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Abstract—Incremental sampling can be applied in scientific
imaging techniques whenever the measurements are taken incre-
mentally, i.e., one pixel position is measured at a time. It can be
used to reduce the measurement time as well as the dose im-
pinging onto a specimen. For incremental sampling, the choice
of the sampling pattern plays a major role in order to achieve
a high reconstruction quality. Besides using static incremental
sampling patterns, it is also possible to dynamically adapt the
sampling pattern based on the already measured data. This is
called dynamic sampling and allows for a higher reconstruction
quality, as the inhomogeneity of the sampled image content can be
taken into account. Several approaches for dynamic sampling have
been published in the literature. However, they share the common
drawback that homogeneous regions are sampled too late. This
reduces the reconstruction quality as fine details can be missed.
We overcome this drawback using a novel probabilistic approach
to dynamic image sampling (PADIS). It is based on a data driven
probability mass function which uses a local variance map. In our
experiments, we evaluate the reconstruction quality for scanning
electron microscopy images as well as for natural image content.
For scanning electron microscopy images with a sampling density of
35% and frequency selective reconstruction, our approach achieves
a PSNR gain of +0.92 dB compared to other dynamic sampling
approaches and +1.42 dB compared to the best static patterns.
For natural images, even higher gains are achieved. Experiments
with additional measurement noise show that for our method the
sampling patterns are more stable. Moreover, the runtime is faster
than for the other methods.

Index Terms—Dynamic sampling, non-regular sampling, image
reconstruction.

I. INTRODUCTION

MANY scientific imaging techniques in physics, biology
and material science rely on a point-wise incremental

acquisition of image data. Examples include scanning electron
microscopy (SEM) [1], atomic force microscopy [2], [3], and
Raman imaging [4]. For such applications, incremental sampling
can greatly reduce the number of measurements by performing
only a subset of all measurements [5], [6]. Fig. 1(a) shows a static
incremental sampling process with a random sampling pattern.
New sampling positions are incrementally added. At each step,
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Fig. 1. Illustration of (a) static incremental sampling and (b) dynamic sam-
pling. For dynamic sampling, the new sampling positions (red) are adapted to the
already sampled content. Consequently, the reconstruction quality may increase.

a full resolution image can be reconstructed from the measured
data. Since only a subset of all pixels is actually sampled, sparse
sampling leads to a faster acquisition and less dose applied to
the specimen. This is especially important in case of organic
specimens but can even play a role for inorganic specimens. In
both cases the sample may otherwise be damaged during the
measurement [7].

In order to allow for a high reconstruction quality, the choice
of the sampling positions plays a crucial role. In a first, simplistic
attempt, one could reduce the number of samples by skipping
several rows. Such a lineskip approach was further developed
in [6], where wiggling lines were used instead of straight lines.
In general, non-regular sampling patterns should be favored
over regular sampling patterns since the latter introduce severe
aliasing artifacts. Instead, non-regular sampling allows for the
reconstruction of higher frequencies [8]–[10]. Besides random
sampling strategies [1], [11], optimized sampling strategies
which sample the image content more uniformly were devel-
oped [12].

Instead of using a fixed sampling pattern, the sampling pattern
can be adapted to the content. Dahmen et al. [13] suggest to
perform an initial fast scan of the entire image with decreased
integration times, i.e., low signal to noise ratio. Then, the image
is analyzed and important regions are scanned with a higher
signal to noise ratio. In such a scenario, however, the data
from the initial scan is either disregarded or has to be merged
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with the second scan, which is not easily possible. Similarly,
in [14] the entire image needs to be known before optimized
sampling positions are derived. Another approach to adapt the
sampling pattern to the content is to use dynamic sampling. For
dynamic sampling, the new sampling positions depend on the
already measured data and may therefore dynamically adapt to
the image content as can be seen in Fig. 1(b). As initialization, a
fixed, sparse pattern of low sampling density is used. Dynamic
sampling is incremental but not static because the sampling
pattern is not known in advance. As for the example in Fig. 1(b),
dynamic sampling means that the new positions colored in red
are adapted to the content of the image at the already sampled
positions colored in white.

