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Effect of Pixelation on the Parameter Estimation
of Single Molecule Trajectories

Milad R. Vahid , Bernard Hanzon, and Raimund J. Ober, Senior Member, IEEE

Abstract—The advent of single molecule microscopy has revo-
lutionized biological investigations by providing a powerful tool
for the study of intercellular and intracellular trafficking pro-
cesses of protein molecules which was not available before through
conventional microscopy. In practice, pixelated detectors are used
to acquire the images of fluorescently labeled objects moving in
cellular environments. Then, the acquired fluorescence microscopy
images contain the numbers of the photons detected in each pixel,
during an exposure time interval. Moreover, instead of having the
exact locations of detection of the photons, we only know the pixel
areas in which the photons impact the detector. These challenges
make the analysis of single molecule trajectories, from pixelated
images, a complex problem. Here, we investigate the effect of pixe-
lation on the parameter estimation of single molecule trajectories.
In particular, we develop a stochastic framework to calculate the
maximum likelihood estimates of the parameters of a stochastic
differential equation that describes the motion of the molecule in
living cells. We also calculate the Fisher information matrix for this
parameter estimation problem. The analytical results are compli-
cated through the fact that the observation process in a microscope
prohibits the use of standard Kalman filter type approaches. The
analytical framework presented here is illustrated with examples
of low photon count scenarios for which we rely on Monte Carlo
methods to compute the associated probability distributions.

Index Terms—Cramér-Rao lower bound, Fisher information
matrix, maximum likelihood estimation, Monte Carlo, pixelated
detectors, single molecule tracking, stochastic differential
equations.

I. INTRODUCTION

THE STUDY of intercellular and intracellular trafficking
processes of objects of interest has been the subject of

many research projects during the past few decades. The advent
of single molecule microscopy made it possible to observe and
track single molecules in living cells, which were not achievable
before using conventional microscopes [1]–[7].
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In fluorescence microscopy, the photons emitted by a fluo-
rescently labeled object located in the object space are detected
by a planar detector in the image space. In the fundamental
data model, we assume that the time points and locations of the
photons emitted by the object are detected by an ideal unpix-
elated detector. However, in practice, pixelated detectors, such
as charge-coupled device (CCD) and electron multiplying CCD
(EMCCD) cameras, are commonly used for acquiring the image
of the object. In this case, referred to as the practical data model,
the measurements, i.e., the fluorescence microscopy images,
consist of the numbers of the photons detected in each pixel.
Moreover, instead of having the exact locations of detection
of the photons, we only know the pixel areas in which the
photons impact the detector. These challenges make the analysis
of single molecule trajectories from pixelated images a complex
problem.

In the literature, there are several methods available concern-
ing the problem of the parameter estimation of single molecule
trajectories in cellular contexts. The majority of these meth-
ods model the effect of pixelation by using an additive noise
in the fundamental data model. However, in general, this ap-
proximation does not describe the underlying stochastic model
precisely. For example, in [8]–[10], by encapsulating the effect
of pixelation in a Gaussian additive random variable, referred
to as the localization uncertainty, Berglund and Michalet have
proposed methods for the estimation of diffusion coefficients
based on mean square displacement of the observed locations of
the molecule. For a similar observation model, Relich et al. [11]
have proposed a method for the maximum likelihood estimation
of the diffusion coefficient, with an information-based confi-
dence interval, from Gaussian measurements. Although using
these approximate observation models makes all correspond-
ing computations simpler, it does not model the effect of the
pixelated camera accurately. Calderon has extended Berglund’s
motion blur model to handle confined dynamics [12]–[14]. His
proposed approach enables the estimation of the parameters of
the motion model of the molecule by considering confinement
and motion blur within a time domain maximum likelihood
estimation framework. In [15], for the single molecule trajectory
parameter estimation problem, a more accurate model has been
used to describe the image of pixelated detectors. In this model,
the expected intensity measured in each pixel is obtained by
integrating the image profile, which is expressed in terms of a
scaled and shifted version of the point spread function, over the
pixel area. Here, we use a similar approach to model pixelated
data more accurately.
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In [16], we developed a stochastic framework in which we
calculate the maximum likelihood estimates of the parameters
of the model that describes the motion of the molecule in
cellular environments. More importantly, we proposed a general
framework to calculate the Cramér-Rao lower bound (CRLB),
given by the inverse of the Fisher information matrix, for the
estimation of unknown parameters and use it as a benchmark in
the evaluation of the standard deviation of the estimates. In [16],
we focused on the fundamental microscopy data model, in which
the image of a molecule is acquired by an unpixelated detector.

In this paper, we propose a general framework to investigate
the effect of pixelation of the detector on the parameter esti-
mation of single molecule trajectories accurately. We extend
our previous results obtained for deterministic trajectories [17]
and show examples of low photon count scenarios. We also
include an example analysis in which we show how the standard
deviation of parameter estimates depends on the pixel size of the
detector. We consider complex relationships between the single
molecule motion model, the photon emission process and the
underlying statistical model of photon detection in the pixels of
the detector in deriving all analytical expressions, e.g., likelihood
function and Fisher information matrix, and no approximations
are made.

This paper is organized as follows. In Section II, we introduce
important notations used to define different data models in
the paper. In Section III, we define fundamental and practical
data models and present mathematical descriptions of them. In
Section IV, we introduce continuous-time stochastic differen-
tial equations, which are used to model the motion of single
molecules in cellular environments, and calculate their solutions
at discrete time points. Section V is devoted to calculation of the
maximum likelihood estimates of the parameters of the system
based on the introduced motion and data models in the previous
sections. In Section VI, we calculate the general expressions for
the Fisher information matrix for both of the fundamental and
practical data model. In Section VII, we investigate the effect
of noise on the expressions derived in the previous sections.
Finally, a summary of the paper and conclusions are provided
in Section VIII.

II. NOTATIONS

In this section, we introduce the following notations that will
be used throughout the paper.

Let Cp be a pixelated detector defined as the union of a collec-
tion {C1, . . . , CK} of connected open and disjoint subsets of a
region within R2 corresponding to the photon detection area of
the detector. LetL ≥ 1. We use the notationALK = {1, . . . ,K}L
to denote the set of vectors of all possible pixel labels of L pho-
tons detected in the pixelated image (see Section III-B for more
detailed definitions). We also denote the Cartesian product of the
pixel sets Cv1 , . . . , CvL , where v1, v2, . . . , vL ∈ {1, 2, . . . ,K}
by Cv1:L = Cv1 × Cv2 × . . . CvL .

In this paper, for random vectors X and Y , the conditional
probability density function ofX , given Y , is denoted by pX|Y .
For example, let X(τ1), . . . , X(τL) ∈ R3 denote the locations
of the molecule at a sequence of time points (τ1, . . . , τL) ∈

ΔL := {(τ1, . . . , τL) : t0 ≤ τ1 < τ2 < . . . < τL ≤ t}. Then,
denoting the locations of the detected photons on the detector
plane by R1 := U(X(T1)), R2 := U(X(T2)), . . . , RL :=
U(X(TL)) ∈ R2, where U is a random function that maps the
object space into the image space, the conditional probability
density function of Rl, given Rl−1, l = 2, . . . , L, where we
assume L ≥ 2, is denoted by pRl|Rl−1

. Note that in this paper,
we use uppercase letters, e.g., Ti, to denote random variables,
and lowercase letters, e.g., τi, to denote particular values
that the random variables can assume. We also denote the
Poisson-distributed probability, with nonnegative intensity
function Λ(τ), τ ≥ t0, of detecting L ≥ 0 photons in the

time interval [t0, t] by pL :=
e
−
∫ t
t0

Λ(ψ)dψ

(
∫ t
t0

Λ(ψ)dψ)L

L! (see
Section III-A for more details).

Given observed data r ∈ R2 with probability distribution pθR,
where θ ∈ Rn denotes the row vector of parameters, the Fisher
information matrix I(θ) is given by

I(θ) = E

{(
∂

∂θ
log pθR(r)

)T (
∂

∂θ
log pθR(r)

)}
. (1)

See Section VI for the detailed description of Fisher information
matrix.

Also, in order to simplify vector representations of com-
plex formulas in this paper, for arbitrary n-dimensional vec-
tors x1, . . . , xL ∈ Rn (or n-dimensional random variables
X1, . . . , XL), we define the n× L vector x1:L := (x1, . . . , xL)
(or X1:L := (X1, . . . , XL)). The integral of f : Rn×L �→ R
over Rn×L is denoted by

∫
Rn×L f(x1:L)dx1:L.

III. DATA MODEL

In a standard optical microscope, the image of an object,
which is in general moving in the object space, is captured
by a detector in the image space. In order to be able to model
the photon detection process in a pixelated detector we firstly
require a model of the precise impact locations on the detector
of photons emitted by the imaged object. Such a model, the
fundamental data model, has been developed in [16], [18], [19].
In this fundamental data model, we consider ideal conditions
for the data acquisition procedure, in which it is assumed that
we have an unpixelated image detector. We briefly summarize
this model here before proceeding to the development of the
practical data model. For this we use the fundamental data model
to obtain a probabilistic description for the number of photons
detected in each pixel of a pixelated detector.

