14 OA frames, as positioned in Figure 4.

For reconstruction, the minimization-based approach of equa-
tion (32) was used. The simulated dataset, along with probe po-
sition and orientation, served as input. The multi-chromophore
reconstructed volume X = [x1,x2] consisted of (128× 128×
64)× 2 voxels, with grid spacing 0.3 mm/voxel, which is
different from the simulated grid. A volume rendering of the
reconstruction is shown in Figure 5, which displays x2 − x1 in

a red/green palette to demonstrate chromophore reconstruction.
Performance is considered in the next section.

B. Reconstruction and Motion Tracking Using Digital
Phantom

To examine our approach for reconstruction and motion track-
ing, the multi-chromophore digital phantom of Section V-A was
used. In the simulation, the OA probe was moved at constant
velocity of 15 mm/s along its elevational axis, which was aligned
with the y-coordinate of the phantom. Illumination alternated
between 757 nm and 1064 nm wavelengths. A non-uniform
pulse sequence was used with a 50 ms delay after the 757 nm
wavelength and a 150 ms delay after the 1064 nm wavelength.
A total of 14 frames were acquired at an average frame rate of
10 Hz.

Reconstruction was performed using Algorithm 3. The recon-
structed volume had (64× 64× 64)× 2 voxels, with grid spac-
ing 0.6 mm/voxel. The variables x(k) and p(k) were stored after
each outer iteration k. An initial velocity estimate of 25 mm/s
was specified. There were 10 outer iterations performed, and
each used 80 inner iterations. Reconstruction was implemented
in Matlab using the TFOCS [69] solver. The system matrices F
andGwere computed by custom GPU functions [28] running on
a GeForce GTX Titan with 3072 cores and 24 GB RAM. Total
processing time was 1090 seconds. The results are shown in
Figure 6, which illustrates the evolution ofx(k) after k iterations.
As p(k) becomes more accurate, the reconstructed 3D image
improves. In the Supplemental Materials, Figure S-1 displays
cross-sections of the volume as the reconstruction converges.
The convergence of the normalized error of x(k) and p(k),
relative to ground truth, is plotted in Figure S-2. Figure S-3
illustrates the evolution of the each frame’s y-coordinate during
the reconstruction.

C. Reconstruction From Clinical Data

An OA dataset of a fibroadenoma (a benign breast lesion)
was acquired during a clinical feasibility study involving an
investigational Imagio breast imaging system [3]. Using this
dataset, reconstruction with the proposed technique was com-
pared to 2D back-projection. The resulting images are shown
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Fig. 6. 3D reconstruction while solving elevational probe motion using Algorithm 3. The reconstructed volume x(k) has 64× 64× 64 voxels for each
chromophore, where k represents the outer iteration count. (a) The x(1) reconstruction, generated after 1st outer iteration using initial position estimate p(0). The
(b) x(3) reconstruction, (c) x(5) reconstruction, and (d) x(10) reconstruction. (e) Reconstruction with a single outer iteration when probe position p is initially
set to ground truth p�. (f) The ground truth x� used to simulate measured acoustic waves, which has a denser grid geometry of 128× 128× 128 voxels. The
y-coordinate position error for (a)-(d) is shown in Figure S-3.

