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Abstract—Macro X-ray Fluorescence (MA-XRF) scanning is
an increasingly widely used technique for analytical imaging of
paintings and other artworks. The datasets acquired must be pro-
cessed to produce maps showing the distribution of the chemical
elements that are present in the painting. Existing approaches
require varying degrees of expert user intervention, in particular
to select a list of target elements against which to fit the data. In
this paper, we propose a novel approach that can automatically
extract and identify chemical elements and their distributions from
MA-XRF datasets. The proposed approach consists of three parts:
1) pre-processing steps, 2) pulse detection and model order selection
based on Finite Rate of Innovation theory, and 3) chemical ele-
ment estimation based on Cramér-Rao bounding techniques. The
performance of our approach is assessed using MA-XRF datasets
acquired from paintings in the collection of the National Gallery,
London. The results presented show the ability of our approach
to detect elements with weak X-ray fluorescence intensity and
from noisy XRF spectra, to separate overlapping elemental signals
and, excitingly, to aid visualisation of hidden underdrawing in a
masterpiece by Leonardo da Vinci.

Index Terms—Macro X-ray Fluorescence scanning, XRF
deconvolution, finite rate of innovation, historical paintings,
estimation and detection.

I. INTRODUCTION

EASEL painting has been one of the most influential and
important forms of art since the 13th century. To avoid inva-

sive procedures such as sample removal, various non-destructive
analytical imaging techniques are increasingly being used to
investigate paintings and obtain valuable information about
their composition, creation, history, and to inform their future
preservation. For this reason, there is a growing interest in
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Fig. 1. Schematic of the acquisition of an MA-XRF dataset from an easel
painting.

developing new image and signal processing methods to process
the large and often multimodal datasets produced using these
new analytical imaging methods (see for example [2]–[7]).

Macro X-ray fluorescence (MA-XRF) scanning is a technique
that can be used for non-invasive elemental analysis of paintings.
Since different pigments used in the painting may contain dif-
ferent elements, producing the distribution maps of the elements
can give further information about an artist’s palette, improve
the understanding of their painting techniques, for example by
revealing how paint layers have been built up, and even reveal
hidden features of the painting. Fig. 1 shows the schematic
working of an MA-XRF scanning device. The X-ray source
illuminates sub-millimetre spots of a painting with a primary
X-ray beam, leading to electronic transitions and exciting the
emission of characteristic X-ray photons from the atoms of
chemical elements that are present in the painting. The energy
of the released photons (Ec) is equal to the energy difference
between the two shells where the electronic transition occurs,
which is characteristic of the atom of a chemical element. The
detector, with its amplifier and multi-channel analyser, then
collects and counts the released X-ray photons with respect to
their energy levels, resulting in a pixel of data in the form of a
spectrum. Due to the effect of the detector, the spectral response
for each characteristic element X-ray (also called an element
line) is in the form of a narrow Gaussian-shaped peak (covering
a range of energies) [8]–[10], hereafter called a pulse. As a result,
the observed XRF spectrum can be regarded as a combination of
several Gaussian pulses, as shown in Fig. 2. This broadened pulse
shape leads to a problem that the pulses of nearby characteristic
X-rays overlap. The task of separating the overlapping pulses
and identifying the elements present and their net intensities
from the XRF spectrum is called XRF spectrum deconvolution.
Since a painting is created using complex pigment mixtures and
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Fig. 2. The observed XRF spectrum of a single pixel of the MA-XRF datacube.
The painting was scanned with a Bruker M6 JETSTREAM instrument.

layers, many elements are excited and detected at a single spot,
making it challenging to deconvolve the spectrum.

Many approaches have been proposed for XRF spectrum de-
convolution, based on the use of linear or nonlinear regressions
or Bayesian methods to fit the XRF spectrum with Gaussian
functions [8], of which those most relevant to MA-XRF scanning
are described here. Van Espen et al. [11]–[13] created ‘AXIL’
(Analysis of X-ray spectra by Iterative least Squares), which fits
the element pulses with Gaussian functions and the background
with a polynomial using iterative least-squares. Developing from
this, Solé et al. [14] created an open source software named
‘PyMca’, which similarly fits the XRF spectrum with Gaussian
functions using non-linear least-squares but also takes specific
characteristic lines as well as layered samples into consider-
ation. Alfeld and Janssens [15] developed ‘Datamuncher’ in
Interactive Data Language (IDL) for fast processing of the
huge datasets typically produced with MA-XRF scanning and to
produce artefact-free elemental distribution maps (from one or
more datasets), by making use of the fitting with AXIL or PyMca
and Dynamic Analysis (DA) [16], [17]. These tools were used
by the original developers of the now commercially available
M6 JETSTREAM MA-XRF scanning instrument produced by
Bruker Corporation, the instrument most widely adopted for
use by the heritage sector [18]. Conover proposed a method
that uses non-linear regression to fit the XRF spectrum with
Gaussian functions centred at the element characteristic energies
[19]. However, this method relies on XRF spectra with high
signal-to-noise ratios which require long acquisition time. Most
instrument producers also provide proprietary deconvolution
and quantification tools in the software for their instruments,
including Bruker Corporation for their M6 JETSTREAM, al-
though these packages have not necessarily been developed for
MA-XRF scanning specifically.

Fitting XRF spectra with Gaussian functions requires knowl-
edge of the number, widths and locations of the Gaussian
functions. The widths can be obtained by measurement [19] or
existing models [11], [15]. However, the number and locations of
the Gaussian functions are unknown parameters related to the
chemical elements present in the painting, where the number
should be the total number of characteristic X-rays for these
elements and the locations should be the energies of the charac-
teristic X-rays. As a result, all existing approaches require user
input to determine which element are likely to be present in
the dataset. These approaches then fit the spectra based on the
specified elements and indicate their distributions in the painting.

However, the resulting element distribution maps from a given
dataset can sometimes be completely different if the precise
selection of elements changes (e.g. elements missed or added in
error), making the results inconsistent. As a result, the selection
of elements by the user has a significant effect on the accuracy
of the final results.

In this paper, we propose a novel approach to automatically
produce the element distribution maps from MA-XRF datasets.
Our method does not require users to build a complex model or to
input any predictions of elements present in the painting, making
it much easier and more friendly to use. The proposed approach
has been deliberately designed to assist in the detection of very
weak element signals and can be divided into the following
parts. Firstly, some pre-processing steps are implemented to
estimate the shapes of the characteristic X-ray pulses in the
XRF spectra. Then, the elemental pulses in the XRF spectra
are localised and detected using variations of Finite Rate of
Innovation (FRI) theory [20], [21] and Prony’s method [22].
In this context we also propose an approach to estimate the
number of pulses in a spectrum. After that, the detected pulses
are assigned to the appropriate characteristic element X-rays to
identify which chemical elements are present in each pixel of
the painting. Finally, two distribution maps, a confidence map
and a quantity map, are produced for each line group of each
detected element. The assignment of the pulses to the elements
and the confidence maps are obtained by leveraging Cramér-Rao
bounding techniques [23]. The performance of our proposed
approach is assessed using MA-XRF datasets acquired from
paintings in the collection of the National Gallery, London, and
the elemental maps produced by our algorithm are compared
with those produced using the Bruker M6 software. The results
demonstrate the ability of our method to automatically handle
datasets with overlapping pulses, even when the datasets are
noisy as is commonly the case with MA-XRF scanning of easel
paintings. More importantly, our algorithm is able to detect weak
signals in such datasets and was thus able to reveal the hidden
underdrawings in three regions of the painting ‘The Virgin of
the Rocks’ by Leonardo da Vinci without any additional user
intervention.

II. BACKGROUND

In this section, we first review some important properties of
XRF spectra and MA-XRF datasets acquired from easel paint-
ings. In this way we can also highlight challenges encountered
when analysing this type of data.

A. Characteristic X-rays

Each chemical element has a unique atomic structure and
atomic energy levels, and thus for each element, transitions be-
tween different electronic shells (or sub-shells) release photons
with a unique set of energies, called characteristic X-rays [24].
The characteristic X-rays of an element are generated in series
(e.g.K-series,L-series,M -series, etc.) and in this paper we con-
sider 11 dominant characteristic X-rays, including Kα1, Kα2,
Kβ1, Kβ2, Ll, Lα1, Lα2, Lβ1, Lβ2, Lγ1 and Mα1, and a total of
34 elements potentially present in spectra acquired from easel
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Fig. 3. (a) Representative MA-XRF datacube of an easel painting, with energy dimensions shown for a scan with a Bruker M6 JETSTREAM instrument. (b)
The block diagram of our proposed approach for deconvolving the MA-XRF datacube of an easel painting.

paintings and detectable using the instrumentation described
below [18]. Within the 11 characteristic X-rays, a number of
the electronic transitions result in X-rays very close in energy
and these are often considered as a single group when analysing
the spectra. For example,Kα1 andKα2 lines are often combined
as Kα line group. Indeed for certain elements these X-rays are
too close in energy to be separated using energy-dispersive XRF
systems. Moreover, combining these X-rays can lead to a more
insightful visualisation result when showing their distribution
maps. This fusion results in 7 emission line groups, which are
Kα, Kβ , Ll, Lα, Lβ , Lγ and Mα. Table I in Appendix C shows
the details of the relevant characteristic X-rays of the 34 chemical
elements considered.

B. MA-XRF Datasets

All the MA-XRF datasets included in this paper were ac-
quired using the Bruker M6 JETSTREAM equipment at the
National Gallery, London, with continuous scanning mode and
the following settings: a 30 W rhodium (Rh) anode X-ray tube
with polycapillary optics operated at 50 kV and 600 μA and
a 60 mm2 silicon (Si) drift detector with a threshold of 275
kcps. The resulting MA-XRF dataset from an easel painting is a
three-dimensional datacube, with two spatial and one energy
dimensions, as shown in Fig. 3(a). The range of the energy
dimension is from 0 to 40 kilo-electron-volts (keV) and is
divided into 4096 energy channels.