A. Fundamental Data Model

In the fundamental data model, the acquired data are the time
points and locations of detection of the photons emitted from
the object, where we have an unpixelated image detector. These
time points and locations are intrinsically random. In general, the
time points of detection of the emitted photons can be modeled
as a counting process. The locations of detection of the photons
emitted by the object are described by a random function that
maps the object space into the image space. In this paper, for



100 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

the fundamental data model, we assume that the locations of the
photons, with the correct chronological ordering, emitted by the
object can be detected by the detector.

We introduce the following notation. For t0 ∈ R, let the
random processX(τ), τ ≥ t0, describe the location of an object
of interest, which emits photons, in the object space at time τ . Let
C := R2 denote a non-pixelated detector. Let {N(τ), τ ≥ t0}
be a Poisson process with non-negative and piecewise contin-
uous intensity function Λ(τ), τ ≥ t0, that describes the time
points of detection of the photons emitted by the object that
impact the detector C. These ordered time points, which are
the events (jump points) of {N(τ), τ ≥ t0}, are denoted by
one-dimensional (1D) random variables t0 ≤ T1 < T2 < · · · .
The location of detection of the photon emitted by the object,
at time τ ≥ t0, that impacts the detector C is described by
U(X(τ)), where U is a random function that maps the object
space into the image space. For x ∈ R3, let fx denote the
probability density function of U(x), referred to as the image
profile of an object located at x ∈ R3 in the object space. In
many practical scenarios, the image profile can be described as
a scaled and shifted version of a function, referred to as the image
function, that describes the image of an object on the detector
plane at unit lateral magnification. Assume that there exists a
function qz0 :R

2 �→ R, z0 ∈ R, such that for an invertible matrix
M ∈ R2×2 and x := (x0, y0, z0) ∈ R3,

fx(r) :=
1

|det(M)|qz0
(
M−1r − (x0, y0)

T
)
, r ∈ C. (2)

In particular, when the object is a point source and is in-
focus with respect to the detector, according to optical diffraction
theory, its image can be modeled by the continuous function q,
called an Airy profile given by

q(x0, y0) =
J2
1

(
2πna

λ

√
x20 + y20

)
π (x20 + y20)

, (x0, y0) ∈ R2, (3)

where na denotes the numerical aperture of the objective lens, λ
denotes the emission wavelength of the molecule, andJ1 denotes
the first order Bessel function of the first kind. In some applica-
tions, it is computationally more convenient to approximate the
Airy profile by a Gaussian distribution given by

q(x0, y0) =
1

2πσ2
e
− 1

2

(
x2
0
+y2

0
σ2

)
, (x0, y0) ∈ R2, (4)

where σ > 0.
For an out-of-focus point source, the image function can be

modeled by the classical Born and Wolf model given by, for
(x0, y0) ∈ R2, [20]

qz0(x0, y0)

=
4πn2a
λ2

∣∣∣∣
∫ 1

0

J0

(
2πna

λ
ρ
√
x20 + y20

)
e
jπn2

az0
noλ

ρ2ρdρ

∣∣∣∣
2

,

(5)

where J0 is the zeroth-order Bessel function of the first kind, no
is the refractive index of the objective lens immersion medium,
and z0 ∈ R is the z-location of the point source on the optical
axis in the object space.

The above mentioned image functions are only examples of
the myriad of image functions that have been proposed and
are used to describe image formation in a microscope and are
themselves in fact approximations [18]. The subsequent devel-
opments are therefore carried out with a high level of generality
to allow for the use of the most appropriate image function in a
circumstance.

In [16], we use the fundamental data model for the max-
imum likelihood estimation of biophysical parameters such
as diffusion and drift coefficients, from images acquired by
an unpixelated detector. The joint probability density of the
acquired data points, i.e. the impact locations of the detected
photons on the detector, is the key probabilistic concept for
our later developments. Specifically, in Theorem 3.1, we cal-
culate the conditional probability density function pR1:L|N(t)

of R1 = U(X(T1)), . . . , RL = U(X(TL)), given N(t) for the
fundamental data model. In the next section, we will use these
results to characterize the acquired data from pixelated detectors.

Theorem 3.1: Let L ≥ 1. The conditional probability density
function pR1:L|N(t) of R1, . . . , RL, given N(t) = L, can be
calculated as

pR1:L|N(t) (r1:L|L)

=

∫
R3×L

(∫
ΔL

F (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L, (6)

where

F (r1:L, x1:L, τ1:L) :=
L!(∫ t

t0
Λ(ψ)dψ

)L

×
(

L∏
i=1

fxi(ri)Λ(τi)

)
pX(τ1),...,X(τL)(x1:L), (7)

is the conditional probability density function over the set of
all (r, x, τ), given N(t) = L, and pX(τ1),...,X(τL) is the joint
probability density function of X(τ1), . . . , X(τL).

If L ≥ 2 and {X(τ1), . . . , X(τL)} is a Markov sequence,
then,

pX(τ1),...,X(τL) (x1:L)

= pX(τ1) (x1)

L∏
l=2

pX(τl)|X(τl−1) (xl|xl−1) ,

where pX(τl)|X(τl−1), l = 2, . . . , L, is the conditional probability
density function of X(τl), given X(τl−1), and pX(τ1) is the
probability density function of X(τ1).

Proof: See Appendix IX-B. �

B. Practical Data Model

In practice, pixelated detectors, e.g. CCD and EMCCD cam-
eras, are commonly used for acquiring images of fluorescently
labeled objects. In this subsection, we describe the practical data
model.

In the practical data model, the data acquired by a pixelated
detector are the number of detected photons at each pixel (Fig. 1).
Let the pixelated detector Cp be defined as the union of a
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Fig. 1. Schematic of an optical microscope. An object located in the object
(focal) plane is imaged by an optical lens system and the image of the object is
acquired by a pixelated detector in the image space. A random variableX(t), t ≥
t0, describes the location of the object in the object plane at time t.

collection {C1, . . . , CK} of connected open and disjoint subsets
of a region within R2 corresponding to the photon detection area
of the detector, such that

⋃K
k=1 Ck = Cp. We use the random

variable Sk, k = 1, . . . ,K, to describe the number of photons
in the pixelCk that result from the detection of photons from the
object of interest. Let L =

∑K
k=1 Sk denote the total number of

photons that impact the detector in a given experiment. We now
need a notation that allows us to translate the information of the
pixel labels of the individual photons to the number of photons
in each pixel (i.e. the Sk values). Note that L = 0 if and only
if Sk = 0 for all k = 1, 2, . . . ,K, which is a trivial case. Now
assume L ≥ 1.

Let ALK = {1, . . . ,K}L denote the set of vectors of all pos-
sible pixel labels of L photons. This means that each L element
vector in ALK contains the pixel numbers in which each of the
detected photons is captured. For the simple example where we
have K = 2 pixels and L = 3 photons, for each vector in the
set A3

2, the first component denotes the pixel in which the first
detected photon is captured, etc. The vector v = (2, 1, 2) ∈ A3

2

implies that the first photon is captured by pixel 2, the second
photon by pixel 1 and the third photon again by pixel 2. The set
of all such vectors for this example is given by

A3
2 : = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1),

(2, 1, 2), (2, 2, 1), (2, 2, 2)} .
Note that for a vector v = (v1, v2, . . . , vL),

Pr

[
L⋂
l=1

(Rl ∈ Cvl) |N(t) = L

]

=

∫
Cv1:L

pR1:L|N(t) (r1:L|L) dr1:L, (8)

or for our small example, for v = (v1, v2, v3) = (2, 1, 2),

Pr [(R1 ∈ C2) ∩ (R2 ∈ C1) ∩ (R3 ∈ C2) |N(t) = 3]

=

∫
C2

∫
C1

∫
C2

pR1,R2,R3|N(t) (r1, r2, r3|3) dr3dr2dr1.
(9)

In order to be able to compute the probability Pr[S1 =
z1, S2 = z2, . . . , SK = zK ], we need to know all the events
that lead to the photon count S1 = z1, S2 = z2, . . . , SK = zK ,
or we need to know the elements of ALK that can lead to this
photon count. For our example, as we haveK = 2 pixels we are
interested to determine Pr[S1 = z1, S2 = z2]. If as above we
know that L = z1 + z2 = 3, i.e. that sum of the pixel counts is
3, we need to determine the elements of A3

2 that are consistent
with this photon count.

We therefore, for a vector v ∈ ALK , denote by ‖v‖=k, k =
1, . . . ,K, the number of the entries of v which are equal to
k. So as v denotes a vector of pixel labels of L photons, then
‖v‖=k, k = 1, . . . ,K denotes the number of photons that have
ended up in pixel k. For example, for v = (1, 1, 2) ∈ A3

2, we
have ‖v‖=1 = 2, ‖v‖=2 = 1.