Intuitively, dynamic sampling may increase the reconstruc-
tion quality because regions with fine details could be sampled
denser, whereas less detailed regions may be sampled less dense.
Over the years, several authors proposed algorithms for dynamic
image sampling. Merryman et al. [15] follow an approach for
fluorescence microscopy, where high intensity values serve as in-
dication for a region of interest that should be sampled denser. A
more general approach is introduced by Dahmen et al. [16] sug-
gesting the usage of a gradient based criterion for the placement
of new pixels. Here, the gradients are calculated on the edges
of the Delaunay triangulation of the already measured pixels. In
a sophisticated approach, Godaliyadda et al. [17], [18] propose
a supervised learning method (SLADS) which aims at learning
a regression function that estimates the expected reduction of
distortion for any possible new sampling position. A newer
variant called SLADS-Net [19] adds a neural network to learn
the regression function more precisely. In those works, a very
good performance is observed for boundaries between mostly
homogeneous objects. Such boundaries are of special interest
for segmentation tasks, for example. Both approaches perform
very well in finding boundaries that can be identified from
the previous measurements. However, this leads to sampling
patterns where presumably homogeneous regions are sampled
at a very low sampling density. Consequently, important details
in presumably homogeneous regions may not be detected and
the texture of the objects is not expected to be sampled optimally.

To overcome this problem, in this paper, we propose a mod-
ified objective when choosing the sampling positions. Instead
of mainly performing well on the reconstruction of the bound-
aries between mostly homogeneous objects, we aim at properly
reconstructing the entire image including its textures and small
details. In addition to a broad range of grayscale SEM images,
our dynamic sampling approach shall additionally be tested for
the acquisition of natural images where diverse textures and
structures can be present. Other than for SEM images, a hard-
ware implementation for dynamic sampling of natural images is
not expected to be possible. However, the dynamic sampling of
natural images is also considered to be relevant since it may be
used for future image compression techniques. Existing works
on image compression with adaptive sampling such as [20] use
content adaptive sampling patterns that are not dynamic, i.e., the
information on the sampling positions needs to be coded, too. In
contrast to that, the sampling pattern in [21] is fixed and does not
need to be coded. For future compression frameworks based on

dynamic sampling, the advantages from both approaches could
be combined. The sampling positions could be dynamically
adapted to the content but at the same time no information
about the positions of the samples has to be transmitted to
the receiver. This is the case since the new sampling positions
can be calculated from all previous positions and the already
transmitted values. The initial pattern can be hard-coded as is
independent of the content. Besides this, we aim at developing
a dynamic sampling strategy that can be accomplished without
the need to retrain the algorithm for specific datasets. This is
different from the main objective of SLADS and SLADS-Net
where the training images are intended to be very similar to the
testing images such that overfitting problems could easily occur.

To accomplish these objectives and to overcome the afore-
mentioned disadvantages of the methods from literature, we
propose a probabilistic approach to dynamic image sampling
(PADIS). It is based on the static incremental sampling technique
presented in [12] and extends the probability mass function
defined in [12] such that information about the already measured
data is considered.

This paper is organized as follows: In Section II, we review the
concepts of static incremental sampling and dynamic sampling.
In Section III, we review three state-of-the-art literature algo-
rithms for dynamic image sampling. Afterwards, we describe the
novel PADIS in Section IV. In Section V, we compare PADIS
to the other approaches. Reconstruction results are evaluated in
terms of PSNR using three different reconstruction algorithms
and two different image datasets. Moreover, visual examples are
provided, an experiment with measurement noise is performed
and the required runtimes for the generation of the different
dynamic sampling patterns are compared.