in Figure 7. Mathematical optimization was performed using
Algorithm 1. The system matrix H was decomposed into F
and G as described in equation (24). An outer iteration count of
nmax = 1 was specified, using elevational velocity of 1.2 mm/s.
40 frames at 757 nm and 1064 nm wavelengths were processed.
The acquisition rate was 10 frames per second, corresponding
to a swept aperture of 4 mm. The minimization was solved
using TFOCS [69] with 400 inner iterations for F and G.
Total variation and sparse L1 regularization were used for ϑ(x).
The reconstructed volume used size (256× 256× 128)× 2,
with grid spacing 0.15 mm/voxel, corresponding to dimensions
of 38 mm× 38 mm× 19 mm, which extends elevationally be-
yond the 4 mm acquired zone. In addition to reconstruction
of individual 757 nm and 1064 nm wavelengths, in Figure 7,
statistical color mapping [4], [70] was used to display regions
of high and low relative blood oxygen saturation, overlayed
on conventional ultrasound. Using the optimization-based tech-
nique, the capsular vessels surrounding the lesion reconstruct
with significantly reduced artifact and higher contrast compared
to the backprojection-based approach. The lesion corresponds
to the ∼1 cm diameter dark region centered in the grayscale
ultrasound map (as seen in Figure 7a, Figure 7d and Figure
8). A 3D isocontour plot of the reconstructed chromophores is
shown in Figure 8.

D. Reconstruction Using Biologically-Equivalent Phantom

Using the proposed techniques, reconstruction was performed
on a biologically-equivalent phantom [4] containing vessels
filled with oxygenated and deoxygenated blood. Acoustic mea-
surements were processed with mathematical optimization using
Algorithm 1, where H is decomposed into F and G using
equation (24). This was compared with a previous approach [4]
involving 2D backprojection. The contrast-to-background ratio
(CBR) was evaluated as function of depth for 757 nm and
1064 nm optical wavelengths, as shown in Figure 9. In the
near- and mid-field, CBR improved by a factor of ∼20 for 3D
mathematical optimization compared to 2D backprojection. The
maximum penetration depth was defined by CBR reaching a
threshold of 1.5, which occurred at ∼43 mm for both methods,
at which point the optimization based method filtered out deep
vessels that faded into the background. Experimental details and
additional results are presented in the Supplemental Materials
(Figures S-4 to S-8).

E. Varying of Frame Count and Transducer Geometry

We examined the ability to suppress out-of-plane acoustic
interference using the digital phantom shown in Figure 10.
Two spherical absorbers are arranged such that one sphere
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Fig. 7. Opto-acoustic images of a benign breast lesion. Images are generated from OA measurements obtained during a clinical feasibility study [3]. Reconstruction
involved (a)–(c) mathematical optimization with Algorithm 1 and (d)–(f) formula-based backprojection. Capsular vessels that surround the lesion are visible using
OA. In (a) and (d), colorized OA data is overlayed on conventional grayscale ultrasound to indicate regions of HbO2 (green) and HHb (red). The 757 nm wavelength
for (b) and (e) is absorbed preferentially by HHb. The 1064 nm wavelength for (c) and (f) is absorbed preferentially by HbO2. Image dimensions are 38× 19 mm.

Fig. 8. Reconstructed 3D volume of benign lesion using the proposed tech-
nique. Oxygenated (green) and deoxygenated (red) hemoglobin are displayed
using isocontours of the 3D chromophore difference map xHHb − xHbO2 . A 2D
grayscale ultrasound image is shown in the plane y = 0 to identify the lesion, a
central dark region from z =10 mm to 15 mm depth.

causes interference (for a 2D imaging slice) when the probe
is positioned over the other. Simulated datasets were generated
with frame counts of 1, 3, and 15 frames, using two different
elevational transducer widths: 0 mm (ideal) and 4 mm (wide).
For the datasets with multiple frames, interframe spacings of
10 mm and 1.4 mm were used over a swept aperture of 20 mm.
Next, 3D volumes were reconstructed from each dataset using
a system matrix that modeled a matching or non-matching
transducer width (3 cases). Two methods for reconstruction were
compared: i) performing minimization using Equation (27); and,
ii) performing backprojection based on the operator adjoint of
Equation (15). Peak-signal-to-noise ratio (PSNR) was analyzed.
The results are summarized in Table II. As shown, the PSNR
improved with mathematical optimization, with higher frame
counts, and with matching transducer geometries. Additional
details and results are presented in the Supplemental Materials
(Figures S-9 to S-15).