This leads us to the following notation, which, for given
photon numbers z1, . . . , zK ∈ {0, 1, · · · }, and

∑K
k=1 zk = L,

lists the elements in ALK that will produce these photon counts
in the pixels C1, C2, . . . , CK , i.e.

ALK (z1, . . . , zK) :=
{
v ∈ ALK | ‖v‖=k = zk, k = 1, . . . ,K

}
.

(10)

So this set contains all vectors of pixel labels of L photons that
correspond to a configuration in which zk photons have landed
in pixel Ck, for k = 1, 2, . . . ,K.

Continuing our example we want to determine A3
2(1, 2), i.e.

the elements inA3
2 that are such that there is one photon detected

in pixel C1 and 2 photons in pixel C2. Examining the setA3
2 we

see that (1,2,2) is an element ofA3
2(1, 2) as one photon, the first

detected, is captured in pixel 1 and two photons, the second and
third detected photon, are captured in pixel 2. Proceeding in this
manner we obtain,

A3
2(1, 2) := {(1, 2, 2), (2, 1, 2), (2, 2, 1)} ,

A3
2(2, 1) := {(1, 1, 2), (1, 2, 1), (2, 1, 1)} ,

A3
2(0, 3) := {(2, 2, 2)} ,

A3
2(3, 0) := {(1, 1, 1)} .

With this notation we can now immediately see what one
needs to do to, for example, compute the probability Pr[S1 =
2, S2 = 1]. The set of events that lead to S1 = 2 and S2 = 1 is
given by A3

2(2, 1), i.e. {(1, 1, 2), (1, 2, 1), (2, 1, 1)}. Therefore,

Pr[S1 = 2, S2 = 1]

= Pr [((R1 ∈ C1) ∩ (R2 ∈ C1) ∩ (R3 ∈ C2))

∪ ((R1 ∈ C1) ∩ (R2 ∈ C2) ∩ (R3 ∈ C1))

∪ ((R1 ∈ C2) ∩ (R2 ∈ C1) ∩ (R3 ∈ C1)) |N(t)

= L]Pr [N(t) = L]

=Pr

⎡
⎣ ⋃
v1:3∈A3

2(2,1)

(
3⋂
l=1

(Rl ∈ Cvl)

)
|N(t) = 3

⎤
⎦Pr [N(t) = 3]



102 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

=
∑

v1:3∈A3
2(2,1)

Pr

[(
3⋂
l=1

(Rl ∈ Cvl)

)
|N(t) = 3

]
Pr [N(t) = 3].

The expressions on the right hand side can be computed using
the expression above (Eq. (8)).

In the following theorem we summarize the above derivations
and state the main result of this section. It provides the desired
expression for the discrete multivariable probability distribution
Pr[S1 = z1, S2 = z2, . . . , SK = zK ] that z1, z2, . . . , zK pho-
tons are detected in pixels C1, C2, . . . , CK . Assuming that we
have acquired L photons in total on the detector, this expression
is given by Eq. (11) below. It shows how we can compute
the probability that the detected photons during one trajectory
impact the various pixels. In this theorem we need to make
a technical distinction between two different versions of the
detector. If C̄p = R2, the model is referred to as the infinite
practical data model. We will see later that the infinite practical
model will lead to somewhat simplified expressions, for example
of the likelihood function. Obviously, in reality no practical
detector will be infinite. But this model can serve as a useful
approximation in the cases where we can assume that all photons
that impact the infinite detector plane that is spanned by the
detector, are in fact captured by the detector itself.

Theorem 3.2: Let t0 and t, t0 < t, be given. 1. In the infinite
practical data model, we have, for z1, . . . , zK = 0, 1, · · · , and
L =

∑K
k=1 zk: Pr(L = 0) = p0, and for L ≥ 1:

Pr [S1 = z1, . . . , SK = zK ] = pL
∑

v1:L∈ALK(z1:K)

∫
Cv1:L

[∫
R3×L

(∫
ΔL

F (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

]
dr1:L, (11)

where F (.) is given by Eq. (7).
2. In the practical data model, we have

Pr[L = 0] = p0 +

∞∑
z=1

pz
∑

v1:z∈AzK+1(z1:K ,z)∫
Cv1:z

[∫
R3×z

(∫
Δz
F (r1:z, x1:z, τ1:z) dτ1:z

)
dx1:z

]
dr1:z,

and

Pr [S1 = z1, · · · , SK = zK ] =
∞∑
z=0

pL+z
∑

v1:L+z∈AL+z
K+1(z1:K ,z)∫

Cv1:L+z

[∫
R3×(L+z)

(∫
ΔL+z

F (r1:L+z, x1:L+z, τ1:L+z) dτ1:L+z

)

× dx1:L+z

]
dr1:L+z, L ≥ 1. (12)

HereCK+1 denotes the complement (in the detector plane) of
the closure of the union of the pixel sets that form the detector,
so it accounts for all the photons that have gone through the
detector plane, but have missed the detector. (Note that CK+1

will be open, but we do not claim CK+1 is connected).

Proof: See Appendix IX-C. �
The result states that in order to compute the discrete proba-

bility distribution for a set of photon counts we need to carry out
a summation of integrals. The number of summands is given by
the size |ALK(z1, . . . , zK)| of the set ALK(z1, . . . , zK) which is
equal to L!

z1!···zK ! .
In the above theorem, we account for all photons that cross

the detection plane, and therefore the time points of detection
are Poisson distributed with intensity functionΛ(ψ), ψ ∈ [t0, t].
Another approach would be to only use the time points at which a
photon is detected on the detector. These time points still form a
Poisson process, but with a location-sensitive intensity function.
This approach leads to a very complicated analysis, which is why
we take the alternative approach as in Theorem 3.2.

IV. LINEAR STOCHASTIC SYSTEMS

In general, the motion of an object in cellular environments
is subject to different types of forces, e.g., deterministic forces
due to the environment and random forces due to random col-
lisions with other objects [21], [22]. The 3D random variable
X(τ) denotes the location of the object at time τ ≥ t0. Then,
the motion of the object is assumed to be modeled through a
general state space system with state X̃(τ) ∈ Rk, τ ≥ t0, as,
for τ0 := t0 ≤ τ1 < · · · < τl+1 < · · · ,

X̃(τl+1) = φ̃(τl, τl+1)X̃(τl) + W̃ (τl, τl+1), (13)

where we assume that there exists a matrixH ∈ R3×k such that
X(τ) = HX̃(τ), τ ≥ t0, φ̃(τl, τl+1) ∈ Rk×k is a state transi-
tion matrix, and {W̃ (τl, τl+1), l = 1, 2, · · · } is a sequence of
k-dimensional random variables. We also assume that the initial
state X̃(t0) is independent of W̃ and its probability density
function is given by pX̃(t0)

. The framework we employ here
is very general in that, depending on the specific problem we
are considering, the system matrices are assumed to be known,
unknown or partially known. The unknown elements of the
system matrices would form part of the parameter vector that
is to be estimated.

The general system of discrete evolution equations described
by Eq. (13) can arise, for example, from stochastic differential
equations [23]. In particular, in many biological applications,
solutions of linear stochastic differential equations are good
fits to experimental single-molecule trajectories [23]. As an
example, we assume that the motion of the object of interest,
e.g., a single molecule, is described by the following linear vector
stochastic differential equation [14]

dX(τ) = (V + F (τ)X(τ)) dτ +G(τ)dB(τ), τ ≥ t0,
(14)

where the 3D random processX(τ) describes the location of the
object at time τ ≥ t0, F ∈ R3×3 and G ∈ R3×r are continuous
matrix time-functions related to the first order drift and diffusion
coefficients, respectively, V ∈ R3 is the zero order drift coeffi-
cient, and {B(τ) ∈ Rr, τ ≥ t0} is an r-vector Brownian mo-
tion (Wiener) process with E{dB(τ)dB(τ)T } = Ir×r, τ ≥ t0,
where Ir×r is the r × r identity matrix [12]–[14]. Then, the
solution of Eq. (14) at discrete time points τ0 := t0 ≤ τ1 <
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· · · < τl+1 < · · · is given by [24]

X(τl+1) = φ(τl, τl+1)X(τl) + a(τl, τl+1) +W (τl, τl+1),
(15)

where the continuous matrix time-function φ ∈ R3×3 is given
by

dφ(t, τ)

dt
= F (t)φ(t, τ), φ(τ, τ) = I3×3, for all t, τ ≥ t0,

φ(t, τ)φ(τ, ψ) = φ(t, ψ), for all t, τ, ψ ≥ t0,

and the vector a(τl, τl+1) ∈ R3×1 is given by

a(τl, τl+1) :=

(∫ τl+1

τl

φ(τ, τl+1)dτ

)
V.

Also, in this case,{
W (τl, τl+1) :=

∫ τl+1

τl

φ(τ, τl+1)G(τ)dB(τ), l = 1, 2, · · ·
}

is a zero mean white Gaussian sequence with covariance
Q(τl, τl+1) ∈ R3×3 given by

Q(τl, τl+1) =

∫ τl+1

τl

φ(τ, τl+1)G(τ)G
T (τ)φT (τ, τl+1)dτ.