II. DEFINITION OF STATIC AND DYNAMIC SAMPLING

In this section, we briefly explain the notion of static in-
cremental sampling and dynamic sampling. The sub-sampled
image f̃ [x, y] can be described as the multiplication of the
reference image f [x, y] ∈ [0, 1] of size X × Y pixels with a
binary pattern b[x, y] ∈ {0, 1}, i.e.,

f̃ [x, y] = f [x, y] · b[x, y] ∀x, y. (1)

In incremental sampling, more measurements are added in each
step. The binary patterns bi[x, y] include all pixels that are
measured up to the i-th step. The samples added in the (i+ 1)-th
step can then be calculated as

δi+1
b [x, y] = bi+1[x, y]− bi[x, y]. (2)

Per definition, incremental means that all pixels measured in
previous steps are also available in the current step, i.e.,

{(x, y)|bi[x, y] = 1} ⊂ {(x, y)|bi+1[x, y] = 1}, (3)

and all new samples were not available before, i.e.,

{(x, y)|δi+1[x, y] = 1} ∩ {(x, y)|bi[x, y] = 1} = ∅. (4)

The sampling equation in the i-th step then reads

f̃ i[x, y] = f [x, y] · bi[x, y] ∀x, y. (5)
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Both static incremental sampling and dynamic sampling are
incremental in the just defined sense. In case of a static sampling,
all patterns bi+1[x, y] are independent of the already sampled
data, i.e. they only depend on the previous sampling pattern
ensuring that they are incremental,

bi+1[x, y] = gstat(bi[x, y]). (6)

Different algorithms may be used to design the functional
dependence gstat(bi[x, y]), e.g., distributing the new samples
randomly or using an optimized strategy as in [12]. For dynamic
sampling, the function gdyn additionally depends on the already
measured data from the previous step,

bi+1[x, y] = gdyn(bi[x, y], f̃ i[x, y]). (7)

This dependence allows an adaptation of the sampling pattern
to the already sampled data.

For both sampling types, a reconstruction of the full image can
be performed in the i-th step yielding an approximation f̂ i[x, y].
Since all patterns in this paper are incremental, we drop the usage
of this word for convenience.

Equation (7) assumes that the measurements are immediately
available. This assumption is idealistic but commonly done in
literature [17], [18], [20], [22]. In a hardware implementation,
depending on the actual scenario, this may not be the case and
some of the measurements might be delayed. We are confident
that such implementation details could be incorporated in the
proposed algorithm, if needed. We would like to note that in
case of image compression based on dynamic sampling, the used
assumption is perfectly valid.

III. DYNAMIC IMAGE SAMPLING IN LITERATURE

In the following, the state of the art approaches used as refer-
ence are discussed. Additionally, we identify the disadvantages
they have in common.

A. Gradient Based Approach

In case of the gradient based approach in [16], new sampling
positions are added based on a gradient criterion. The algorithm
is initialized with a static sampling pattern. Then, new sampling
positions are added as described in the previous section. For a
given sampling pattern bi[x, y], the gradients between neighbor-
ing measurements are calculated. To identify the neighborhood
relations, the Delaunay triangulation is used. The new sampling
positions are placed inside those Delaunay triangles where the
gradients along the edges are maximal. All gradients are recal-
culated after the sampling density has increased by a fraction
N+. A reference algorithm was kindly provided by the authors.

B. SLADS and SLADS-NET

A more sophisticated approach is the supervised learning
approach for dynamic sampling (SLADS) proposed in [17], [18].
An implementation is available from the authors. In SLADS, a
non-linear regression function estimating the reduction of distor-
tion from several features is trained using a training dataset and
a least squares regression. The reduction of distortion is defined

as the change of the mean absolute error of the reconstructed
image, when a new sampling position is added to the sampling
pattern. The newly added sampling position is then chosen
such that the estimated reduction in distortion is maximal. In
a variation of the algorithm, several samples are added in each
step to reduce the computational cost. In addition to a training
needed to compute the parameters of the feature extraction, a
second hyper-parameter called c is required to be learned using
the training data.