Fig. 9. Contrast-to-background ratio (CBR) of oxygenated and deoxy-
genated vessels in biologically-equivalent phantom. Results for the proposed
optimization-based technique (top row) and backprojection-based technique
(bottom row) are plotted for optical wavelengths of 757 nm (left column) and
1064 nm (right column). The dotted line (CBR = 1.5) indicates the threshold
to determine maximum penetration depth.

VI. DISCUSSION

In Section V-A, we demonstrated multi-wavelength recon-
struction using frames acquired as the probe followed a curved
trajectory. This illustrates that the model described in Section III
was able to reconstruct a phantom consisting of multiple chro-
mophores.

Due to the trajectory’s radius of curvature, there was different
effective spacing between frames at one side of phantom com-
pared to the other, which can be seen in Figure 4. Visually,
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Fig. 10. 3D volume with spherical absorbers. A linear array (blue line) acquires (a) 1 frame, (b) 3 frames, and (c) 15 frames. The imaging plane (light blue) is
shown for each frame.

TABLE II
SUMMARY OF PSNR FOR 3D RECONSTRUCTED VOLUMES

this did not lead to degradation in the reconstruction shown
in Figure 5. However, if the spacing between frames (or cur-
vature) were significantly increased, this would likely lead to
degradation of the reconstruction, as side-lobe and grating-lobe
artifact may result. Further examination of this phenomenon is
the subject of future work.

In general, the optimal grid size can be influenced by the
probe velocity (i.e. the spacing between frames). Performance
may depend on the spatial frequency content of the image being
reconstructed, with lower resolution images permitting a greater
spacing. In this work, grid size was specified independent of
probe motion, with consideration for spacing between linear
array elements. The regularization parameters in equation (28),
which control image sparsity and smoothness, were empirically
tuned for performance in each experiment presented in Sec-
tion V. Optimal values depend on noise level, frame spacing
and other a-priori assumptions about the image content. While
adjustment of these parameters may impact PSNR, a full anal-
ysis of how reconstruction error scales with the regularization
parameters is beyond the scope of this paper. In compressive
sensing, mathematical optimization is used to overcome the-
oretical limits of the number of sampled measurements [71].
Analyzing how this applies to frame spacing is a subject for
future work.

When using only one frame of linear array data, 3D recon-
struction is underdetermined due to rotational symmetry about
the array’s axis. While sufficient for 2D imaging, this is why
our approach reconstructs 3D images using multiple frames.
Interestingly, analysis conducted in Section C of the Supplemen-
tal Materials suggests that modeling transducer directivity can

improve localization of out-of-plane sources in the single-frame
case, which is a subject for future work.

While our approach focuses on linear arrays, the acoustic
response matrix H0 in equation (14) can easily be adapted
to describe any probe geometry (e.g. 2D or concave arrays),
although the computational simplifications of Section III-C
may not apply. Compared to linear arrays, matrix arrays can
provide more accurate reconstruction by localizing the arrival
directions from out-of-plane sources. With a matrix array, a
3D volume of vascular patterns can be accurately reconstructed
from a single frame acquisition, which is ideal for performing
correlation-based motion tracking [41]. As well, concave arrays
help reduce geometric distortion, preventing suppression of
directional waves by orienting the transducer elements normal
to the array’s curvature.

Deformation and internal tissue motion between frames can
impact performance of the proposed approach. An extension to
include first-order tissue deformation can be implemented by
permitting non-rigid affine transformations. This would involve
defining configuration pj with the vectorized elements of Aj ∈
R3×3, as modeled with system matrix Hp, and solved using
equation (33). In this case, separability ofHp is not maintained,
but would be approximate for small deformations.