By letting X(τ) = HX̃(τ) = I3×3X̃(τ) = X̃(τ), τ ≥ t0, and
φ(τl, τl+1) = φ̃(τl, τl+1), we obtain expressions of the form of
Eq. (13), where we assume that{

W̃ (τl, τl+1) = a(τl, τl+1) +W (τl, τl+1), l = 1, 2, · · ·
}

is a white Gaussian sequence with mean a(τl, τl+1) and covari-
ance Q(τl, τl+1).

V. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we provide a general framework to calculate
the maximum likelihood estimates of the parameters of interest
for both fundamental and practical data models. In general, these
parameters can include the ones that describe the motion of the
object, such as drift and diffusion coefficients, or the ones related
to the image formation of the object on the detector, such as the
intensity function. In the following, we briefly explain the basis
of the maximum likelihood estimation.

A. Maximum Likelihood Estimation for Fundamental
Data Model

Let Θ denote the parameter space that is an open subset of
R1×n.* The maximum likelihood estimate θ̂mle of θ ∈ Θ for the
fundamental data model is given by

θ̂mle = argminθ∈Θ (− logLf (θ|r1:L)) ,
where r1, . . . , rL ∈ R2 denote the acquired data and
Lf (θ|r1:L) = pθR1:L|N(t)(r1:L|L) denotes the likelihood
function for the fundamental data model given by Eq. (6).

In the rest of this paper, we only focus on the estimation of
the parameters of the motion model, such as drift coefficient,
diffusion coefficient and initial location of the molecule, i.e.,

*This assumption is made for ease of exposition.

we assume that Λ and fx are independent of θ. All parameters
of the trajectory of the molecule have been encapsulated in
the parameter vector θ and our approach does not have sig-
nificant restrictions on which parameters can be included in
this parameter vector. We also denote the dependence of the
variable/function on the parameter vector θ, by adding θ to its
symbol as a superscript or subscript. For example, pR1:L|N(t)

and F in Eq. (6) are denoted by pθR1:L|N(t) and Fθ, respectively.

B. Maximum Likelihood Estimation for Practical Data Model

The maximum likelihood estimate θ̂mle of θ ∈ Θ for the
practical data model is given by

θ̂mle = argminθ∈Θ (− logLp(θ|z1, . . . , zK)) ,

where {z1, . . . , zK}, z1, . . . , zK = 0, 1, · · · ;L =
∑K
k=1 zk,

denotes an image with K pixels and Lp denotes the likelihood
function for the infinite practical data model given by, according
to Theorem 3.2,

Lp(θ|z1, . . . , zK)

= Prθ [S1 = z1, . . . , SK = zK ]

= pLPr
θ [S1 = z1, . . . , SK = zK |N(t) = L]

= pL

∫
ΔL

[ ∑
v1:L∈ALK(z1:K)

∫
R3×L

L∏
l=1

ICvl (xl)

× pθX(τ1),...,X(τL)
(x1:L) dx1:L

]
pT1:L|N(t) (τ1:L|L) dτ1:L,

(16)

where

ICvl (xl) :=

∫
Cvl

fxl(r)dr, l = 1, . . . , L, (17)

is the probability that, given that the systems state is xl at time
τl, the photon that arrives at time τl hits Cvl . For the practical
data model, we have

Lp(θ|z1, . . . , zK)

=

∞∑
z=0

pL+z

∫
ΔL+z

[ ∑
v1:L+z∈AL+z

K+1(z1:K ,z)

∫
R3×(L+z)

×
L+z∏
l=1

ICvl (xl)p
θ
X(τ1),...,X(τL+z)

(x1:L+z) dx1:L+z

]

× pT1:L+z |N(t) (τ1:L+z|L+ z) dτ1:L+z. (18)

In general, computing the integrals of the likelihood function
is not a trivial task. Here, based on the Monte Carlo approach
provided in [25]–[27], we develop an algorithm to approximate
these integrals. The basis of our algorithm is the law of large
numbers, which can be stated as follows.

Let {τn1 , . . . , τnL}Nn=1 be N sequences of L time points in
the interval [t0, t], each are arrivals of a Poisson process with
intensity functionΛ(ψ) and such that preciselyL time points are
in the exposure time interval [t0, t]. LetX(τn1 ), . . . , X(τnL), n =
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1, . . . , N , be 3D random variables that describe the locations
of the object at time points τ0 := t0 ≤ τn1 < · · · < τnL ≤ t. Let
pX(τn1 ),...,X(τnL ) be the joint distribution of X(τn1 ), . . . , X(τnL).
Then, the likelihood function (Eq. (16)) can be approximated as

Lp(θ|z1, . . . , zK)

≈ pL
1

N

N∑
n=1

∑
v1:L∈ALK(z1:K)

[
1

Mc

Mc∑
m=1

(
L∏
l=1

ICvl (x
m,n
l )

)]
,

(19)

where according to the law of large numbers

lim
Mc→∞

1

Mc

Mc∑
m=1

(
L∏
l=1

ICvl (x
m,n
l )

)

= E

{
L∏
l=1

ICvl (X(τl))

}

=

∫
R2×L

(
L∏
l=1

ICvl (xl)

)
pX(τn1 ),...,X(τnL ) (x1:L) dx1:L,

(20)

in which {xm,n := (xm,n1 , . . . , xm,nL )}Mc
m=1, x

m,n
l ∈ R3, l =

1, . . . , L,m = 1, . . . ,Mc, is a sequence ofMc independent and
identically distributed trajectories drawn from the distribution
pX(τn1 ),...,X(τnL ). As the state process {X̃(τ)}τ≥t0 is a Markov
process (see Eq. (13)) we carry out the Monte Carlo simu-
lations for this state process and then obtain the simulations
for {X(τ)}τ≥t0 as X(τ) = HX̃(τ), τ ≥ t0. As {X̃(τ)}τ≥t0 is
Markov, the joint probability density function pX̃(τ1),...,X̃(τL)

of

X̃(τ1), . . . , X̃(τL) is given by

pX̃(τ1),...,X̃(τL)
(x̃1:L) = pX̃(τ1)

(x̃1)

×
L∏
l=2

pX̃(τl)|X̃(τl−1)
(x̃l|x̃l−1) . (21)

We draw Mc trajectories xm,n,m = 1, . . . ,Mc, n = 1, . . . , N ,
through the following Monte Carlo algorithm [25]–[27]:

Algorithm 5.1 (Monte Carlo method): Step 0: Suppose we
have observed the arrival ofL photons on the detector during the
exposure time interval. Let {τn1 , . . . , τnL}Nn=1 beN sequences of
L time points, each are arrival times of a Poisson process with
intensity function Λ(ψ) and with precisely L time points in the
exposure time interval [t0, t].

Step 1: For each n, draw independent and identi-
cally distributed (i.i.d.) samples {x̃m,n1 }Mc

m=1 according to
pX̃(τn1 )(x̃), x̃ ∈ Rk, i.e., x̃m,n1 ∼ pX̃(τn1 )(x̃),m = 1, . . . ,Mc.

Step 2: For each n, draw i.i.d. samples {x̃m,n2 }Mc
m=1

according to pX̃(τn2 )|X̃(τn1 )(x̃|x̃m,n1 ), x̃ ∈ Rk, i.e., x̃m,n2 ∼
pX̃(τn2 )|X̃(τn1 )(x̃|x̃m,n1 ),m = 1, . . . ,Mc.

...
Step L. For each n, draw i.i.d. samples {x̃m,nL }Mc

m=1

according to pX̃(τnL )|X̃(τnL−1)
(x̃|x̃m,nL−1), x̃ ∈ Rk, i.e., x̃m,nL ∼

pX̃(τnL )|X̃(τnL−1)
(x̃|x̃m,nL−1),m = 1, . . . ,Mc.

Step L+ 1. Repeat Steps 0 to L, N times and approximate
the likelihood function by Eqs. (19) and (20) by setting xm,nl :=
Hx̃m,nl ,m = 1, . . . ,Mc, l = 1, . . . , L, n = 1, . . . , N .

Note that with the same technique we can approximate
Eq. (18). The infinite sum in Eq. (18) can be approximated by
truncating the summation. As the denominator of a term with
index z is (L+ z)! the summation can be expected to converge
quickly.

We further assess the performance of the above algorithm
in the computation of the likelihood function for the cases
that we have a small number of photons detected in simulated
pixelated images in Examples 5.1, 5.2, 5.3 and 5.4. In Example
5.1, we investigate the case that we have only one photon, and
evaluate the convergence of the Monte Carlo approach with
different numbers of samples. Example 5.2 is focused on the
computation of maximum likelihood estimates of the unknown
parameters of the motion model, and the evaluation of the mean
and standard deviation of the estimates, for the cases that the
number of photons detected in the simulated pixelated images
is equal to four. In Example 5.3, for data sets of simulated
images of a stationary molecule, we show that the standard
deviations of location estimates match well with the CRLB.
Finally, in Example 5.4, we examine the effect of pixel size
of the detector on the performance of the estimation method, in
terms of standard deviation, a fact that has not been considered
in most available methods.