The radiation of each characteristic X-ray has a Lorentz
distribution in the spectrum [9]. Moreover, due to the photon-
to-charge conversion process in the MA-XRF detector, each
characteristic X-ray will be convolved with a Gaussian-shaped
response function [8]–[10]. Since the width of this response
function is usually much larger than that of the Lorentz dis-
tribution, the shape of each characteristic X-ray in the spectrum
can be modelled with a Gaussian function [9]. Therefore, the
spectral response for each characteristic element X-ray takes
the form of a Gaussian pulse covering a range of energies, as
shown in Fig. 2(a), and the collected XRF spectrum of a pixel
region can be modelled as a combination of several Gaussian
pulses:

y[n] =

K∑
k=1

akδ(n− tk)⊗ ϕ(n;σk), n = 0, 1, ..., 4095, (1)

where δ(.) represents the element lines, ⊗ is the convolution
operator, n is the channel number, K is the total number of

element lines in the spectrum, ak and tk are the amplitude and
location of the k-th element line, ϕ(n;σk) is the Gaussian pulse
shape with variance of σ2 given by:

ϕ(n;σk) = exp

(
− n2

2σ2
k

)
. (2)

As the MA-XRF dataset is acquired pixel-wise, acquisition (or
dwell) times per pixel tend to be short, often resulting in the
XRF spectrum at each pixel having a poor signal-to-noise ratio,
for example see Fig. 2(b). The amplitude noise in the XRF
spectrum is due to the statistical nature of the counting process,
in which random events (the arrival of X-ray photons at the
detector) are observed during a finite time interval. For such a
process, the probability of observing N counts when the ‘true’
number of counts is N0 is given by the Poisson distribution:
P (N ;N0) =

N0
N

N ! e
−N0 . The number of counts in each channel

of an X-ray spectrum as well as the sum over a number of
channels obey this Poisson distribution. The statistical nature
of the counting process (Poisson statistics or counting statistics)
causes the typical channel to channel fluctuations observed in
X-ray spectra [8].

C. MA-XRF Data Analysis

There are three major steps to a typical XRF analysis, after the
system has been setup and the spectrum (or spectra) measured:
(i) spectrum pre-processing to extract the characteristic X-rays
from the detector response and spectral artefacts, as well as to re-
late channel index to X-ray energy level if this was not performed
prior to acquisition; (ii) determination of the elements present
and deconvolution of the characteristic X-rays to determine the
analytically important net peak areas; and (iii) a quantification
step in order to relate the net peak areas to the concentrations of
the elements present, taking account of attenuation and matrix
effects, normally involving some form of fundamental parameter
calculations based on solving the Sherman equation [25]. With
scanning MA-XRF systems creation of element distribution
maps forms the final process. The algorithms used and the degree
of operator intervention in these various steps depends on the
software package used but in all standard approaches the user
must specify the elements present.

For comparison with the results obtained using our proposed
approach, each of the datasets acquired was also processed
using the Bruker M6 software and using PyMca. In this study
the method most commonly used in the heritage science field



YAN et al.: WHEN DE PRONY MET LEONARDO: AN AUTOMATIC ALGORITHM FOR CHEMICAL ELEMENT EXTRACTION 911

was adopted using the Bruker M6 software [26]: (i) calibration
using the zero strobe peak and a copper element standard; (ii)
deconvolution of the ‘sum’ spectrum (the average spectrum of
the entire datacube in the pixel domain) in order to determine
which elements are believed to be present using an iterative
quantification algorithm that forward calculates the resulting
spectrum by repeatedly solving the Sherman equation; (iii)
review of the ‘maximum pixel spectrum’ (an artificial spectrum
that consists of the maximum content of every channel indepen-
dent of the pixel) to try and identify any elements present in
high abundance but in very localised areas that may be missed
when fitting the sum spectrum and finally, (iv) based on the
elements selected, distribution maps are created using the ‘fast
deconvolution’ method which is based on a Bayesian fitting of
the data in which every count in every channel is weighted by the
probability that it belongs to one of the user-selected elements.
While PyMca has the potential to give results that are believed to
more accurately represent the various element distributions than
it was possible to obtain directly from the Bruker M6 software
using the method just described, its use requires a far greater
degree of expert user intervention to produce these results.
However, with the increasing adoption of MA-XRF scanning
in the heritage science field, fewer and fewer of the users of this
equipment within this field have the level of expertise required to
use the PyMca software while the use of the Bruker M6 software
is ubiquitous. It is for this reason that we chose, in the discussion
that follows, to compare the results obtained using our algorithm
with those obtained from the Bruker M6 software, despite this
being a proprietary software.

D. Challenges in XRF Spectrum Deconvolution With MA-XRF
Datasets Acquired From Easel Paintings

The Gaussian-shaped response of the XRF detector leads to
the overlap of pulses associated with characteristic X-rays with
similar energy levels. The fact that many pulses of different
characteristic X-rays overlap makes it difficult to separate the
response of different elements in the XRF spectrum and to map
their independent distributions. Moreover:

1) The amplitudes (or intensities) of characteristic X-ray
pulses vary greatly from a few photon counts up to hun-
dreds due to the instrument settings and detector sensitiv-
ity. When a pulse with weak amplitude overlaps with a
more intense pulse, it becomes difficult to detect the weak
signal in the spectrum.

2) The width of the characteristic X-ray pulses increases
with the photon energy [19], [27]. As the pulse shape
changes across the spectrum, this imposes an extra dif-
ficulty in XRF deconvolution. The relationship between
the full width at half maximum (FWHM) of a pulse and
its characteristic energy E in electron-volts (eV) is given
by [27]:

FWHM ∝ (C2E +N2
)1/2

, (3)

where C is the uncertainty in the formation of charge
carriers and N is the electronic noise.

3) XRF spectra from individual pixels within an MA-XRF
dataset having a poor signal-to-noise ratio, as shown in
Fig. 2(b), making it challenging to detect pulses with
small amplitudes. Moreover, the signals from elements
associated with materials deep in the paint layer structure
are partially attenuated by elements in the layers above
and therefore a reduced number of photons produced by
elements deep within the painting structure is detected.

4) The relative amplitudes of the set of characteristic X-rays
for a given element may also change depending on where
atoms of this element are within the layer structures of
the scanned painting due to secondary effects [9]. For
example, lower energy photons emitted by the atoms of
a given element during ionisation are more likely than
higher energy photons to be absorbed or scattered before
reaching the detector. As a result, the relative amplitudes of
sets of characteristic X-rays for an element in the observed
spectrum may vary according to how deep the element
is in the painting. This means that, unlike their energies
(or pulse locations) which will not change, the relative
amplitudes of the characteristic X-rays for a given element
are variable and therefore the ratios of these amplitudes
are not a reliable parameter for element identification.

III. PROPOSED METHOD

In Fig. 3 we show the block diagram of the proposed automatic
approach for deconvolving the MA-XRF datacubes from easel
paintings. The input is the MA-XRF datacube and the output is
two sets of distribution maps (confidence maps and quantity
maps) for all the chemical elements that are present in the
painting. In what follows we first explain the pre-processing
and calibration steps in Section III-A. Then in Section III-B, we
explain our pulse detection algorithm which is able to retrieve
the locations and amplitudes of the pulses from the XRF spectra
using variations of FRI theory [20], [21] and Prony’s method
[22]. Finally in Section III-C, we show how we identify the
chemical elements present in the painting and how we produce
the corresponding distribution maps based on the retrieved
pulses.

A. Pre-Processing and Calibration

The objective of the pre-processing step is to estimate the
width of the characteristic X-ray pulses in the XRF spectra as
well as relate the channel index of the detector with X-ray energy
levels. To achieve this, the collected MA-XRF datacube is first
averaged in the pixel domain to obtain the average spectrum of
the entire datacube:

yave[n] =
1

I

I∑
i=1

yi[n], n = 0, 1, ..., 4095,

where yi is the spectrum of pixel i and I is the number of pixels
in the datacube. The following pre-processing steps operate on
the average spectrum. Further, a 3-by-3-pixel moving average
filter is applied on the MA-XRF datasets in this paper to help
detect weak elements.
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Fig. 4. Calibration of conversion between energy E and channel H .

1) Reference Pulse Estimation: Firstly, a reference pulse is
required. We normally pick the lowest channel pulse in the aver-
age spectrum to be the reference pulse because it always appears
at the zero-energy level in the spectrum due to incomplete charge
collection caused by detector imperfections [8], which is also
known as the zero strobe peak. However, any pure pulse (a
pulse having no overlap with others) in the average spectrum
can be chosen as the reference pulse. We denote with {yref[n]}
the signal of this pulse. It has been discussed in Section II-B that
the shape of the pulses in XRF spectra can be modelled with a
Gaussian function. Therefore the reference pulse is fitted with
a Gaussian using least-squares fitting to find its variance σ2

ref
and its location tref. Once σref has been estimated, the full width
at half maximum (FWHM) of the reference pulse is given by
FWHMref = 2

√
2 ln 2σref.

2) Energy-Channel Calibration: For each pixel of data, the
multi-channel analyser of the MA-XRF device counts the num-
ber of received photons at different energy levels and indexes the
energy levels using channel numbers. It is therefore necessary
to match the channel numbers with the energy levels. This
is achieved by exploiting the fact that the transformation that
describes the mapping is normally linear so only two coefficients
need to be estimated to describe it.

We achieve this by first using the fact that the reference pulse
from the average spectrum is always at zero energy level. Then
the characteristic X-rays of some elements that are often present
with high intensities in easel paintings are identified manually
from the average spectrum for calibration (for example, the X-
ray emission lines of iron Kα, copper Kα, lead Lα and Lβ as
shown in Fig. 4). Linear least-squares regression is applied to fit
the transformation between energy E and energy channels H .
Note that this calibration is necessary regardless of the algorithm
chosen (Bruker M6 software, PyMca, etc.) and is normally done
once with a new device, as long as the scanning settings remain
the same.

3) Background Removal: Because of scattering, photons are
collected at all energy levels leading to a background signal
which becomes significant when the XRF spectra are averaged.
Since the sensitivity of the sensor in the detector varies with
the energy level, the background noise is non-uniform across
channels and has an effect on the shape of the pulses. Therefore
a background removal method (SNIP) proposed in [28] is used
here, which is to iteratively apply the following procedure on
the average spectrum:

y
(�)
back[n] = min

(
y
(�−1)
back [n− d] + y

(�−1)
back [n+ d]

2
, y

(�−1)
back [n]

)
,

Fig. 5. Average spectrum with removal of background.

Fig. 6. The XRF spectrum is divided into overlapping windows with size
L = 300 channels and the overlap between two consecutive windows is L/2.
Red regions are confidence intervals with a size of L/2.

where y
(�)
back[n] represents the estimated background at the �-th

iteration and y
(0)
back[n] = yave[n]. 25 iterations and d as 10 times

the FWHM of the reference pulse are good for the datasets col-
lected with M6 instrument but might differ for other instruments.
An example of an average spectrum with background removal is
shown in Fig. 5. The average spectrum after background removal
is given by ŷave[n] = yave[n]− y

(25)
back [n].