SLADS is an improvement of a previous work from the
same group. In their model-based dynamic image sampling
(MBDS) [22], the new sampling positions are placed such that
the expected posterior variance is maximized. MBDS is based
on a Monte Carlo approach to estimate the posterior variance
at every unmeasured position. It is claimed to be much slower
than SLADS [17]. Additionally, SLADS shows superior recon-
struction quality according to the authors. In our experiments,
we therefore use SLADS for which, other than for MBDS, an
implementation is available.

SLADS-Net [19] is the most recent development of SLADS.
It builds upon SLADS but learns the regression function using
a neural network based approach. It is argued to be faster than
SLADS and shows better performance than SLADS [19]. It is
also shown that SLADSNet performs better in case the training
and testing data are less similar [19]. When we compare with
SLADSNet, we use a pre-trained model for continuous data
provided by the authors.

C. Common Disadvantages

The gradient based approach [16], MBDS [22], SLADS [17],
[18], as well as SLADS-Net [19] perform very well in dynam-
ically sampling the boundaries between mostly homogeneous
objects. However, the approaches strongly focus on already
identified structures, and other regions are sampled at a very
low density. Consequently, presumably homogeneous regions
cannot be recovered in case fine details or texture-like structures
are present. All structured regions that are not identified by the
initial sampling pattern are subsequently hindered to be sampled.
Instead, new samples are placed close to already found details
such that these are sampled better. This can be explained by the
maximization criteria utilized by those algorithms as detailed
in the previous sub-sections. However, for general purpose
applications, fine details as well as texture are important. We
see this as a limitation of the existing approaches that shall be
overcome in this work.

IV. PROBABILISTIC APPROACH TO DYNAMIC IMAGE

SAMPLING (PADIS)

In this section, we propose PADIS,1 a new algorithm for
dynamic image sampling. Using PADIS, we aim at overcoming
the disadvantage of the state-of-the-art methods described in
Section III-C. PADIS extends the static sampling approach
presented in [12]. Other than the probability mass function

1The source code of PADIS is provided [Online]. Available: https://gitlab.
lms.tf.fau.de/LMS/PADIS

https://gitlab.lms.tf.fau.de/LMS/PADIS
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in [12], our new probability mass function adapts to the values
of the already measured data. Compared to the gradient based
approach [16], MBDS [22], SLADS [17], [18], and SLADS-
Net [19], we do not position the new samples based on a
maximization criterion. Instead, we draw the sampling positions
from the data driven probability mass function.

A. Initial Sampling Pattern

As all other dynamic sampling approaches, PADIS starts
with an initial sampling pattern b0[x, y] with a low sampling
density dinit � 100%. The initial sampling density should be
low enough to achieve a good content adaptation but high enough
to initially cover most parts of the image in order not to miss out
important details. With an initial sampling pattern at hand, our
aim is to find a new sampling pattern bi+1 as a function of the
previous sampling pattern bi and the already sampled values f̃ i.

B. Estimation of the Local Variance

The first step to decide which sampling positions to choose in
the (i+ 1)-th step is to estimate the local variance of the image
for every pixel position. It is used to identify heterogeneous
regions of the image that will be sampled with a higher sampling
density than homogeneous regions. This is expected to result in a
better performance of the reconstruction. The estimated variance
at the position (x, y) only depends on the (2sb + 1)× (2sb + 1)
block of the non-regularly sampled image f̃ i[x, y] around the
current position and is defined as

v[x, y] =

sb∑
m=−sb

sb∑
n=−sb

w[m,n](f̃ i[x+m, y + n]− μ)2

N
,

(8)
with μ being the mean of the sampled pixel values of the current
image block,

μ =

∑sb
m,n=−sb f̃

i[x+m, y + n]∑sb
m,n=−sb b

i[x+m, y + n]
, (9)

and N being a normalization constant,

N = max
m̃,ñ

(w[m̃, ñ]) ·
sb∑

m,n=−sb
bi[x+m, y + n], (10)

accounting for different sampling distributions and densities.
w[m,n] is an exponential weighting function

w[m,n] = bi[m,n] exp

(
−m2 + n2

s2b

)
. (11)

The summations in (9) and (10) could in principle be zero.
However, this is prevented by choosing a large enough block
size sb as well as a large enough initial sampling density dinit.