Example 5.1: Assume that we have a typical two-dimensional
single molecule trajectory X(τ) in the object space (Eq. (14)),
where the time point τ = 0.01 ms is fixed, with the first order
drift coefficient F = −10/s (we assume that there is no zero
order drift, i.e., V = 0) and the diffusion coefficient D = 1
μ2/s (G :=

√
2D). Also, we assume that the initial location

of the molecule is x(t0) = (2.4, 2.4)T μm. In the fundamental
data model, detected locations of the photons emitted from the
molecule in the image space are simulated using a zero-mean
Gaussian profile with covariance matrix Σ = 0.01I2×2 μ

2m.
In the practical data model, a 60× 60 pixelated detector with
square pixels of width W = 16 μm is used to acquire the
pixelated image of the molecule trajectory. Assume that the
photon emitted from the object hits the pixel C1 centered at
(c1x, c

1
y) = (230.75, 237.25)T μm on the image plane. Then,

using Algorithm 5.1, we calculate the probability that this event
takes place as

Pr [U((X(τ)) ∈ C1] =

∫
R2

IC1
(x)pX(τ)(x)dx

≈ 1

Mc

Mc∑
m=1

IC1
(xm) ,

where, for an invertible magnification matrix M ∈ R2×2 and
x ∈ R2,

IC1
(x) =

1

|det(M)|
∫
C1

q
(
M−1r − x

)
dr

=
1

|det(M)|
∫ c1x+

W
2

c1x−W2

∫ c1y+
W
2

c1y−W2
q
(
M−1 (rx, ry)

T

− x) drydrx, (22)
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Fig. 2. Convergence of the Monte Carlo method. The probabilities
Pr[U((X(τ)) ∈ C1] = 0.24735 for different number Mc of Monte Carlo
samples, which ranges from 1 to 100,000, where X(τ) is a two-dimensional
single molecule trajectory (Eq. (14)), are shown in which the time point τ = 0.01
ms is fixed, with the first order drift coefficient F = −10/s and the diffusion
coefficient D = 1 μ2/s (G :=

√
2D). Also, assume that the initial location of

the molecule is x(t0) = (2.4, 2.4)T μm. Detected locations of the photons
emitted from the molecule in the image space are simulated using a zero-mean
Gaussian model with covariance matrix Σ = 0.01I2×2 μ2m. A 60× 60 pix-
elated detector with square pixels of width W = 16 μm is used to acquire the
pixelated image of the molecule trajectory.

Fig. 3. Histograms, means and standard deviations of the probabilities com-
puted using the Monte Carlo method with different number of samples. Gaussian
models fitted to the histograms of the probabilities computed using the Monte
Carlo method, where the number of samples ranges between (a) 1 to 25,000, (b)
25,001 to 50,000, (c) 50,001 to 75,000, and (d) 75,001 to 100,000 ((a) first, (b)
second, (c) third, and (d) fourth quarters of the data shown in Fig. 2).

and {xm}Mc
m=1, x

m ∈ R2,m = 1, . . . ,Mc, is a sequence of in-
dependent and identically distributed samples drawn from the
distributionpX(τ) using Algorithm 5.1. In Fig. 2 , we have shown
the probabilities Pr[U((X(τ)) ∈ C1] computed for different
numberMc of Monte Carlo samples. As can be seen in Fig. 3 , the
standard deviation of the probabilities decreases by increasing
the number of samples, where the number of samples ranges
between (a) 1 to 25,000, (b) 25,001 to 50,000, (c) 50,001 to
75,000, and (d) 75,001 to 100,000 ((a) first, (b) second, (c) third,
and (d) fourth quarters of the data. This suggests the convergence
of these probabilities.

Fig. 4. Analysis of the error of initial location estimates from pixelated image
data sets of single molecule trajectories for the Gaussian measurement noise
case. Differences between the estimates of the initial x0- and y0-location of
the molecule and their true values from the images of the molecule trajectories
simulated using Eqs. (14) with four time points, where the time points are drawn
from a Poisson process, and the first order drift coefficient F = −10/s and the
diffusion coefficient D = 1.5 μm2/s (G :=

√
2D). The initial location of the

molecule isx(t0) = (2.3, 2.3)T μm. The locations of the photons emitted from
the molecule trajectories, in the image space, are simulated with the Gaussian
measurement noise (Eq. (4)) and σ = 0.1 μm. These photons are detected using
a pixelated detector of pixel size and image size of 6.5× 6.5 μm and 60× 60
pixels, respectively.

Example 5.2: We next examine the performance of our
proposed parameter estimation method. For this purpose, we
simulated 100 pixelated images of single molecule trajectories.
These trajectories were simulated using Eq. (14) with four
time points, where the time points were drawn from a Poisson
process in the exposure time interval [0,20] ms, and the
first order drift coefficient F = −10/s and the diffusion
coefficient D = 1.5 μm2/s (G :=

√
2D). Also, we assumed

that the initial location of the molecule was (2.3, 2.3)T μm.
The locations of the photons emitted from the molecule
trajectories, in the image space, were simulated with the
Gaussian measurement noise (Eq. (4)) and σ = 0.1 μm. We
assumed that these photons were detected using a pixelated
detector of pixel size and image size of 6.5× 6.5 μm and
60× 60 pixels, respectively. For example, in the 50th image,
we have four photons which are detected in the pixels centered
at (217.75, 230.75)T , (172.25, 217.75)T , (146.25, 204.75)T

and (139.75, 198.25)T μm positions on the image plane,
denoted by C1, C2, C3 and C4. Then, the summation
of the likelihood function (19) is performed over
A4

4(1, 1, 1, 1) = {(1, 2, 3, 4), (1, 2, 4, 3), . . . , (4, 3, 2, 1)} (the
size of A4

4(1, 1, 1, 1) in this case is equal to 4! = 24).
We then estimated all parameters of the trajectories, e.g.,

initial location of the molecule, drift and diffusion coefficients,
together using Algorithm 5.1, where the number of spatial Mc

and temporal N Monte Carlo samples equal to 1000 and 100,
respectively. The errors (estimate - true value) of the estimation
are shown in Figs. 4 and 5 . As can be seen in these figures, the
spreads of the errors are around zero and there is no systematic
bias associated with the estimates.

We also applied the algorithm to the pixelated images of single
molecule trajectories simulated using an Airy point spread func-
tions with α = 2πna

λ
= 13.23, which corresponds to a Gaussian

profile with σ = 0.1 μm. The parameters of the molecule trajec-
tories were the same as the parameters of the data set of Fig. 4.
As can be seen in Figs. 6 and 7, we have obtained similar results
as in the Gaussian case.

Example 5.3: We further evaluate the performance of the
proposed method in terms of the standard deviation of the
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Fig. 5. Analysis of the error of diffusion coefficient and drift coefficient
estimates from pixelated image data sets of single molecule trajectories for the
Gaussian measurement noise case. Differences between the diffusion (first order
drift) coefficient estimates and the true diffusion (first order drift) coefficient
value for data sets of Fig. 4.

Fig. 6. Analysis of the error of initial location estimates from pixelated image
data sets of single molecule trajectories for the Airy measurement noise case.
Differences between the estimates of the initial x0- and y0-location of the
molecule and their true values from the images of the molecule trajectories
simulated using the parameters of the data set of Fig. 4. The locations of the
photons emitted from the molecule trajectories, in the image space, are simulated
using an Airy model withα = 2πna

λ
= 13.23. These photons are detected using

a pixelated detector of pixel size and image size of 6.5× 6.5 μm and 60× 60
pixels, respectively.

Fig. 7. Analysis of the error of diffusion coefficient and drift coefficient
estimates from pixelated image data sets of single molecule trajectories for
the Airy measurement noise case. Differences between the diffusion (first order
drift) coefficient estimates and the true diffusion (first order drift) coefficient
value for data sets of Fig. 6.

estimates. In order to do this, we simulated the pixelated images
of a stationary object using a pixelated detector of pixel size and
image size of 6.5× 6.5 μm and 60× 60 pixels, respectively,
assuming that the number of photons detected by the detector is
equal to three. The locations of the photons in the image space
were simulated with the Gaussian measurement noise (Eq. (4))
and σ = 0.1 μm. We then estimated the location of the molecule
using Algorithm 5.1, where the number of Monte Carlo samples
is equal to 10000. The errors of the location estimates are shown
in Fig. 9. As before, the errors are spreading around zero and
no systematic bias can be seen. We also calculated the standard
deviations of the estimates. These standard deviations, which are
computed as 57.4 nm and 59.6 nm for thex0- and y0-locations of
the molecule, respectively, are close to the localization accuracy,
i.e., the positive definite square root of the CRLB, which is

Fig. 8. Analysis of the error of drift coefficient estimates from pixelated images
with different pixel sizes. Analysis of the error of drift coefficient estimates
from 100× 100 pixelated image data sets of single molecule trajectories for
the Gaussian measurement noise case simulated using the parameters of Fig. 4,
assuming that four photons are detected in each image, where the pixel size
ranges from 4× 4 to 11.5× 11.5 μm.