4) Pulse Width Estimation: As discussed in Section II-D, the
FWHM of characteristic X-rays increases with energy following
(3). The FWHM of a characteristic X-ray pulse at energy E can
be calculated based on the given reference pulse in the average
spectrum at energy Eref = 0 with width FWHMref as [29]:

FWHM =
(
2.5μE + FWHM2

ref

)1/2
, (4)

where μ is an added adjustment coefficient.
We estimate the adjustment coefficient μ using nonlinear

least-square fitting. The estimation steps include first selecting
a pure pulse (without any overlap with others) from the average
spectrum after background removal, which is at energy channel
Hpure, corresponding to energy level Epure. The FWHM of the
pure pulse (FWHMpure) can be expressed using (4) and withE =

Epure. Then, since for a Gaussian function FWHM = 2
√
2 ln 2σ,

μ can be retrieved by:

μ̂ = arg min
μ,a

∑
n

∥∥∥∥∥a exp
(
− (n−Hpure)

2

2σ2
pure(μ)

)
− ypure[n]

∥∥∥∥∥
2

2

,

where {ypure[n]} indicates the pure pulse signal. To reduce the
estimation error, μ̂ can be picked by the average of fitting results
based on multiple pure pulses.

B. FRI-Based Pulse Detection

Our proposed approach operates on the MA-XRF dataset
pixel by pixel. We divide the XRF spectrum into overlapping
windows of size L = 300 channels and the overlap between two
consecutive windows is L/2, as shown in Fig. 6. We also have



YAN et al.: WHEN DE PRONY MET LEONARDO: AN AUTOMATIC ALGORITHM FOR CHEMICAL ELEMENT EXTRACTION 913

a confidence interval (red regions in Fig. 6) with size L/2 and
only keep the detected pulses inside it.

After removing the background for the XRF spectrum at each
pixel with SNIP method, our pulse detection algorithm is then
applied on the spectrum within each window. More importantly,
by dividing the spectrum into windows with a relatively small
size, we can assume that the pulse width remains the same within
each window. Therefore, the spectrum can be modelled as a
linear combination of several shifted Gaussian pulses with the
same shape plus a noise term:

ŷj [n] =

Kj∑
k=1

aj,kϕj [n− tj,k] + εj [n], (5)

where n = jL, jL+ 1, ..., jL+ L− 1, ŷj [n] is the XRF spec-
trum in the j-th window of the pixel under consideration after
the background removal, Kj is the number of pulses in the

j-th window; {aj,k}Kjk=1 and {tj,k}Kjk=1 are the amplitudes and
locations of the pulses; ϕj [n] is the Gaussian pulse for the j-th
window and εj [n] is the noise. The FWHM of the Gaussian pulse
for the j-th window (FWHMj) is calculated by (4) with energy
level Ej converted from channel Hj = jL+ L/2, the middle
channel of the j-th window.

Given ŷj [n], the XRF spectrum in (5) is completely specified

by {tj,k}Kjk=1 and {aj,k}Kjk=1. For this reason the XRF spectrum
in each window can be regarded as a signal with finite rate of
innovation (FRI) [20] and the problem of estimating the {tj,k}
and {aj,k} can be solved using FRI theory and a variant of
Prony’s method. We note that the accurate estimation of the
locations {tj,k} is essential because they indicate the presence
of a specific element line in the pixel. Likewise, the amplitudes
{aj,k} are important as they are used for estimating the relative
quantity of an element.

In order to estimate the free parameters in (5), we need
to convert the sum of Kj Gaussian pulses into a sum of Kj

exponentials so that Prony’s method [22] or matrix pencil [30]
can be applied. To this end, we leverage the “Approximate
Strang-Fix” framework introduced in [21] and [31]. Specifically,
we find coefficients {cj,m,n} such that linear combinations of
uniformly shifted versions of the Gaussian pulse approximately
reproduce complex exponentials. Given ϕj(t) = exp (− t2

2σj2
),

we look for {cj,m,n} such that:

∑
n∈Z

cj,m,nϕj(n− t) ≈ eiωmt, (6)

for ωm = ω0 +mλ, m = 0, 1, ...,M − 1, λ = −2ω0

M−1 , where M
is the highest order of exponentials thatϕj(n) can reproduce and
ω0 is an arbitrary constant. We set M = L and ω0 = −0.35π.
Setting M equal to the number of samples is known to improve
the performance of Prony’s method, while ω0 is chosen empiri-
cally. One way to estimate coefficients {cj,m,n} is fitting ϕj(t)
with an E-spline [32] and then computing

cj,m,n =
φ̂j(iωm)eiωmn

âφj (e
−iωm)

,

where φj(t) is the E-spline that best fits the Gaussian ϕj(t),
φ̂j(iωm) is the Fourier transform ofφj(t) at iωm and âφ(eiωm) is
the z-transform of aφj [l] = 〈φj(t− l), φj(t)〉 evaluated at z =
eiωm (see [21]) and is given by:

âφj (e
iωm) =

∑
l∈Z

aφj [l]e
−iωml.

Then we can multiply ŷj [n] with cj,m,n to obtain:

sj [m] =
∑
n

cj,m,nŷj [n]

=

Kj∑
k=1

aj,k
∑
n

cj,m,nϕj [n− tj,k]. (7)

Replacing (6) in (7) yields:

sj [m] ≈
Kj∑
k=1

aj,ke
iωmtj,k =

Kj∑
k=1

aj,ke
iω0tj,k(eiλtj,k)m

=

Kj∑
k=1

bkuk
m, (8)

where bk = aj,ke
iω0tj,k and uk = eiλtj,k . Therefore, the mea-

surements ŷj [n] are converted to a signal in the form of a sum of

exponentials. The locations {tj,k}Kjk=1 of the Gaussian pulses in
the j-th window can be retrieved from the moments sj [m] with
Prony’s method [22] or matrix pencil [21], [30]. An overview of
the basic Prony’s method can be found in Appendix A. Given
the retrieved {tj,k}Kjk=1, we estimate the amplitude {aj,k}Kjk=1

using least-squares fitting on (5).
Matrix pencil method requires the number of pulses Kj to

be known, but our goal is to detect and localise an unknown
number of potential pulses within each window. Leveraging the
fact that matrix pencil is fast, we propose to solve this model
selection problem by examining the number of pulses Kj from
1 to a maximum number Kmax. For any given Kj , the pulse

locations {tj,k}Kjk=1 and amplitudes {aj,k}Kjk=1 are retrieved by
matrix pencil and least-squares fitting. After that, the spectrum
can be reconstructed and the mean absolute error MAEj,Kj
between the reconstructed spectrum ỹj,Kj [n] and the original
one ŷj [n] is computed. The reason we use MAE here is to make
the large pulses in the spectrum less dominant when computing
reconstruction errors. With Kj increasing from 1 to Kmax,
the MAEj,Kj gradually decreases because the spectrum can be
better approximated. The reconstructed spectra withKj − 1 and
Kj pulses have the relationship:

ỹj,Kj [n] ≈ ỹj,Kj−1[n] + aj,Kjϕj [n− tj,Kj ].

Thus, the MAE difference between Kj − 1 and Kj pulses is:

ΔMAE(Kj−1,Kj) = MAEj,Kj−1 − MAEj,Kj

≈
∑jL+L−1
n=jL |aj,Kjϕj [n− tj,Kj ]|

L
.

If we assume thatKj is the correct pulse number, then the (K̂j +
1)-th pulse starts fitting the background, that is aj,Kj+1 < εj ,
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where εj is the background level for the j-th window and is
given by:

εj =

∑jL+L−1
n=jL y

(25)
back [n]

L
.

Therefore, we decide that K̂j is the correct number when
ΔMAE(K̂j ,K̂j+1) is smaller than the threshold

ξj =

∑jL+L−1
n=jL |εjϕj [n− tε]|

L

with tε = jL+ L/2. Then a confidence interval withL/2 length
located in the middle of the window is applied and we denote

with {ǎj,k}Ǩjk=1, {ťj,k}Ǩjk=1 and Ǩj the amplitudes, locations and
number of detected pulses inside the confidence interval of the
j-th window. After the detection algorithm has been applied on
all windows of a pixel, the detected pulses for the entire spectrum
are given by the set of all amplitudes and locations detected
in each window and are denoted with {ak}Kk=1 and {tk}Kk=1

respectively, where K =
∑J
j=1 Ǩj is the number of detected

pulses for the spectrum at this pixel. Finally, the algorithm
is performed on all pixels of the dataset. Our pulse detection
algorithm is summarised in Algorithm 1.

C. Chemical Element Estimation

Given the locations {tk} and the amplitudes {ak} of the
pulses, we now need to assign the detected pulses to the correct
characteristic X-ray emission lines in order to determine which

chemical elements are present at a certain pixel and their inten-
sities. Let us introduce two parameters to quantify the presence
of a chemical element, which are confidence score and quantity
score. The confidence score represents the confidence that we
have correctly allocated a pulse to a certain chemical element at
a specific pixel and is a value that ranges from zero to one. The
quantity score represents the measured intensity of that element
at that pixel location.

As previously noted in Section II-A, the characteristic X-rays
emitted by a chemical element are often combined into emission
line groups for better visualisation results. On this basis, we first
compute the confidence and quantity scores for the 11 dominant
characteristic X-ray lines of a chemical element to yield line
confidence scores (LCS) and line quantity scores (LQS). These
are then combined to compute the confidence and quantity scores
for the 7 emission line groups of that element to yield group
confidence scores (GCS) and group quantity scores (GQS).
Finally, the confidence and quantity distribution maps for a line
group of an element are produced by showing its GCS and GQS
values for all the pixels.

1) Line Confidence Score and Line Quantity Score: We con-
struct a look up matrix with the corresponding energy channels
of the characteristic X-rays for the 34 chemical elements con-
sidered (see Appendix C), represented by H ∈ RP×Q. Here,
P = 34 denotes the number of elements andQ = 11 denotes the
maximum number of characteristic X-rays considered for each
element. With the proposed FRI-based pulse detection algo-
rithm,K pulses {(tk, ak)}Kk=1 have been detected from the XRF
spectrum of a certain pixel. Therefore, we use V ∈ RK×P×Q to
represent all the LCS.