In Section V-D, we analyzed penetration depth by measuring
CNR using a biologically equivalent phantom. This is largely
independent of modeled light distributionΦ because the contrast
depends on actual light reaching a target relative to its local back-
ground (assuming negligible fluence variation in small regions).
Nevertheless, suppression of background artifact is dependent
on the selection of regularization parameters. While improper
modeling of light and other parameters may reduce quantitative
accuracy of chromophore measurements, characterization of this
was beyond the scope of our work. Instead, we displayed molec-
ular contrast using a non-quantitative statistical color mapping
approach [4] that relies on relative image intensities rather than
quantitative measurements.

Several related motion detection and reconstruction ap-
proaches have been studied in ultrasound imaging, where mo-
tion is determined by sensors, or by computing correlations
of ultrasonic speckle [32]–[40]. For several reasons, including
differences in elevational resolution and speckle characteristics,
these ultrasound-based approaches are not generally applicable
to OA. Nevertheless, in OA, correlation-based approaches can
readily track lateral (in-plane) motion along the linear array’s
axis; however, elevational (out-of-plane) motion, perpendicular
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to the array, is more difficult to estimate, which is an advantage of
our approach. Since image reconstruction and motion tracking
are combined, in our approach variables representing probe
motion are solved simultaneously with variables that represent
image voxels. In this formulation, we find that out-of-plane OA
sources can actually benefit elevational motion estimation by
acting as targets to “lock onto”. The results of Section V-B
demonstrate how our approach can solve elevational motion in
multi-frame acquistion, without using external sensors. Results
of Section V-C suggest the proposed technique could potentially
lead to significant image quality improvements in systems using
linear-array OA probes.

The implementation in Section V-B used constant elevational
probe velocity to demonstrate our approach. While our method
in Section IV-C supports general probe motion, confinement to
a constant velocity is faster computationally and the solution
converges robustly by filtering the trajectory, approximating it
for small motion segments. Future work involves demonstrating
the solution for a general trajectory, and performing continual
tracking using segments of piecewise constant velocity.

Additional constraints C to improve motion tracking are also
possible. For example, the trajectory p can be constrained to en-
sure probe motion is smooth and continuous, which is achievable
using the constraint ‖Q(p+Δp)‖ ≤ σ, where matrix Q com-
putes finite-difference velocity (or acceleration) of frames in p,
andσ is a constant. Techniques involving 1 trend fitting [72] can
also be used to implement smoothness of the trajectory. More-
over, for sequential convex optimization, constraining motion
to a region where the problem is likely to be convex [42]–[45],
[59], [60] can be achieved by limitingp(k) +Δp(k+1) to a range
of valid values using box constraints. Additionally, constraints
may specify boundary conditions for motion at the initial or
final frames of p using first or second motion derivatives. To
perform “sensor-fusion,” constraints can be used to bind the
probe trajectory with external sensor measurements. For exam-
ple, if position sensors measure a probe configuration p̃, which
may have limited accuracy, then minimizing equation (33) with
the constraint ‖p− p̃‖ ≤ σ will limit deviation from sensor
measurements, thereby combining input from motion sensors
into our technique. Future work involves comparing computed
trajectories to that obtained by sensors.

VII. CONCLUSION

This article presented an approach to simultaneously recon-
struct 3D images and solve motion for an OA probe using
sequential convex optimization. The model developed in Sec-
tion III was used to implement the 3D reconstruction algorithms
described in Section IV. We demonstrated that 3D volumes
with multiple chromophores could be reconstructed from 2D
OA probe measurements obtained at multiple optical wave-
lengths. The ability to determine elevational probe velocity was
demonstrated in Section V-B using a 3D digital phantom. We
demonstrated improvement in CBR and PSNR by analyzing
reconstruction with phantoms (Supplemental Materials). Recon-
struction of data from a clinical study (Section V-C) suggested
the proposed technique potentially enables significant image
quality improvements in clinical settings. Future work includes
additional tests involving more complex motion trajectories;

determining the effect of different probe motion on reconstructed
image quality to further characterize the algorithm; and, imple-
mentation for a real-time imaging system.