Fig. 9. Analysis of the error of location estimates from pixelated image
data sets of a stationary molecule for the Gaussian measurement noise case.
Differences between the estimates of the initial x0- and y0-location of the
molecule and their true values from the simulated images of a stationary molecule
using a pixelated detector of pixel size and image size of 6.5× 6.5 μm and
60× 60 pixels, respectively, assuming that three photons are detected by the
detector. The locations of the photons in the image space are simulated with the
Gaussian measurement noise (Eq. (4)) and σ = 0.1 μm.

given as 58.37 nm for both x- and y-directions, reported in [18],
[28]–[30].

Example 5.4: In this example, we investigate the effect of
pixel size of the detector on the standard deviation of drift coef-
ficient estimates. For this purpose, 100× 100 pixelated images
were simulated using the parameters provided in Example 5.1,
assuming that four photons are detected in each image, and the
pixel size ranges from 4× 4 to 11.5× 11.5 μm (for each pixel
size, we have 50 images). As shown in the Figure 8, the standard
deviation of the estimates gets worse as the pixel size of the
detector increase.

Here, we only consider a small number of photons,
since, in general, the computation of the likelihood func-
tion (Eq. (11)) is expensive. It is mostly because of
the large number of members of the set ALK(z1, . . . , zK),
which is equal to L!

z1!···zK ! , when L increases. For exam-
ple, in case of having a 32× 32-pixels detector with L =
1000 and K = 1024, z1 = 500, z2 = · · · = z501 = 1, z502 =
· · · = z1024 = 0, we have |ALK(z1, . . . , zK)| = 1000!

500! = 1000×
· · · × 501, which is an extremely large number. To arrive at
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an estimator that can be practically computed, further research
is needed for the cases in which the cardinality of the set
ALK(z1, . . . , zK) is too large.

VI. FISHER INFORMATION MATRIX

The Fisher information matrix was introduced in [18], [19] for
the analysis of microscopy image and data analysis problems, in
particular for single molecule microscopy. It has since been used
extensively for the evaluation of image analysis algorithms [31],
[32], experiment design [33], design of novel point spread func-
tions [34]–[36] etc. The purpose of this section is to develop a
framework for the computation of the Fisher information for the
experimental setting considered here.

According to a well-known result in information theory,
known as the Cramér-Rao inequality, the covariance matrix of
any unbiased estimator θ̂ of an unknown parameter vector θ
is bounded from below by the inverse of the Fisher information
matrix I(θ), i.e., Cov(θ̂) ≥ I−1(θ), assuming that I(θ) is invert-
ible. [37]. Then, the smallest standard deviation of the estimates
that can be obtained, which is independent of the estimation
method, only depends on the statistical model of the data, and
is given by the positive definite square root of the inverse of the
Fisher information matrix, referred to as the Cramér-Rao lower
bound (CRLB). Large sample theory tells us that for a number of
large repeats the maximum likelihood estimator has a variance
that is given by the inverse of the Fisher information matrix [38],
[39]. The usefulness of the CRLB also derives from the fact
that in many practical circumstances for a maximum likelihood
estimator it has been found that the variance of the estimator
is well approximated by the inverse of the Fisher information
matrix. In the following, for the fundamental and practical data
models introduced in Sections III-A and III-B, we calculate the
Fisher information matrix.

A. Fisher Information Matrix for Fundamental Data Model

In this section, for the fundamental data model, we first, in
Definition 6.1, introduce the notation for the Fisher information
matrix of the fundamental data model given the number of
detected photons.

Definition 6.1: Let the parameter space Θ describe an open
subset of R1×n containing the true parameters. For L =
1, 2, · · · , and a row parameter vector θ ∈ Θ, we introduce the
n× n Fisher information matrix of the fundamental data model
given N(t) = L, as

IfN(t)=L(θ) : = Epθ
R1:L |N(t)=L

{(
∂ log pθR1:L|N(t) (r1:L|L)

∂θ

)T

×
(
∂ log pθR1:L|N(t) (r1:L|L)

∂θ

)}

=

∫
R2×L

pθR1:L|N(t) (r1:L|L)

×
(
∂ log pθR1:L|N(t) (r1:L|L)

∂θ

)T

×
(
∂ log pθR1:L|N(t) (r1:L|L)

∂θ

)
dr1:L, (23)

where Epθ
R1:L |N(t)=L

is the expected value with respect to the

probability density pθR1:L|N(t)=L.
In the above definition, we introduced the Fisher informa-

tion matrix conditioned on the number of detected photons,
which will be further used to derive an expression for the the
Fisher information matrix of the practical data model. Note
that the relationship between the actual (non-conditional) If (θ)
and conditional IfN(t)=L(θ) Fisher information matrix for the
fundamental data model is given by

If (θ) =

∞∑
L=1

∫
R2×L

pθR1:L
(r1:L)

(
∂ log pθR1:L

(r1:L)

∂θ

)T

×
(
∂ log pθR1:L

(r1:L)

∂θ

)
dr1:L

=

∞∑
L=1

pLI
f
N(t)=L(θ). (24)

In [16], we obtained a recursive formulation for the Fisher
information matrix of the fundamental data model, which is
computationally expensive for non-Gaussian measurements. In
the following theorem, based on the new expression derived for
the likelihood function in Theorem 3.1, we provide a closed form
expression for the Fisher information matrix.

Theorem 6.1: For a row parameter vector θ ∈ Θ, the Fisher
information matrix IfN(t)=L(θ), L = 1, 2, · · · , of the fundamen-
tal data model givenN(t) = L, can be calculated as (we assume
that pθR1:L|N(t) is strictly positive)

IfN(t)=L(θ)

=

∫
R2×L

DFTθ (r1:L)DFθ (r1:L)∫
R3×L

(∫
ΔL Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

dr1:L,

(25)

where

DFθ (r1:L)

:=
∂

∂θ

∫
R3×L

(∫
ΔL

Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L,

(26)

in which Fθ(.) is given by Eq. (7).
Proof: See Appendix IX-D. �
The structure of the presentation of the Fisher informa-

tion is interesting to observe. The Fisher information matrix
IfN(t)=L(θ) is given as a multidimensional integral of the inte-
grand over the different photon impact locations on the detector.
Importantly, the same integrand will also play an important
role in the expression of the Fisher information matrix for the
practical data model, that we will consider next.
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B. Fisher Information Matrix for Practical Data Model

In this section, we use the results obtained in the previous
section to calculate the Fisher information matrix for the practi-
cal data model. We first, in the following definition, introduce a
notation for the Fisher information matrix of the practical data
model.

Definition 6.2: Let the parameter space Θ describe an open
subset of R1×n containing the true parameters. We introduce
the following notation for the Fisher information matrix of the
practical data model, for a row parameter vector θ ∈ Θ,

Ip(θ) : = EPrθ[S1=z1,...,SK=zK ]{(
∂ logPrθ [S1 = z1, . . . , SK = zK ]

∂θ

)T

×
(
∂ logPrθ [S1 = z1, . . . , SK = zK ]

∂θ

)}

=

∞∑
z1,...,zK=0

Prθ [S1 = z1, . . . , SK = zK ]

×
(
∂ logPrθ [S1 = z1, . . . , SK = zK ]

∂θ

)T

×
(
∂ logPrθ [S1 = z1, . . . , SK = zK ]

∂θ

)
.

In the following theorem, we calculate the Fisher information
matrix of the practical data model introduced in the above
definition.

Theorem 6.2: 1) For a row parameter vector θ ∈ Θ, the Fisher
information matrix Ip(θ) of the infinite practical data model can
be calculated by Eq. (27), shown at the bottom of this page, where
DFθ and Fθ are given by Eqs. (26) and (7).

2) The Fisher information matrix Ip(θ) of the practical data
model can be calculated by Eq. (28), shown at the bottom of this
page.

Proof: See Appendix IX-E. �
As can be seen from the results of the above theorem, the key

to computing the Fisher information expression is through the
computation of the derivatives of the probability density function
of the states. In [40], for time-invariant systems, an easy-to-
compute recursive formulation has been developed to deal with
the derivatives of the probability density function of the states,
and therefore, to compute the Fisher information matrix.