We define the LCS for a single characteristic X-ray of an
element as the difference in energy level (measured in channels)
between the detected pulse and the characteristic X-ray and is
given by:

vk,p,q = max

(
1− |tk −Hp,q|

τk
, 0

)
, (9)

where vk,p,q represents the LCS computed for the k-th detected
pulse and the q-th characteristic X-ray of the p-th element, τk
is an uncertainty factor that depends on the amplitude ak of
the detected pulse. As the photon counting process in the XRF
device follows a Poisson distribution, a pulse with large am-
plitude has a high signal-to-noise ratio. Therefore, its detection
result is expected to be more accurate and is associated with a
smaller uncertainty factor τk. The way in which we derive the
dependency of τk on ak is explained in Appendix B and is based
on Cramér-Rao bounding techniques [23]. Fig. 7(a) illustrates
how the LCS is computed. Moreover, two constraints are im-
posed when assigning detected pulses to chemical elements: a)
When a characteristic X-ray of an element has non-zero LCS
with more than one detected pulse, the highest LCS is kept and
the others are set to zero. This is to ensure that only the closest
detected pulse is assigned to each characteristic X-ray. b) When
a detected pulse has non-zero LCS with respect to more than
one characteristic X-ray of the same element, the highest LCS
is kept and the others are set to zero. This is to ensure that one
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Fig. 7. Computation of LCS and LQS. The green lines represent the locations (energy channels) of the characteristic X-ray Hp,q . The blue arrow represents the
location of the detected pulse tk . The blue dashed lines represent the confidence score function defined in (9). The red arrow in (a) denotes the computed LCS
vk,p,q and the red arrows in (b) and (c) are LQS wk,p,q . The value of τk depends on the estimated amplitude ak of the pulse and τk is smaller when ak is larger
(details of how τk is computed are provided in Appendix B).

detected pulse can only be assigned to one characteristic X-ray
of a certain element.

Similarly, we use W ∈ RK×P×Q to represent all the possible
LQS. The LQS of a single characteristic X-ray of an element
depends on the amplitudes of the detected pulses that have been
allocated to that element. Two cases are considered: a) when a
detected pulse has been allocated to only one characteristic X-
ray, then the LQS equals to the amplitude of the allocated pulse,
as shown in Fig. 7(b); b) when a detected pulse has been allocated
to multiple elements, the LQS between the detected pulse and
those characteristic X-rays is defined as the pulse amplitude
multiplied by the corresponding LCS, as shown in Fig. 7(c).
Therefore, the LQS for the q-th characteristic X-ray of the p-th
element computed with the k-th detected pulse is:

wk,p,q =

{
ak, if ∀(p̄ 
= p, q̄) : vk,p̄,q̄ = 0,

akvk,p,q, if ∃(p̄ 
= p, q̄) : vk,p̄,q̄ > 0.
(10)

We also note that with the two constraints applied to the LCS,
only one pulse can be allocated to a characteristic X-ray of an
element, which means that there is only one non-zero value in
both V :,p,q and W :,p,q . As a consequence, V and W can be
compressed into two two-dimensional matrices, Ṽ ∈ RP×Q and
W̃ ∈ RP×Q, as follows:

ṽp,q =
∑
k

vk,p,q and w̃p,q =
∑
k

wk,p,q, (11)

where ṽp,q and w̃p,q represent the LCS and LQS for the q-th
characteristic X-ray of the p-th element, respectively.

2) Group Confidence Score and Group Quantity Score:
Given the LCS and LQS in (11), we then combine them to
compute the GCS and GQS of the 7 emission line groups
(Kα, Kβ , Ll, Lα, Lβ , Lγ , Mα) for the 34 elements described
previously. We use V̂ ∈ RP×R and Ŵ ∈ RP×R to represent all
the GCS and GQS respectively, where R = 7 is the number of
emission line groups considered for each element.

Since, within each line group, the first characteristic X-ray
(e.g. Kα1 within the Kα line group) is more likely to be emitted
than the others, its pulse in the XRF spectrum is normally more
intense and more likely to be detected. Therefore, we define
the GCS of a group as the maximum between the LCS of this
dominant characteristic X-ray and the averaged LCS of all the

characteristic X-rays in that group:

v̂p,r = max

⎛
⎝ṽp,qr1 ,

1

|Qr|
∑
q∈Qr

ṽp,q

⎞
⎠ , (12)

where v̂p,r represents the GCS for the r-group of the p-th
element, Qr is the set of characteristic X-rays in the r-group
and qr1 represents the first characteristic X-ray in the r-group.
The GQS of a group is defined as the sum of the LQS of all the
characteristic X-rays in that group:

ŵp,r =
∑
q∈Qr

w̃p,q, (13)

where ŵp,r is the GQS for the r-group of the p-th element.
The characteristic X-rays of an element are generated in

series (e.g. K-series, L-series, M -series, etc.) and the combined
emission of the characteristic X-rays in the α-group is the
most prevalent in each line series, generally resulting in higher
intensity in the XRF spectrum. As such the GCS and GQS in a
series of an element are adjusted according to the GCS and GQS
of the α-group. Since the combined intensity of the α-group is
normally at least twice that of any other group in the series, the
GQS of any other groups larger than the α-group is adjusted to
half of the GQS of theα-group. Furthermore, if no detected pulse
has been allocated to the X-ray lines in the α-group, resulting
in a zero GCS and a zero GQS, it can be almost certain that the
X-ray lines of other groups in that series will not be present in
the spectrum. In this case, the GCS of all other groups in that
series are set to zero. These adjustments can be summarised as:{

ŵp,r =
ŵp,rGα

2 , if r ∈ RG and ŵp,r > ŵp,rGα
{v̂p,r}r∈RG = 0, if v̂p,rGα = 0 and ŵp,rGα = 0

(14)

where RG is the set of line groups in the G-series and rGα
is the α-group in the G-series. We also note that the arsenic
(As) Kα and lead (Pb) Lα lines are very difficult to separate.
The detection of As is therefore treated in a different way from
all other elements and is the only case where the Kβ lines are
considered when determining if As is present. Only when As
Kβ lines are detected in the spectra do we consider As Kα lines
to be present in the spectrum. Moreover, the ratio between the
summed intensities of As Kβ lines and Kα lines is set as 1:6.

3) GQS Refinement: The method in Sections III-C1 and
III-C2 gives us, through the GCS, reliable information about
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Algorithm 2: Chemical Element Estimation Algorithm.
1: Input: The detected pulses from the XRF spectra,

with amplitudes and locations {ak, tk}Kk=1.
2: Output: Elemental distribution maps (the GCS maps

and GQS maps) for all elements present.
3: Compute V (LCS) and W (LQS) for each detected

pulse using (9) and (10).
4: Convert V and W into two-dimensional matrices with

(11) to obtain Ṽ and W̃ .
5: Compute V̂ (GCS) and Ŵ (GQS) with (12) and (13).
6: Adjust V̂ and Ŵ with (14).
7: Obtain all the characteristic lines of the elements that

have at least one non-zero GCS, represented with the
locations {t̃k}K̃k=1.

8: Re-apply the least-squares fitting on the XRF spectrum
to obtain the corresponding amplitudes {ãk}K̃k=1.

9: Follow Steps 1-4 to obtain the refined GQS (W̄ ).
10: Generate two sets of elemental distribution maps by

showing V̂ (GCS) and W̄ (GQS) for all pixels.

which chemical elements are present in the XRF spectrum at a
certain pixel in the dataset. However, the pulses detected from
the spectrum may have errors in amplitude and location and
this can cause errors when calculating the GQS. To reduce this
problem, we refine the GQS of the potential elements leveraging
the exact locations of their characteristic lines. At this refinement
stage, if any of the characteristic X-rays in an element series are
detected, it is assumed that all of the characteristic X-rays of
that element contribute to the spectrum and the locations of all
of these lines are included in the fitting.

As in Section III-B, each spectrum is divided into L-length
overlapping windows and an L/2-length confidence interval is
applied to each window. We denote the number of characteristic
lines in the j-th window as Kψ,j and the locations of these

lines as {t̂j,k}Kψ,jk=1 . By replacing the pulse locations {tj,k}Kjk=1

in (5) with {t̂j,k}Kψ,jk=1 , the corresponding amplitudes of these
characteristic lines can be re-estimated from the spectrum with
least-squares fitting. As some of the characteristic lines are close
to others, their estimated amplitudes may be negative and they
can be regarded as redundant lines. We therefore remove those
lines and repeat the fitting until all the remaining lines have
positive amplitudes. Then, we only keep those characteristic
lines inside the confidence interval. Combining the re-estimation
results for all windows gives the locations ({t̃k}K̃k=1) and am-
plitudes ({ãk}K̃k=1) of the remaining characteristic lines for the
whole spectrum. With {t̃k}K̃k=1 and {ãk}K̃k=1, the GQS of poten-
tial elements, represented by W̄ ∈ RP×R, can be re-computed
following the steps in Sections III-C1 and III-C2.

4) Element Distribution Map: Finally, the distribution maps
are generated for each chemical element present in the dataset
by showing the GCS (V̂ ) and GQS (W̄ ) for all the pixels in the
datacube. The procedure for generating the element distribution
maps is summarised in Algorithm 2.

Fig. 8. Vincent van Gogh, Sunflowers (NG3863), 1888. Oil on canvas [33],
[34]. ©The National Gallery, London. Highlighted is the region scanned with
a Bruker M6 JETSTREAM instrument (580 μm spot size, 580 μm step size,
10 ms dwell time).

IV. NUMERICAL RESULTS

In this section, the performance of our proposed algorithm
is assessed with MA-XRF datacubes acquired from three easel
paintings in the National Gallery collection.1 The element distri-
bution maps produced by our algorithm are compared with those
produced using the Bruker M6 software. This software, as is
typical of other methods mentioned in Section I, requires user in-
put to determine which elements are present before distribution
maps are created. Further, with these methods, the appearance of
individual element maps produced from a given dataset can vary
depending on the precise elements chosen to include. By con-
trast, our method generates the distribution maps automatically
(after some essential pre-processing and calibration steps) and,
as shown in this section, is able to find weak element signals
within a dataset and separate (or deconvolute) characteristic
X-rays with similar energies but related to different elements.

A. Automatic Element Distribution Map Generation

We first verify the ability of our algorithm to automatically
detect the chemical elements present in the painting and the
additional benefits of producing a confidence map.