The values of the variance map are normalized resulting in
the normalized variance map v′[x, y] ∈ [0, 1],

v′[x, y] =
v[x, y]

maxx̃,ỹ(v[x̃, ỹ])
. (12)

An example is shown in Fig. 2(c).

Fig. 2. Example for the auxiliary functions needed in PADIS. (a) Reference
image f [x, y] of size 128× 128 pixels cut out of an SEM image. (b) Sampled
image f̃ i[x, y] at a sampling density of 3%. (c) Normalized variance mapv′[x, y]
and (d) corresponding logarithmic variance map vlog[x, y]. (e) Function σ[x, y]
which is used as local standard deviation in the probability mass functionP [x, y]
shown in (f).

C. Probability Mass Function

The just derived normalized variance map v′[x, y] is now used
to derive the probability mass function for choosing the next
sampling positions.

In principle, it would be possible to use the variance map as
probability mass function or even directly sample at the maximal
value of the variance map, which would then be closely related
to MBDS [22]. Such approaches are regarded to be undesirable
because one would mostly create new sampling positions right
next to already sampled pixels. This is, however, non-optimal,
because the sampling then focuses strongly on the heterogeneous
parts and the same problem as explained in Section III-C for the
reference algorithms arises. Here, we use the variance map to
extend the probability density based approach which was used
in [12] to create optimized static sampling patterns. It ensures
that pixels next to already sampled pixels are chosen with very
low probability while at the same time regions with a high vari-
ance are preferred without completely ignoring homogeneous
regions. Other than in [12], the probability mass function in
PADIS is adapted depending on the measured values to achieve
a dynamic sampling.

As a first step, we define the logarithmic variance map

vlog[x, y] = − log10 v
′[x, y]. (13)

Applying the logarithm reveals the less dominant structures of
the image. In Fig. 2(d) the impact of the logarithm is clearly
visible as much more structure of the image becomes visible
compared to the normalized variance map.

To get an impression of the value range in the logarithmic
variance map, the cumulative distribution function of vlog[x, y]
is shown in Fig. 3 for the case of Fig. 2(d). It is clearly visible
that most of the values are within a range between zero and
approximately 3.7 for the given example.

In order to account for different image content, the logarithmic
variance map is renormalized. While doing so, all values in
vlog[x, y] above a certain threshold lmax are cut off. The value
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Fig. 3. Cumulative distribution function of vlog[x, y]. Most of the values of
vlog[x, y] are below 3.7.

of the threshold lmax is set such that the cumulative distribution
function reaches a limit of 98%. This yields a threshold of
lmax ≈ 3.72 for the given example and is indicated with a dashed
black line in Fig. 3.

We define the truncated and renormalized logarithmic vari-
ance map as

σ[x, y] =

{
σmax vlog[x, y] ≥ lmax

σmax
vlog[x,y]
lmax

vlog[x, y] < lmax

, (14)

where the values are rescaled to the range 0 . . . σmax.
The selection of σmax is an essential part of the adaptive

sampling procedure. It is supposed to be a measure of the width
around each pixel where new samples should be placed with
low probability. We imply σ2

max · ds = const. such that the total
area covered by those regions of low probability is independent
of the sampling density ds. Therefore,

σmax = γ/
√

ds, (15)

with a proportionality constant γ which needs to be found in a
parameter training. An example for the function σ[x, y] is shown
in Fig. 2(e).