VII. EFFECT OF NOISE

So far, we have assumed that all the photons detected by a
pixelated detector come from the object of interest. However, in
practice, fluorescence microscopy images always are corrupted
by a background noise corresponding to the photons emitted
from background components. The number of these photons in
the kth, k = 1, . . . ,K, pixel is described by an independently

Ip(θ) =
∞∑

L=1

pL
∑

z∈NK
0

:|z|=L

⎛
⎜⎜⎜⎜⎝
∑

v1:L∈AL
K

(z)

∑
v′
1:L

∈AL
K

(z)

∫
Cv1:L

∫
Cv′

1:L

DFT
θ (r1:L)DFθ (r

′
1:L) dr

′
1:Ldr1:L

∑
v1:L∈AL

K
(z)

∫
Cv1:L

[∫
R3×L

(∫
ΔL

Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

]
dr1:L

⎞
⎟⎟⎟⎟⎠ . (27)

Ip(θ) =
∑

(z̄,z̄′,L)∈N3
0
:L+z̄ �=0,L+z̄′ �=0

pL+z̄pL+z̄′
∑

z∈NK
0

:|z|=L⎛
⎜⎜⎜⎜⎝

∑
v1:L+z̄∈AL+z̄

K+1
(z,z̄)

∑
v′
1:L+z̄′ ∈A

L+z̄′
K+1

(z,z̄′)

∫
Cv1:L+z̄

∫
Cv′

1:L+z̄′
DFT

θ (r1:L+z̄)DFθ

(
r′1:L+z̄′

)
dr′1:L+z̄′dr1:L+z̄

∑∞
z̄=0,L+z̄ �=0 pL+z̄

∑
v1:L+z̄∈AL+z̄

K+1
(z,z̄)

∫
Cv1:L+z̄

[∫
R3×(L+z̄)

(∫
ΔL+z̄ Fθ (r1:L+z̄, x1:L+z̄, τ1:L+z̄) dτ1:L+z̄

)
dx1:L+z̄

]
dr1:L+z̄

⎞
⎟⎟⎟⎟⎠ .

(28)

Ip(θ) =

∫
RK

∑∞
z1,...,zK=0

∑∞
z′
1
,...,z′

K
=0 pI1:K |S1:K

(i1:K |z1:K) pI1:K |S1:K
(i1:K |z′1:K)∑∞

z1,...,zK=0 pI1:K |S1:K
(i1:K |z1:K)Prθ [S1 = z1, . . . , SK = zK ]

×
(
∂Prθ [S1 = z1, . . . , SK = zK ]

∂θ

)T (
∂Prθ [S1 = z′1, . . . , SK = z′K ]

∂θ

)
di1:K . (29)

Ip(θ) :=

∫
RK

∞∑
L=1

∞∑
L′=1

pLpL′
∑

z∈NK
0

:|z|=L

∑
z′∈NK

0
:|z′ |=L′

pI1:K |S1:K
(i1:K |z) pI1:K |S1:K

(i1:K |z′)

×

⎛
⎜⎜⎜⎜⎝

∑
v1:L∈AL

K
(z)

∑
v′
1:L′ ∈AL

′
K

(z′)
∫
Cv1:L

∫
Cv′

1:L′
DFT

θ (r1:L)DFθ

(
r′1:L′

)
dr′1:L′dr1:L

∑∞
L=1 pL

∑
z∈NK

0
:|z|=L pI1:K |S1:K

(i1:K |z)∑v1:L∈AL
K

(z)

∫
Cv1:L

[∫
R3×L

(∫
ΔL

Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

]
dr1:L

⎞
⎟⎟⎟⎟⎠ di1:K. (30)
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Poisson distributed random variable Bk with mean βk ≥ 0.
Also, in a pixelated detector, the acquired image contains a
readout noise, which can be modeled as an independent Gaussian
distributed random variable Ek with mean ηk ≥ 0 and variance
σ2
k > 0. The acquired image by a pixelated detector is then can

be described by a collection {Iθ1 , . . . , IθK} of random variables
given by

Iθk = Sθk +Bk + Ek, k = 1, . . . ,K, θ ∈ Θ.

Note that Sθk and Bk are non-negative integers, but Ek is real-
valued. Hence, Iθk is real-valued. In this case, the likelihood
function Lp is given by

Lp(θ|i1, . . . , iK) = pθI1,...,IK (i1, . . . , iK) , i1, . . . , iK ∈ R,
(31)

where pθI1,...,IK denotes the joint probability density function of
Iθ1 , . . . , IθK , and can be calculated as

pθI1:K (i1:K) =
∞∑

z1=0

· · ·
∞∑

zK=0

pI1:K |S1:K
(i1:K |z1:K)

× Prθ [S1 = z1, . . . , SK = zK ] ,

in which the conditional probability density function of I1:K ,
given S1:K , can be calculated as [19]

pI1:K |S1:K
(i1:K |z1:K)

=

K∏
k=1

pIk |Sk (ik|zk)

=
K∏
k=1

1√
2πσk

∞∑
l=0

βlke
−βk

l!
e
− 1

2

(
ik−l−ηk−zk

σk

)2

andPrθ[S1 = z1, . . . , SK = zK ] is given by Eqs. (18) or (16). It
has been shown that Ip(θ) can be calculated by Eq. (29), shown
at the bottom of the previous page (see Appendix F).

For the infinite practical data model, as calculated in Theorem
6.2, the Fisher information matrix can be rewritten as Eq. (30),
shown at the bottom of the previous page.

The Fisher information matrix for an EMCCD detector can be
obtained in a relatively straightforward fashion by applying the
approaches developed for EMCCD detector in [41] combined
with the approach introduced here.

VIII. CONCLUSION

The estimation of biophysical parameters from the observed
trajectories of molecules in a live cell environment using single
molecule fluorescence microscopy is one of the key experiments
of modern molecular cell biology and biophysics. The approach
we introduced here is one where we use a general stochastic
dynamical system model to model the dynamics of the molecule,
which includes dynamics governed by stochastic differential
equations. The parameters of interest that are to be estimated
can be any parameters that impact the underlying dynamical
equations. Examples of such parameters are diffusion or drift
coefficients, but also the coordinates of the particle at a particular
point in time, such as the starting point of the trajectory. In a

fluorescence microscopy experiment the acquired data is given
by the photons that are emitted by the fluorescent label and
are captured by the imaging detector. While the photons are
assumed to be emitted based on a temporal Poisson process, a
modern imaging detector has pixels and captures photons during
an exposure interval. Such a detector therefore cannot capture
the precise time points and impact locations of the detected
photons and only records the accumulated photons in each pixel
during the exposure time. Moreover, the impact points of the
detected photons in the detector are related to the location of the
imaged molecule through the so-called point spread function of
the optical system that describes the image formation process of
the microscope.

In this paper we have set up a stochastic framework within
which the maximum likelihood estimator and Fisher information
matrices could be derived for this parameter estimation problem.
Central to our approach is a careful probabilistic model for
the dynamics of the molecule and photon detection process
for detection with a pixelated imaging detector. The resulting
analytical expressions, derived without approximations from the
general modeling assumptions, are complex due to the intricate
relationship between the statistics of the photons emission pro-
cess by the imaged object and the photons statistics in the pixels
of the detector.

Using a Monte Carlo approach we proposed a numerical
method for computing the maximum likelihood estimator. We
showed, with simulated examples, that this estimator does in-
deed have desirable properties, such as low or no bias, even
for extreme low photon count examples. The analysis of high
photon count data poses significant numerical challenges as a
large number of separate Monte Carlo simulations need to be
carried out. To allow for efficient computations, this calls for
further investigation into the numerics of the computation of the
maximum likelihood estimator. Computation of the Fisher in-
formation is complicated through the need to compute a possible
very large number of iterative integrals. As with the computation
of the maximum likelihood estimator, it is Monte Carlo based
methods that are expected to provide a successful approach.
Using simulated data we illustrate that a detailed incorporation
of the pixel size in the model for a parameter estimation problem
is indeed of importance. In our example we show how the
standard deviation of the estimate of the diffusion coefficient
does depend on the pixel size.

We hope that the results that are presented here will pro-
vide important reference points for approximations that might
lead to approaches that are computationally more efficient but
need evaluation regarding their accuracy. Having a precise for-
mulation available for the maximum likelihood estimator and
the Fisher information matrices will hopefully help to provide
important and well characterized tools to analyze molecular
dynamics.

IX. APPENDICES

A. Analysis of Poisson Time Points

Lemma 9.1: For t0 ∈ R, let {N(τ), τ ≥ t0} be a Poisson pro-
cess with intensity function Λ(τ), τ ≥ t0. Let t0 ≤ T1 < T2 <
· · · , be 1D random variables which describe ordered events
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of the process N . Then, the conditional probability density
function pT1,...,TL|N(t) of T1, . . . , TL, given N(t), t > t0, can
be calculated as

pT1,...,TL|N(t) (τ1:L|L) = L!

∏L
l=1 Λ(τl)(∫ t

t0
Λ(ψ)dψ

)L .
Proof: See [42]. �

B. Proof of Theorem 3.1

We have (see Lemma 9.1 in Appendix A for the probability
density function of Poisson time points)

pR1:L|N(t) (r1:L|L)

=

∫
R3×L

pR1:L|X(T1),...,X(TL),N(t) (r1:L|x1:L, L)

× pX(T1),...,X(TL)|N(t) (x1:L|L) dx1:L

=

∫
R3×L

pR1|X(T1) (r1|x1) · · · pRL|X(TL) (rL|xL)

×
(∫

ΔL
pX(T1),...,X(TL),T1:L|N(t)(x1:L, τ1:L|L)dτ1:L

)
dx1:L

=

∫
R3×L

pR1|X(T1)(r1|x1) · · · pRL|X(TL)(rL|xL)

×
(∫

ΔL
pX(T1),...,X(TL)|T1:L,N(t) (x1:L|τ1:L, L)

× pT1:L|N(t) (τ1:L|L) dτ1:L
)
dx1:L

=

∫
R3×L

fx1
(r1) · · · fxL (rL)

×
(∫

ΔL
pX(τ1),...,X(τL) (x1:L)

L!
∏L
l=1 Λ(τl)(∫ t

t0
Λ(ψ)dψ

)L dτ1:L
)

× dx1:L

=

∫
R3×L

[∫
ΔL

L!(∫ t
t0
Λ(ψ)dψ

)L

×
(

L∏
i=1

fxi(ri)Λ(τi)

)
pX(τ1),...,X(τL)(x1:L)dτ1:L

]
dx1:L.