A region of the painting Sunflowers painted by Vincent van
Gogh, highlighted in Fig. 8 [33], [34], was scanned and the
resulting MA-XRF dataset was processed with our proposed
algorithm to generate the distribution maps of the chemical
elements that are present in the painting. Fig. 9 illustrates the
confidence maps and quantity maps of the major emission line
groups of a representative selection of elements extracted by our
algorithm. Compared with the quantity maps produced using
the Bruker M6 software shown in Fig. 10, our quantity maps
show similar distributions. However, due to the large dynamic
range of measured intensities, it is not always easy to confirm
the presence of a certain element by just inspecting the quantity

1The results obtained from Titian’s Diana and Callisto (NG6616) are pre-
sented in the supplementary material.
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Fig. 9. Confidence maps (in the first row) and quantity maps (in the second row) of the major emission line groups of example chemical element produced by
our algorithm for the scanned region of Sunflowers. (a) Iron (Fe) Kα, (b) Chromium (Cr) Kα, (c) Zinc (Zn) Kα, (d) Lead (Pb) Lβ , (e) Copper (Cu) Kα, and (f)
Bromine (Br) Kα. Highlighted in the Cu Kα quantity map are two sample pixels A and B.

Fig. 10. Quantity maps of the major emission line groups of example chemical element produced using Bruker M6 software (after deconvolution) for the scanned
region of Sunflowers. (a) Iron (Fe) Kα, (b) Chromium (Cr) Kα, (c) Zinc (Zn) Kα, (d) Lead (Pb) Lβ , (e) Copper (Cu) Kα, and (f) Bromine (Br) Kα.

maps. For instance, it is not clear whether iron (Fe) exists in
some areas of the flower petals (rather than just in the centres of
the flowers) when only looking at the quantity maps of Fe Kα

(Fig. 9(a) second row and 10(a)). In this case, our confidence
map (Fig. 9(a) first row) indicates that most of the petals have
confidence values approaching 1, suggesting that Fe does exist in
those areas with high probability but the quantity could be very
low. We would like to highlight that the confidence maps that
are produced automatically by our algorithm could alert users
to the presence of low intensity signal, which they could then
further interrogate with image manipulation such as log scaling
or, indeed, evaluation of individual spectra.

The presence of some Fe in the petals, sepals and foliage has
been confirmed by detailed examination of the painted surface
or analysis of cross-section samples, showing that the additional
information provided by the confidence maps can help heritage
scientists to confirm whether particular elements, and hence
materials, are present at particular locations in easel paintings.
The situation is similar with the low proportion of bromine (Br)
detected in the centres of the flowers and linked to the use
of a type of pigment known as geranium lake (a red pigment
based on the organic red colorant eosin, a bromine derivative of
fluorescein) [34].

Then to demonstrate the ability of our algorithm to automati-
cally detect the chemical elements present in the painting, we fo-
cus on two sample pixels (A and B) on the yellow-green sepal on
the right of central sunflower, highlighted in Fig. 9(e), which are
close to where a micro-sample was taken from the painting. This
sample was prepared as a cross-section and analysed using scan-
ning electron microscopy with energy-dispersive X-ray analysis
(SEM-EDX) [33], [34]. This analysis revealed that in the area
of the yellow-green sepal there is a ground layer containing lead
white (2PbCO3 · Pb(OH)2), then a layer that may be underdraw-
ing executed with a material that is mainly carbon-based and not

Fig. 11. GCS of the chemical elements detected by our algorithm at (a) pixel
A and (b) pixel B, where Pb, Cu, As, Cr, Ca, Zn and S are expected to be present.
Ar and Rh appear systematically in all spectra acquired with this device.

detected by MA-XRF scanning and finally a layer containing
a mixture of emerald green (3Cu(AsO2)2 · Cu(CH3COO)2),
chrome yellow (PbCrO4 · PbCr1−xSxO4, where 0 < x < 1),
calcium sulphate (CaSO4 · 2H2O) and some zinc white (ZnO).
Therefore, the chemical elements present in this area are ex-
pected to be lead (Pb), copper (Cu), arsenic (As), chromium
(Cr), calcium (Ca), zinc (Zn) and sulphur (S). Fig. 11 shows
the GCS of all the chemical elements that are detected by our
algorithm at the sample pixels A and B. It can be seen that all of
the expected elements are detected with high GCS, especially
for their major emission line groups.

As already noted and discussed, the algorithm is deliberately
designed to detect elements present in low quantity and in Fig. 11
a number of other elements are reported as having generally
low but non-zero GCS values. While this has the potential to
result in ‘false positive’ element identifications, this does not
negatively affect the distribution maps of the other elements that
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Fig. 12. Distribution maps of mercury (Hg) Lα emission line group produced
by our algorithm for the scanned region of Sunflowers; (a) Confidence map, (b)
Quantity map. Highlighted are two sample pixels C and D.

Fig. 13. Pulse detection results produced by our algorithm at (a) pixel C and
(b) pixel D in the scanned region of Sunflowers.

are confirmed to be present and by examining which emission
lines have been detected, generally spectroscopists can quite
easily identify such cases. Further, the quantity maps associated
with the unexpected elements at sample pixels A and B (Ag,
Cd, Au and Bi) are generally very low. More importantly, unlike
other existing methods, our algorithm does not require users to
input which elements are expected but provides the estimation
automatically with high accuracy. This is also highlighted in
Fig. 13(a) where a BiLα2 false positive is avoided. This happens
because the pulse detected is relative large and the corresponding
uncertainty bound stops us from assigning it to a not too close
element line.

B. Weak Signal Detection

As has been discussed earlier, the XRF spectra collected
from paintings using an MA-XRF scanning device can be very
noisy, leading to a challenge of detecting characteristic X-rays
of chemical elements of low intensities from the noisy spectra.
We demonstrate that our proposed algorithm is able to detect
weak signals from the noisy XRF spectra.

For example, our algorithm manages to detect the element
mercury (Hg), whose presence in the painting could not be
confirmed when analysing the dataset with the Bruker M6 soft-
ware, but now has been validated [33], [34]. Using optical mi-
croscopy and Raman spectroscopy, the presence of the mercury-
containing pigment vermilion, or mercury sulphide (HgS), has
been confirmed in paint cross-sections. The distribution maps
of the Hg Lα line group produced by our algorithm are shown
in Fig. 12. In the confidence map (Fig. 12(a)), some pixels with

Fig. 14. Leonardo da Vinci, The Virgin with the Infant Saint John the Baptist
adoring the Christ Child accompanied by an Angel (’The Virgin of the Rocks’)
(NG1093), about 1491/2-9 and 1506-8. Oil on poplar, thinned and cradled [35].
©The National Gallery, London. Highlighted are three regions scanned with a
Bruker M6 JETSTREAM instrument (350 μm spot size, 350 μm step size and
10 ms dwell time).

confidence values around 0.4 can be seen roughly coinciding
with the centres of some of the sunflowers. The quantity map
(Fig. 12(b)) indicates similar regions with quantity values of
about 2 photon counts. These same areas can also be seen in
the confidence and quantity maps for the Hg Lβ line group. To
further validate the accuracy of these findings, we now focus on
two sample pixels C and D, highlighted in Fig. 12(b). The Lα1
and Lα2 emission lines of Hg are expected at energies about
9989 eV and 9898 eV. When the intensity of Hg is weak as in
the pulses selected, only the dominant Lα1 line is detectable in
the spectrum. The pulse detection results in Fig. 13 indicate that
one pulse at 9995 eV with amplitude 2.27 and one at 9980 eV
with amplitude 3.11 are detected at pixels C and D, respectively,
corresponding to the Hg Lα1 line.

There are three reasons why the detection of Hg is particularly
challenging in this MA-XRF dataset: (i) Hg is present in small
amounts; (ii) the L-series lines of Hg overlap with many lines
of other elements (e.g. As, Br); (iii) the L-series lines of Hg
are located in the parts of XRF spectra where great background
noise exists. Despite these challenges, our algorithm is still able
to detect Hg correctly.

C. Revealing Hidden Drawings in Leonardo’s Masterpiece

Several pairs of chemical elements, such as zinc (Zn) and
copper (Cu), have characteristic X-rays with similar energies
such that their signals in the XRF spectrum partially overlap in
energy, making them difficult to separate. Cu has Kα and Kβ

lines expected at energies of about 8041 eV and 8905 eV and Zn
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Fig. 15. Quantity maps produced by Bruker M6 software for the scanned
region (yellow outline) of ‘The Virgin of the Rocks’. (a) Cu Kα after deconvo-
lution, (b) Zn Kα region of interest, (c) Zn Kα after deconvolution without Ni
added in the element list, (d) Zn Kα after deconvolution with Ni added in the
element list, (e) Ni Kα after deconvolution with Ni added in the element list,
and (f) Zn Kα with Cu Kα manually subtracted and 3-by-3 binning.

has Kα and Kβ lines expected at energies of about 8631 eV and
9572 eV, respectively. Because the Cu Kβ line is close in energy
to the Zn Kα line, it is difficult to separate the signal from these
two elements in XRF spectra, especially when one is much
stronger than the other. The datasets collected on the painting
‘The Virgin of the Rocks’ by Leonardo da Vinci present this sepa-
ration challenge. The highlighted areas in Fig. 14 represent three
MA-XRF datasets collected with a Bruker M6 JETSTREAM
MA-XRF instrument. These datasets were analysed using the
Bruker M6 software to produce the quantity maps of Cu Kα

(Fig. 15(a)) and Zn Kα (Fig. 15(b)). It can be seen that there
is significant interference due to Cu in the Zn map if regions
of interest are used without further deconvolution. Fig. 16
illustrates the distribution maps of Cu Kα and Zn Kα extracted
by our algorithm. Our Cu Kα confidence map (Fig. 16(a)) has
values close to 1 at most of the pixels, suggesting that copper
is present throughout this particular region of the painting.
Our Cu Kα map (Fig. 16(b)) is similar to the one produced
using the Bruker M6 software, showing clear bright regions that
correspond to the Virgin’s drapery and the foliage in the painting.
This indicates that the intensities of Cu at the pixels of the areas of
foliage and especially for the pixels of the drapery on the left side
of the dataset are much higher than in the other areas. Previous
examination found that the Virgin’s drapery was underpainted
with the copper-containing pigment azurite, whilst the foliage
includes another copper-based pigments, verdigris [35].

Fig. 16. Distribution maps of copper (Cu) Kα and zinc (Zn) Kα emission
line groups produced by our algorithm for the scanned region (yellow outline)
of ‘The Virgin of the Rocks’. (a) Cu Kα confidence map, (b) Cu Kα quantity
map, (c) Zn Kα confidence map, and (d) Zn Kα quantity map. Highlighted are
two sample pixels G and H.