APPENDIX

The accelerated proximal gradient method [48], [49], [53],
[55] solves a convex optimization problem of the form

minimize
x

f(x) + g(x) (A.1)

where g is a smooth convex function (e.g. the 2 norm), and f is a
non-smooth convex function (e.g. the 1 norm). This can imple-
ment an image reconstruction problem similar to equation (9).
The solution of (A.1) is iteratively obtained as

xk+1 := proxρf
(
wk − ρ∇g(wk)

)
wk+1 := xk+1 + βk(x

k+1 − xk)
(A.2)

where ρ is a scaling parameter, βk = k
k+3 , and k is the iteration

count. The initial values x0 and w0 are set to zero. Since
g is smooth, its gradient ∇g can be computed analytically.
For the non-smooth function, the proximal operator of f is
defined as

proxτf (x) = argmin
u

(
f(u) +

1

2τ
‖u− x‖22

)
(A.3)

where τ is a scaling constant. Many non-smooth functions have
a proximal operator proxf that is efficient to compute. However,
when a function f is composed with linear operator G, the
resulting function f ◦G does not necessarily have a similarly
efficient proximal operator.

To deal with such a situation, the ADMM algorithm [52], [55]
solves a convex optimization problem of the form

minimize
x,z

g(z) + ϑ(x)

subject to z = Gx (A.4)

Here, the variables x and z are both minimized. The solution to
(A.4) is achieved by iteratively computing

zk+1 := argmin
z

(
g(z) +

ρ

2
‖z−Gxk − uk‖22

)
xk+1 := argmin

x

(
ϑ(x) +

ρ

2
‖Gx− zk+1 + uk‖22

)
uk+1 := uk +Gxk+1 − zk+1 (A.5)

where u is a dual-update variable, and ρ is a scaling parameter.
In Section IV, equation (A.5) is used to derive an algorithm for
3D reconstruction.

The TFOCS solver [57], [69] can handle a convex optimiza-
tion problem in block composite form (BCF), represented as

minimize
v

ξ0(v) +

m∑
i=1

ξi(Liv − ci) (A.6)

where

L =

⎡
⎢⎢⎣
L1

...
Lm

⎤
⎥⎥⎦ , c =

⎡
⎢⎢⎣
c1
...

cm

⎤
⎥⎥⎦

Here, L is a block matrix containing m linear operator matrices
Li, and ci is an offset vector. The smooth function ξ0 is applied
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to the composite vector v, and the functions ξi, i = 1 . . .m
are applied to the domain Liv − ci. For convenience, in (A.6)
the summation

∑m
i=1 ξi(Liv − ci) can be written ξ(Lv − c),

where ξ = [ξ1, . . . , ξm] is a function map. The TFOCS solver,
rather than solving equation (A.6) directly, minimizes a dual
optimization problem of the form

minimize
u

ξ∗0

(
m∑
i=1

LT
i ui

)
+

m∑
i=1

ξ∗i (−ui + ci) (A.7)

where ξ∗0(v) is the dual conjugate of ξ0(v) and ξ∗i (u) is the
dual conjugate of ξi(v) [57], [69]. This computation is more
efficient because the linear operator matricesLi are moved from
the non-smooth functions ξi in (A.6) to the smooth function
ξ∗0 in (A.7). In this case, solving (A.7) with (A.2) requires the
smooth-function gradient∇ξ∗0 = proxξ0 and the dual-proximal
operator proxξ∗ , which can be obtained from proxξ using a
mathematical identity [48], [57]. Accordingly, the solution of
(A.7) is computed iteratively as

vk+1 := proxτξ0(v
k−αk + τLTwk)

uk+1 := c− proxσξ∗(c−wk + σLvk+1)

wk+1 := uk+1 + βk(u
k+1 − uk) (A.8)

where βk = k
k+3 , αk = k − a�ka�, with a ∈ Z+, and σ and τ

are scaling parameters.
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