C. Proof of Theorem 3.2

1) According to the definitions of S1, . . . , SK , we have, for
z1, . . . , zK = 0, 1, · · · , Pr(L = 0) = p0 and if L ≥ 1:

Pr [S1 = z1, . . . , SK = zK ]

= Pr

⎡
⎣ ⋃
v1:L∈ALK(z1:K)

{
L⋂
l=1

(U(X(Tl)) ∈ Cvl)

}
|N(t) = L

⎤
⎦

× Pr [N(t) = L] , (32)

where L =
∑K
k=1 zk. Since the events {⋂Ll=1(U(X(Tl)) ∈

Cvl)} are mutually exclusive, we have

Pr

⎡
⎣ ⋃
v1:L∈ALK(z1:K)

{
L⋂
l=1

(U(X(Tl)) ∈ Cvl)

}
|N(t) = L

⎤
⎦

=
∑

v1:L∈ALK(z1:K)

Pr

[
L⋂
l=1

(U(X(Tl)) ∈ Cvl) |N(t) = L

]
,

and therefore, according to Eq. (6),

Pr [S1 = z1, . . . , SK = zK ]

=
∑

v1:L∈ALK(z1:K)

Pr

[
L⋂
l=1

(U(X(Tl)) ∈ Cvl) |N(t) = L

]

× Pr [N(t) = L]

=
∑

v1:L∈ALK(z1:K)

pL

∫
Cv1:L

pR1:L|N(t) (r1:L|L) dr1:L

= pL
∑

v1:L∈ALK(z1:K)

∫
Cv1:L

[∫
R3×L

(∫
ΔL

F (r1:L, x1:L, τ1:L)

× dτ1:L

)
dx1:L

]
dr1:L. (33)

2) We use the random variable SK+1 to describe the number
of photons in the complement pixel CK+1 := R2 −⋃Kk=1 C̄k
that result from the detection of the photons emitted from the
object of interest. According to the definitions of S1, . . . , SK+1,
we have, for z1, . . . , zK = 0, 1, · · · ,

Pr [L = 0]

= p0+

∞∑
z=1

Pr

⎡
⎣ ⋃
v1:z∈AzK+1(z1:K ,z)

{
z⋂
l=1

(U(X(Tl)) ∈ Cvl)

}⎤⎦,
(34)

and

Pr [S1 = z1, · · · , SK = zK ]

=

∞∑
z=0

Pr [S1 = z1, · · · , SK = zK , SK+1 = z]

=
∞∑
z=0

Pr

⎡
⎢⎣ ⋃
v1:L+z∈AL+z

K+1(z1:K ,z)

{
L+z⋂
l=1

(U(X(Tl)) ∈ Cvl)

}⎤⎥⎦,
L ≥ 1,

where the inner summation term can be calculated from the
similar approach used in part 1.

D. Proof of Theorem 6.1

For a row parameter vector θ ∈ Θ, the Fisher informa-
tion matrix IfN(t)=L(θ), L = 1, 2, · · · , given N(t) = L, can be
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calculated as, according to Eq. (23) of Definition 6.1,

IfN(t)=L(θ)

=

∫
R2×L

1

pθR1:L|N(t) (r1:L|L)

(
∂pθR1:L|N(t) (r1:L|L)

∂θ

)T

×
(
∂pθR1:L|N(t) (r1:L|L)

∂θ

)
dr1:L. (35)

By substituting Eq. (6) into Eq. (35), we have

IfN(t)=L(θ)

=

∫
R2×L

1∫
R3×L

(∫
ΔL Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

×
(
∂

∂θ

∫
R3×L

(∫
ΔL

Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

)T

×
(
∂

∂θ

∫
R3×L

(∫
ΔL

Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

)
× dr1:L

=

∫
R2×L

DFTθ (r1:L)DFθ (r1:L)∫
R3×L

(∫
ΔL Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

dr1:L,

(36)

where DFθ is given by Eq. (26).

E. Proof of Theorem 6.2

1) For a row parameter vector θ ∈ Θ, the Fisher information
matrix Ip(θ)of the infinite practical data model can be calculated

Ip(θ) =

∞∑
z1=0

· · ·
∞∑

zK=0

1

Prθ [S1 = z1, . . . , SK = zK ]

(
∂Prθ [S1 = z1, . . . , SK = zK ]

∂θ

)T (
∂Prθ [S1 = z1, . . . , SK = zK ]

∂θ

)

(37)

Ip(θ) =
∑

(z1,...,zK)∈NK
0 \0

pL

( ∑
v1:L∈ALK(z1:K)

∑
v′1:L∈ALK(z1:K)

∫
Cv1:L

∫
Cv′

1:L

{∫
R3×L

∫
R3×L

[∫
ΔL

∫
ΔL(

∂
∂θFθ (r1:L, x1:L, τ1:L)

)T ( ∂
∂θFθ (r

′
1:L, x

′
1:L, τ

′
1:L)

)
∑
v1:L∈ALK(z)

∫
Cv1:L

[∫
R3×L

(∫
ΔL Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

]
dr1:L

dτ1:Ldτ
′
1:L

]
dx1:Ldx

′
1:L

}
dr′1:Ldr1:L

)

=

∞∑
L=1

pL
∑

z∈NK
0 :|z|=L

⎛
⎜⎜⎜⎜⎝
∑
v1:L∈ALK(z)

∑
v′1:L∈ALK(z)

∫
Cv1:L

∫
Cv′

1:L

DFTθ (r1:L)DFθ (r
′
1:L) dr

′
1:Ldr1:L

∑
v1:L∈ALK(z)

∫
Cv1:L

[∫
R3×L

(∫
ΔL Fθ (r1:L, x1:L, τ1:L) dτ1:L

)
dx1:L

]
dr1:L

⎞
⎟⎟⎟⎟⎠ (38)

Ip(θ) := EPrθ[I1=i1,...,IK=iK ]

{(
∂ logPrθ [I1 = i1, . . . , IK = iK ]

∂θ

)T (
∂ logPrθ [I1 = i1, . . . , IK = iK ]

∂θ

)}

=

∫
RK

Prθ [I1 = i1, . . . , IK = iK ]

(
∂ logPrθ [I1 = i1, . . . , IK = iK ]

∂θ

)T (
∂ logPrθ [I1 = i1, . . . , IK = iK ]

∂θ

)
di1:K

=

∫
RK

1

Prθ [I1 = i1, . . . , IK = iK ]

(
∂Prθ [I1 = i1, . . . , IK = iK ]

∂θ

)T (
∂Prθ [I1 = i1, . . . , IK = iK ]

∂θ

)
di1:K

=

∫
RK

1

Prθ [I1 = i1, . . . , IK = iK ]

( ∞∑
z1,...,zK=0

pI1:K |S1:K
(i1:K |z1:K)

∂Prθ [S1 = z1, . . . , SK = zK ]

∂θ

)T

×
⎛
⎝ ∞∑
z′1,...,z

′
K=0

pI1:K |S1:K
(i1:K |z′1:K)

∂Prθ [S1 = z′1, . . . , SK = z′K ]

∂θ

⎞
⎠ di1:K

=

∫
RK

∑∞
z1,...,zK=0

∑∞
z′1,...,z

′
K=0 pI1:K |S1:K

(i1:K |z1:K) pI1:K |S1:K
(i1:K |z′1:K)∑∞

z1,...,zK=0 pI1:K |S1:K
(i1:K |z1:K)Prθ [S1 = z1, . . . , SK = zK ]

×
(
∂Prθ [S1 = z1, . . . , SK = zK ]

∂θ

)T (
∂Prθ [S1 = z′1, . . . , SK = z′K ]

∂θ

)
di1:K (39)
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by Eq. (37), shown at the bottom of the previous page. By
substituting Eq. (11) into Eq. (37), we have Eq. (38), shown
at the bottom of the previous page, whereDFθ and Fθ are given
by Eqs. (26) and (7).

2) It results from the similar approach used in part 1.

F. Effect of Noise on Fisher Information Matrix

In the following, we show the derivation process of Eq. (39),
shown at the bottom of the previous page. By substituting Eq.
(31) into the general equation of the Fisher information matrix,
we then can obtain the Fisher information expression in terms of
Prθ[S1 = z1, . . . , SK = zK ] by the process shown by Eq. (39).
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