The distribution maps of Zn Kα produced by our algorithm
show unexpected results and the quantity map is quite different
to that produced using the Bruker M6 software. Some pixels with
GCS about 0.8 in our Zn Kα confidence map (Fig. 16(c)) create
what appear to be lines, which are even more clear in our Zn Kα

quantity map (Fig. 16(d)). These Zn-containing features do not
correspond to any visible composition in the painting. Instead,
they are related to underdrawing of planned figures (the wings
and the head of an angel are clearly visible) that was then painted
over. Although previous technical examination of the painting
had revealed the existence of underdrawing for an unrealised
figure of the Virgin, the planned figures of the angel and Christ
child were unknown prior to undertaking the MA-XRF scanning
[35], [36].

It is also of interest to note that photon counts for the lines
of the underdrawing are very low and yet our method has been
able to find the signal related to Zn, the presence of which was
confirmed using SEM-EDX in a micro-sample of paint mounted
in cross-section. Our Zn Kα quantity map also indicates that the
azurite pigment used in the underlayer for the Virgin’s drapery
contains a little Zn which has also been confirmed in another
cross-section using SEM-EDX.

Using the inbuilt deconvolution algorithm in the Bruker M6
software, a Zn Kα quantity map (Fig. 15(c)) is produced that
allows this underdrawing to be seen more easily without the
overlap from Cu-containing regions. Significantly, however, the
Zn Kα signal in the Virgin’s drapery is entirely removed during
this deconvolution and the residual Zn signal is very weak. In
an attempt to avoid this issue, an expert user must manually
scale and subtract the Cu map (Fig. 15(a)) from the Zn map
(Fig. 15(b)) to obtain a result believed to accurately reflect the
distribution of Zn (Fig. 15(f)). Furthermore, adding the element
nickel (Ni), which is not likely to be present in the painting, to
the list of the selected chemical elements leads to a deconvoluted
map (Fig. 15(d)) that inverts the signal of Zn in the robes of the
Virgin, even though Zn and Ni have no overlapping peaks. This
demonstrates that the selection of elements for the M6 software
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Fig. 17. Pulse detection results produced by our algorithm at (a) Pixel G and
(b) Pixel H in the scanned region (yellow outline) of ‘The Virgin of the Rocks’.

Fig. 18. Combined Zn Kα quantity map produced by our algorithm for the
three scanned regions of ‘The Virgin of the Rocks’, revealing underdrawing
related to an abandoned earlier composition.

by the user does have a strong effect on the accuracy of the
XRF deconvolution results. In contrast, our algorithm is able to
reveal the underdrawing and an accurate Zn quantity map in an
automated manner.

To verify the accuracy of our algorithm, we focus on pixels G
on the angel wing and H on the drapery highlighted in Fig. 16(d).
The pulse detection results of these two sample pixels are shown

in Fig. 17. For pixel G, two pulses detected at 8050 eV and
8889 eV relate to Cu and one pulse detected at 8632 eV to
Zn. For pixel H, two detected pulses at 8048 eV and 8892 eV
correspond to Cu and one pulse at 8649 eV relates to Zn. These
results reveal the excellent ability of our algorithm to detect
nearby pulses from noisy spectra, even when the weak pulse is
partially covered by a much stronger one.

Finally, a combined Zn Kα quantity map produced by our
algorithm for the three scanned regions of ‘The Virgin of the
Rocks’ is shown in Fig. 18 and reveals the complexity of the
abandoned composition with sketches of the Virgin and Christ
Child also appearing. More importantly, when used on these
three different datasets, our algorithm gives consistent results so
that they can be combined easily, showing no obvious borders
or discontinuities, which is further evidence of the stability and
accuracy of the proposed method.

V. CONCLUSION

In this paper, we have proposed an automatic approach for
extracting elemental maps from MA-XRF datasets acquired
from easel paintings, with some essential pre-processing steps.
Two distribution maps, a confidence and a quantity map, are
produced to detect and quantify the presence of chemical el-
ements in the paintings. To demonstrate the performance of
the proposed approach, we tested it on MA-XRF datasets from
three easel paintings at the National Gallery in London and the
resulting distribution maps are compared with those produced
using the Bruker M6 software. The results confirm the ability
of our method to automatically generate element distribution
maps, even when detecting very weak element signals within
noisy datasets and when separating overlapping element pulses,
and the value of having both the confidence and quantity maps to
review. Furthermore, the zinc-containing underdrawing hidden
in ‘The Virgin of the Rocks’ by Leonardo da Vinci is successfully
revealed by our approach with great clarity and without any
additional user intervention.

APPENDIX A
PRONY’S METHOD

Prony’s method was developed in 1795 by Baron de Prony
for the original purpose of estimating the frequency, phase and
amplitude parameters of a finite sum of sinusoids [22]. In the
last several decades, Prony’s method has been rediscovered and
extended many times in different fields. For example, it can be
used in parametric sampling theory [20], [37] and also to solve
some inverse problems [38]–[40]. In what follows, we present a
simple derivation of the basic Prony’s method.

To start, we have obtained from (8) that s[m] is the sum of K
exponentials:

sm =

K∑
k=1

ake
iω0tk(eiλtk)m =

K∑
k=1

bku
m
k , (15)

where bk = ake
iω0tk and uk = eiλtk . Assuming that the sparsity

level K is known, we aim to retrieve the coefficients {bk} and
the exponentials {uk} from 2K consecutive elements {sm : � ≤
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m < �+ 2K}. The locations {tk}Kk=1 and amplitudes {ak}Kk=1

of the Gaussian pulses can then be reconstructed from {bk} and
{uk}.

The key to Prony’s method is a clever use of the algebraic
structure of the expression in (15). Let

P (x) =
K∏
k=1

(x− uk) = xK + h1x
K−1 + ...+ hK−1x+ hK

be a Kth order polynomial whose roots are {uk}. Then, it is
easy to verify that

sm+K + h1sm+K−1 + ...+ hKsm =
∑

1≤k≤K
bku

m
k P (uk) = 0.

Writing this identity in matrix-vector form for all indicesm such
that � ≤ m < �+K, we get

0 =

⎛
⎜⎜⎜⎜⎝

s�+K s�+K−1 · · · s�

s�+K+1 s�+K · · · s�+1

...
...

. . .
...

s�+2K−1 s�+2K−2 · · · s�+K−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1

h1

...

hK

⎞
⎟⎟⎟⎟⎠

def
= TK,�h,

(16)

where, by construction, TK,� is a Toeplitz matrix of size K ×
(K + 1).

The above equation reveals that the vector of polynomial coef-
ficients h = (1, h1, ..., hK)T is in the null space of TK,�. Next,
we show that this condition is sufficient to uniquely identify h.

Proposition 1: Suppose that bk 
= 0 for all k and that the K
parameters {uk} are distinct. Then

rank(TK,�) = K.

Proof: We can decompose the Toeplitz matrix TK,� as:

TK,� = BAC,

where A
def
= diag(b0u�0, b1u

�
1, ..., bK−1u

�
K−1), B is the Vander-

monde matrix of size K ×K given by

B
def
=

⎛
⎜⎜⎜⎜⎝

1 1 · · · 1

u1
0 u1

1 · · · u1
K−1

...
...

. . .
...

uK−1
0 uK−1

1 · · · uK−1
K−1

⎞
⎟⎟⎟⎟⎠ ,

and C is a second Vandermonde matrix of size K × (K + 1)
and of the form

C
def
=

⎛
⎜⎜⎜⎜⎝

uK0 uK−1
0 · · · 1

uK1 uK−1
1 · · · 1

...
...

. . .
...

uKK−1 uK−1
K−1 · · · 1

⎞
⎟⎟⎟⎟⎠ .

Since the coefficients {bk}K−1
k=0 are nonzero, the diagonal matrix

A is invertible. Furthermore, since the parameters {uk}K−1
k=0 are

distinct, both Vandermonde matrices B and C have rank K. It
follows that TK,� has also rank K, and thus its null space is of

dimension one. We can therefore conclude that vector h is the
unique vector satisfying the identity (16).

In light of the above derivations, we summarise Prony’s
method as follows:

1) Given the input sm, build the Toeplitz matrix TK,� as in
(16) and solve for h. This can be achieved by taking the
SVD ofTK,� and choosing ash the (scaled) right-singular
vector associated with the zero singular value. The scaling
is done so that the first element of h is equal to 1.

2) Find the roots of P (x) = 1 +
∑K
k=1 hkx

K−k, which are
exactly the exponentials {uk}K−1

k=0 .
3) Given the parameters {uk}K−1

k=0 , find the corresponding
weights {bk}K−1

k=0 by solving K linear equations as given
in (15). This is a Vandermonde system of equations which
yields a unique solution for the weights {bk}K−1

k=0 since
{uk}K−1

k=0 are distinct.
Described above is the basic Prony’s method. There are vari-

ations of this method that lead to better detection results, for
instance, the matrix pencil method [21], [30]. These methods
are normally based on constructing matrices larger than the one
in (16).

APPENDIX B
CRAMÉR-RAO LOWER BOUND FOR GAUSSIAN PULSE

ESTIMATION WITH POISSON NOISE

We leverage Cramér-Rao lower bounding techniques [23] to
determine the uncertainty factor τk in (9). The amplitudes {ak}
and locations {tk} of the element pulses are the parameters to
be estimated and the Cramér-Rao lower bound (CRLB) provides
the best achievable estimation performance.

Let Y = {Yn}L−1
n=0 and y = {y[n]}L−1

n=0 denote the random
XRF spectrum and the observation in one window with size L
respectively. According to Section III-B, the observed spectrum
in each window can be modelled as the combination of several
Gaussian pulses with same shape plus random noise:

y[n] = x[n,θ] + ε[n] =
K∑
k=1

akϕj [n− tk] + ε[n], (17)

where x[n,θ] represents the theoretical noiseless spectrum, θ
represents the set of parameters to be estimated given by:

θ = {θi}2Ki=1 = (a1, a2, ..., aK , t1, t2, ..., tK)T , (18)

K is the pulse number, ε[n] is the random noise and ϕ[n] is the
Gaussian pulse given by ϕ[n] = exp (− n2

2σ2 ). The noise is due
to the statistical nature of the counting process, in which random
events (the arrival of X-ray photons at the detector) are observed
during a finite time interval [8]. Therefore, the spectrum sample
Yn at each energy channel follows the Poisson distribution [41],
that is, Yn ∼ Pois(x[n,θ]) and the probability density function
(pdf) of Yn is thus given by

pYn(y[n];θ) = pYn(y[n];x[n,θ]) =
x[n,θ]y[n]e−x[n,θ]

y[n]!
.
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If the XRF spectrum samples are independent, the pdf of Y =
{Yn}L−1

n=0 is given by the product of the pdf of each Yn:

pY (y;θ) =

L−1∏
n=0

pYn(y[n];θ) =

L−1∏
n=0

x[n,θ]y[n]e−x[n,θ]

y[n]!
.

The log-likelihood function depending on θ, given Y = y and
Yn = y[n], is expressed as:

�(θ;y) =
L−1∑
n=0

y[n] ln (x[n,θ])− x[n,θ]− ln (y[n]!).

The derivative of �(θ;y) with respect to each θi is

∂�(θ;y)

∂θi
=

L−1∑
n=0

(
y[n]

x[n,θ]
− 1

)
∂x[n,θ]

∂θi
.

So the gradient of �(θ;y) with respect to θ is

∇�(θ;y) =

L−1∑
n=0

(
y[n]

x[n,θ]
− 1

)
∇x[n,θ].

The Fisher information matrix is then given by:

I(θ) = E{∇�(θ;Y )(∇�(θ;Y ))T }

=

L−1∑
n=0

L−1∑
m=0

(
E{YnYm}

x[n,θ]x[m,θ]
− E{Yn}

x[n,θ]
− E{Ym}

x[m,θ]
+ 1

)

×∇x[n,θ](∇x[m,θ])T . (19)

Since Yn ∼ Pois(x[n,θ]), Ym ∼ Pois(x[m,θ]), E{Yn} =
x[n,θ], and E{Ym} = x[m,θ], (19) becomes:

I(θ) =

L−1∑
n=0

L−1∑
m=0

sn,m(θ)∇x[n,θ](∇x[m,θ])T ,

where sn,m(θ) =
E{YnYm}

x[n,θ]x[m,θ]
− 1.

E{YnYm} can be expressed as:

E{YnYm} =

{
cov(Yn, Ym) + E{Yn}E{Ym}, n 
= m,

var(Yn) + E{Yn}2, n = m.

Since Yn ∼ Pois(x[n,θ]) and samples (Yn)L−1
n=0 are assumed to

be independent, we have that cov(Yn, Ym) = 0 when n 
= m
and var(Yn) = x[n,θ]. So E{YnYm} can be written as:

E{YnYm} =

{
x[n,θ]x[m,θ], n 
= m,

x[n,θ] + x[n,θ]2, n = m.

Then we obtain:

sn,m(θ) =

{
0, n 
= m,

1
x[n,θ] , n = m.

Therefore, the Fisher information matrix I(θ) becomes:

I(θ) =

L−1∑
n=0

1

x[n,θ]
∇x[n,θ](∇x[n,θ])T .

Fig. 19. Performance of our FRI-based pulse detection algorithm to estimate
1 pulse from a L = 300 length signal in the presence of Poisson noise. The
pulse shape is a Gaussian function with standard deviation σ = 5. The location
of the pulse is fixed at the centre of the window.

From (18) and (17), ∇x[n,θ] can be derived as:

∇x[n,θ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ[n− t1]
...

ϕ[n− tK ]

−a1
∂ϕ[n−t1]
∂t1

...

−aK
∂ϕ[n−tK ]
∂tK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1[n]
...

νK [n]

γ1[n]
...

γK [n]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where νj [n] = ϕ[n− tj ], γj [n] = −aj
∂ϕ[n−tj ]
∂tj

and j =

1, 2, ...,K. Thus the Fisher information matrix I(θ) is a 2K ×
2K matrix:

I(θ) =

L−1∑
n=0

1

x[n,θ]

(
R(ν,ν) R(ν,γ)

R(γ,ν) R(γ,γ)

)

with

R(ν,γ) =

⎛
⎜⎜⎝

ν1[n]γ1[n] · · · ν1[n]γK [n]
...

. . .
...

νK [n]γ1[n] · · · νK [n]γK [n]

⎞
⎟⎟⎠ .

Then the CRLB is given by the inverse of the Fisher information
matrix: P = [I(θ)]−1.

We then implement the experiment of detecting 1 pulse fixed
at the centre of the window with sizeL = 300. Fig. 19 compares
the estimation performance of our algorithm with the CRLB for
the pulse amplitude increasing from 1 to 100. The CRLB and
the numerical results suggest that detecting a weaker pulse has
a larger average estimation error. Although the performance of
our method on the real XRF spectrum is worse than CRLB,
its behaviour is still in line with the CRLB. Therefore, CRLB
provides a good guideline on how estimation errors change with
the pulse amplitudes. We thus define the uncertainty factor τk
based on the calculated CRLB:

τk = max(min(ηPtk(σref, ak), τmax), τmin),

where σref is the standard deviation of the reference pulse (the
first pulse in the average spectrum), Ptk is the CRLB calculated
for the location of the k-th detected pulse given the amplitude ak,
η is a scale factor, τmax and τmin are the maximum and minimum
values that τk can reach. We determine that good values are η =
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13, τmax = 3.5 and τmin = 10.5 through experiments on three
MA-XRF datasets.

APPENDIX C

TABLE I
ENERGIES OF THE CHARACTERISTIC X-RAYS OF 34 CHEMICAL ELEMENTS

COMMONLY PRESENT IN SPECTRA ACQUIRED FROM EASEL PAINTINGS SUCH

AS THOSE CONSIDERED IN THIS STUDY (IN EV). ITALICISED AR, ZR AND RH

APPEAR SYSTEMATICALLY IN ALL SPECTRA ACQUIRED WITH THE BRUKER M6
JETSTREAM EQUIPMENT. THOSE LINES OUTSIDE THE DETECTION RANGE OF

THE MA-XRF DEVICE HAVE BEEN REMOVED. TABLE TAKEN AND MODIFIED

FROM [42]

REFERENCES

[1] S. Yan, J. Huang, N. Daly, C. Higgitt, and P. L. Dragotti, “Revealing
hidden drawings in Leonardo’s ‘the virgin of the Rocks’ from macro X-Ray
fluorescence scanning data through element line localisation,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2020, pp. 1444–1448.

[2] X. Huang, E. Uffelman, O. Cossairt, M. Walton, and A. K. Katsaggelos,
“Computational imaging for cultural heritage: Recent developments in
spectral imaging, 3-D surface measurement, image relighting, and X-
Ray mapping,” IEEE Signal Process. Mag., vol. 33, no. 5, pp. 130–138,
Sep. 2016.

[3] A. Pizurica et al., “Digital image processing of the Ghent Altarpiece:
Supporting the painting’s study and conservation treatment,” IEEE Signal
Process. Mag., vol. 32, no. 4, pp. 112–122, Jul. 2015.

[4] S. Huang, B. Cornelis, B. Devolder, M. Martens, and A. Pizurica, “Multi-
modal target detection by sparse coding: Application to paint loss detec-
tion in paintings,” IEEE Trans. Image Process., vol. 29, pp. 7681–7696,
Jul. 2020.

[5] Q. Dai, E. Pouyet, O. Cossairt, M. Walton, F. Casadio, and A. Katsaggelos,
“X-Ray fluorescence image super-resolution using dictionary learning,” in
Proc. IEEE 12th Image, Video, Multidimensional Signal Process. Work-
shop, 2016, pp. 1–5.

[6] Q. Dai, E. Pouyet, O. Cossairt, M. Walton, and A. K. Katsaggelos, “Spatial-
Spectral representation for X-Ray fluorescence image super-resolution,”
IEEE Trans. Comput. Imag., vol. 3, no. 3, pp. 432–444, Sep. 2017.

[7] Q. Dai, H. Chopp, E. Pouyet, O. Cossairt, M. Walton, and A. K. Katsagge-
los, “Adaptive image sampling using deep learning and its application
on X-Ray fluorescence image reconstruction,” IEEE Trans. Multimedia,
vol. 22, no. 10, pp. 2564–2578, Oct. 2020.

[8] R. Van Grieken and A. Markowicz, Handbook of X-Ray Spectrometry.
New York, NY, USA: Marcal Dekker, 2001.

[9] B. Beckhoff et al., Handbook of Practical X-Ray Fluorescence Analysis.
Berlin, Germany: Springer, 2007.

[10] D. H. Wilkinson, “Breit-Wigners viewed through Gaussians,” Nuclear
Instrum. Methods, vol. 95, no. 2, pp. 259–264, 1971.

[11] P. Van Espen et al., “A computer analysis of X-Ray fluorescence spectra,”
Nucl. Instrum. Methods, vol. 142, no. 1/2, pp. 243–250, 1977.

[12] B. Vekemans et al., “Comparison of several background compensation
methods useful for evaluation of energy-dispersive X-Ray fluorescence
spectra,” Spectrochimica Acta Part B: At. Spectrosc., vol. 50, no. 2,
pp. 149–169, 1995.

[13] B. Vekemans et al., “Analysis of X-Ray spectra by iterative least
squares (AXIL): New developments,” X-Ray Spectrometry, vol. 23, no. 6,
pp. 278–285, 1994.

[14] V. A. Solé et al., “A multiplatform code for the analysis of energy-
dispersive X-Ray fluorescence spectra,” Spectrochimica Acta Part B: At.
Spectrosc., vol. 62, no. 1, pp. 63–68, 2007.

[15] M. Alfeld and K. Janssens, “Strategies for processing mega-pixel X-Ray
fluorescence hyperspectral data: A case study on a version of Caravaggio’s
painting Supper at Emmaus,” J. Anal. At. Spectrometry, vol. 30, no. 3,
pp. 777–789, 2015.

[16] C. Ryan and D. Jamieson, “Dynamic analysis: on-line quantitative PIXE
microanalysis and its use in overlap-resolved elemental mapping,” Nuclear
Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At., vol. 77,
no. 1/4, pp. 203–214, 1993.

[17] C. Ryan et al., “A new method for on-line true-elemental imaging using
PIXE and the proton microprobe,” Nuclear Instruments Methods Phys.
Res. Sect. B: Beam Interact. Mater. At., vol. 104, no. 1–4, pp. 157–165,
1995.

[18] M. Alfeld et al., “A mobile instrument for in situ scanning macro-XRF
investigation of historical paintings,” J. Anal. At. Spectrometry, vol. 28,
no. 5, pp. 760–767, 2013.

[19] D. M. Conover, “Fusion of reflectance and X-Ray fluorescence imaging
spectroscopy data for the improved identification of artists’ materials,”
Ph.D. dissertation, The George Washington University, Washington, D.C.,
USA, 2015.

[20] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of
innovation,” IEEE Trans. Signal Process., vol. 50, no. 6, pp. 1417–1428,
Jun. 2002.

[21] J. A. Urigüen, T. Blu, and P. L. Dragotti, “FRI sampling with arbitrary
Kernels,” IEEE Trans. Signal Process., vol. 61, no. 21, pp. 5310–5323,
Nov. 2013.

[22] G. R. de Prony, “Essai éxperimental et analytique: Sur les lois de la
dilatabilité de fluides élastique et sur celles de la force expansive de la
vapeur de l’alkool,a différentes températures,” J. de l’École Polytechnique,
vol. 1, no. 22, pp. 24–76, 1795.

[23] P. Stoica et al., Spectral Analysis of Signals. Upper Saddle River, NJ, USA:
Pearson Prentice Hall, 2005.

[24] A. C. Thompson et al., X-Ray Data Booklet. Lawrence Berkeley National
Laboratory, University of California Berkeley, CA, USA, 2001, vol. 8,
no. 4.

[25] R. M. Rousseau and J. A. Boivin, “The fundamental algorithm: A natural
extension of the Sherman equation, Part I: theory,” Rigaku J., vol. 15, no. 1,
pp. 13–135, 1998.

[26] R. Tagle et al., “Processing of MA(or μ)-XRF data with the M6 software,”
in Proc. 24th Int. Congr. X-Ray Opt. Microanal. (ICXOM24), 2017.

[27] J. I. Goldstein et al., Scanning Electron Microscopy and X-Ray Microanal-
ysis. Berlin, Germany: Springer, 2017.

[28] C. Ryan et al., “SNIP, a statistics-sensitive background treatment for the
quantitative analysis of PIXE spectra in geoscience applications,” Nuclear
Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At., vol. 34,
no. 3, pp. 396–402, 1988.

[29] C. E. Fiori and D. E. Newbury, “Artifacts observed in energy dispersive X-
Ray spectrometry in the scanning electron microscope,” Scanning Electron
Microsc., vol. 1, no. 1978, pp. 401–422, 1978.

[30] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating pa-
rameters of exponentially damped/undamped sinusoids in noise,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 38, no. 5, pp. 814–824,
May 1990.

[31] X. Wei and P. L. Dragotti, “Universal sampling of signals with finite rate
of innovation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2014, pp. 1803–1807.

[32] M. Unser and T. Blu, “Cardinal exponential splines: Part I-theory
and filtering algorithms,” IEEE Trans. Signal Process., vol. 53, no. 4,
pp. 1425–1438, Apr. 2005.

[33] A. Roy and E. Hendriks, “Van Gogh’s “Sunflowers” in London and
Amsterdam,” Nat. Gallery Tech. Bull., vol. 37, pp. 60–77, 2016.

[34] C. Higgitt et al., “‘Methods, materials and condition of the London
Sunflowers’ in Van Gogh’s Sunflowers illuminated: Art meets science,”
Van Gogh Museum Studies, pp. 49–83, 2019.



924 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

[35] L. Keith et al., “Leonardo da Vinci’s “Virgin of the rocks”: Treatment,
technique and display,” Nat. Gallery Tech. Bull., vol. 32, pp. 32–56, 2011.

[36] M. Spring et al., “Leonardo’s Virgin of the rocks in the national gallery,
London; New discoveries from macro X-Ray fluorescence scanning and
reflectance imaging spectroscopy,” Nat. Gallery Tech. Bull., vol. 41,
pp. 68–117, 2021.

[37] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and recon-
structing signals of finite rate of innovation: Shannon meets Strang–Fix,”
IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1741–1757, May 2007.

[38] P. Milanfar, G. C. Verghese, W. C. Karl, and A. S. Willsky, “Reconstructing
polygons from moments with connections to array processing,” IEEE
Trans. Signal Process., vol. 43, no. 2, pp. 432–443, Feb. 1995.

[39] B. Gustafsson et al., “Reconstructing planar domains from their moments,”
Inverse Problems, vol. 16, no. 4, 2000, Art. no. 1053.

[40] M. Elad, P. Milanfar, and G. H. Golub, “Shape from moments-an esti-
mation theory perspective,” IEEE Trans. Signal Process., vol. 52, no. 7,
pp. 1814–1829, Jul. 2004.

[41] P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis
for the Physical Sciences. New York, NY, USA: McGraw-Hill, 1992.

[42] A. Thompson et al., “X-Ray data booklet (2009),” Lawrence Berkeley
National Laboratory, Univ. California, Berkeley, CA, USA, 2009.

Su Yan (Student Member, IEEE) received the B.Eng.
degree in communication engineering from Jilin Uni-
versity, Changchun, China, in 2016 and the M.Sc.
degree in communication engineering with Distinc-
tion from The University of Manchester, Manchester,
U.K., in 2017. He is currently working toward the
Doctoral degree with Electrical and Electronic Engi-
neering Department, Imperial College London, Lon-
don, U.K., under the supervision of Professor Pier
Luigi Gragotti. His research interests include appli-
cations of Finite Rate of Innovation (FRI) sampling

theory, inverse problems, MA-XRF spectrum deconvolution, and MA-XRF
super-resolution.

Jun-Jie Huang (Member, IEEE) received the B.Eng.
(Hons.) degree (with First Class Honours) in elec-
tronic engineering and the M.Phil. degree in elec-
tronic and information engineering from The Hong
Kong Polytechnic University, Hong Kong, China, in
2013 and 2015, respectively, and the Ph.D. degree
from Imperial College London (ICL), London, U.K.,
in 2019. He is currently a Postdoc with Communi-
cations and Signal Processing (CSP) Group, Elec-
trical and Electronic Engineering Department, ICL.
His research interests include the areas of computer

vision, signal processing and deep learning, specifically, for inverse problems,
model-based deep learning, computational imaging.

Nathan Daly received the Ph.D. degree in chemistry
from Columbia University, New York, NY, USA, in
2017 and is currently a Postdoctoral Research Fellow
with the Scientific Department of the National Gallery
funded by an EPSRC research grant with University
College London and Imperial College London, Lon-
don, U.K., titled Art through the ICT Lens (ARTICT):
Big Data Processing Tools to Support the Technical
Study, Preservation and Conservation of Old Master
Paintings. In this role, he specializes in the acquisition
of MA-XRF and hyperspectral data of both reference

materials and paintings in the National Gallery collection and their subsequent
preprocessing and analysis. Previously, he was a Postgraduate Fellow with
Getty Conservation Institute focusing on non-invasive analysis of works on
paper, particularly carbon-based black media, using Raman microspectroscopy,
MA-XRF scanning, and hyperspectral imaging.

His research interests include the use of various non-invasive spectroscopic
mapping and imaging techniques in the cultural heritage field, as well as multi-
variate statistical methods to better interrogate these datasets. He is particularly
interested in developing methods to combine complementary datasets in order to
improve their interpretation and the application of this information by museum
conservators and curators.

Catherine Higgitt received the Ph.D. degree in
chemistry from the University of York, York, U.K.,
and joined the National Gallery in 1999, as an Organic
Analyst, specialising in the study of paint binding
media and other organic natural product materials as-
sociated with paintings using a combination of spec-
troscopic and chromatographic techniques. She has
a particular interest in the ageing, deterioration and
interactions undergone by materials and the impact
such interactions can have on the interpretation of
analytical results.

Between 2007 and 2015, she was the Head of science at the British Museum,
gaining experience working with a wider variety of materials and handling data
acquired using a very broad range of analytical and imaging techniques including
multispectral imaging techniques.

In 2015, she returned to the National Gallery, as a Principal Scientist, building
on her previous research and helping extend the range of analytical and imaging
approaches available for the study of paintings. Her role has included introducing
the use of MA-XRF scanning into institutional practice and helping to develop
cutting edge visible-nIR-SWIR hyperspectral imaging equipment for use at the
NG. As the majority of methods she employs, whether on micro-samples (e.g.
GC-MS, HPLC-PDA, ATR-FTIR, SEM-EDX) or in-situ on paintings (MA-XRF,
OCT and HSI) generate 3D datasets or datacubes she is increasingly concerned
with how best to interrogate, interpret and present this data and possibilities to
combine datasets to enrich understanding. She has extensive experience in the
application and publication of her research for different academic audiences,
including both art-historical and scientific, and wider public.

Pier Luigi Dragotti (Fellow, IEEE) received the
Laurea degree (summa cum laude) in electronic en-
gineering from the University Federico II, Naples,
Italy, in 1997, the master’s degree in communications
systems from the Swiss Federal Institute of Technol-
ogy of Lausanne (EPFL), Switzerland, in 1998, and
the Ph.D. degree from EPFL, Switzerland, in April
2002. He is currently a Professor of signal processing
with Electrical and Electronic Engineering Depart-
ment, Imperial College London, London, U.K. Before
joining Imperial College in November 2002, he was

a Senior Researcher with EPFL, working on distributed signal processing for
Swiss National Competence Center in Research on Mobile Information and
Communication Systems. He has also held several visiting positions. He was
a Visiting Student with Stanford University, Stanford, CA, USA, in 1996, a
Summer Researcher with the Mathematics of Communications Department,
Bell Labs, Lucent Technologies, Murray Hill, NJ, USA, in 2000, and a Visiting
Scientist with the Massachusetts Institute of Technology, Cambridge, MA, USA,
in 2011. His research interests include sampling theory, wavelet theory and its
applications, sparsity-driven signal processing, and computational imaging.

He was the Editor-in-Chief of the IEEE TRANSACTIONS ON SIGNAL PRO-
CESSING during 2018–2020, a Member of the IEEE SPS Fellow Evaluation
Committee during 2020–2021, an Associate Editor for the IEEE TRANSACTIONS

ON IMAGE PROCESSING during 2006–2009, and an Elected Member of the IEEE
Image, Video and Multidimensional Signal Processing Technical Committee
during 2008–2013, where he acted as chair of the award sub-committee during
2011–2013. He was a Member of the IEEE Signal Processing Theory and
Methods Technical Committee during 2013–2018. He was a Member of the
Computational Imaging Technical Committee during 2015—2020. He was
also the Technical Co-Chair for the European Signal Processing Conference
(Eusipco) in 2012. Dragotti was also the recipient of the European Research
Council (ERC) Investigator Award during 2011–2016. He is currently an IEEE
SPS Distinguished Lecturer.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