In order to achieve the desired sampling, the truncated and
renormalized logarithmic variance map σ[x, y] is used as the
local standard deviation of a Gaussian-like probability mass
function from which the new sampling positions are drawn.
The objective for this task is to assign high probabilities to
heterogeneous areas and low probabilities to homogeneous areas
of the image. On the other hand it has to be taken into account
that regions with a low sampling density are still sampled as the
sampling density increases. This is important in order not to miss
out fine details of the image which may occur in mostly homoge-
neous regions. We therefore define a probability mass function
as the product of modified Gaussian functions centered at the
already known sampling positions with a standard deviation of
σ[x, y]. The modified Gaussian function,

p[x, y;m,n] =

(
1− exp

(
− (x−m)2 + (y − n)2

σ[m,n]2

))τ

,

(16)
for the central position (m,n) comprises a zero at its center. In
this way, the already sampled pixel at position (m,n) cannot be

Algorithm 1: Pseudo Code for PADIS.

b0[x, y]← initialize sampling pattern
f̃0[x, y]← f [x, y] · b0[x, y] �Get first measurements
i← 0
while

∑
x,y b

i[x, y] < X · Y do
v[x, y]← (Eq. 8) �Calculate variance map
vlog ← (Eq. 13) �Calculate logarithmic variance map
σ[x, y]← (Eq. 14) �Calculate local standard deviation
P i[x, y]← (Eq. 17) �Calculate probability mass
function
δi+1
b [x, y]← draw N+ samples from P [x, y]
bi+1[x, y]← bi[x, y] + δi+1

b [x, y] �Update pattern
f̃ i+1[x, y]← bi+1[x, y] · f [x, y] �Get measurements
f̂ i+1 ← reconstruction from f̃ i+1[x, y] �For preview
i← i+ 1

end while

drawn again. For pixels (x, y) at larger distance, the probabil-
ity soon reaches one. This is meaningful since the knowledge
whether or not a region should be sampled is rather local. The
value τ controls the steepness of the change from 0 to 1 of
the modified Gaussian function. We use τ = 7 as done in [12]
resulting in a rather steep slope.

Placing a modified Gaussian function at each already sampled
position and taking the product yields the desired probability
mass function P i[x, y],

P i[x, y] =
∏

(m,n)|bi[m,n]=1

p[x, y;m,n], (17)

which could be normalized such that
∑

x,y P
i[x, y] = 1 for

convenience. Fig. 2(f) shows P i[x, y] for the exemplary image.
The derived probability mass function features similar char-

acteristics as the variance map itself. Besides differences in
the actual amplitudes and more clearly defined structures, it is
important to note that the already sampled pixels are surrounded
by a circular region where new samples are strongly suppressed
as can be seen in Fig. 2(f). This ensures that neighboring pixels
in heterogeneous areas are not sampled too densely. This is
important in order not to waste measurements. Consequently
enough samples are still spent on the homogeneous regions. At
the same time, heterogeneous regions are still overall preferred
compared to homogeneous regions.

During the (i+ 1)-th step, the probability mass function
P i[x, y] is used to draw new sampling positions (x, y), which
are stored in δi+1

b [x, y]. In each iteration, a certain amount N+

of new sampling positions is drawn before the probability mass
function is recalculated. For convenience, PADIS is summarized
in Algorithm 1.

V. SIMULATIONS AND RESULTS

A. Simulation Setup

Regarding the image datasets for our simulations, we use a set
of scanning electron microscope images (SEM) [23] consisting
of a wide range of biological samples, and the TECNICK image
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Fig. 4. Four SEM images (left) and two TECNICK images (right) from the
respective image datasets. The images are of size1024 × 576 pixels and1200×
1200 pixels, respectively.

dataset [24] consisting of natural image content. For the SEM
image dataset, only the 14 images available at a resolution of
1024× 768 pixels are selected and the bottom 192 rows are cut
away in order to remove the insets with the device setting. This
resulted in images of size 1024× 576 pixels. For the TECNICK
images, all 100 images of size 1200× 1200 pixels are used.
Fig. 4 shows some of the images. The measurements are then
simulated by a multiplication of the respective sampling patterns
with the reference image as given in (1).

Subsequent to the measurement, the reconstruction of the full
images is required. We use linear interpolation (LIN) as in [25],
a custom weighted neighbor interpolation (WI) from the authors
of SLADS [17], [18], steering kernel regression (SKR) [26], and
frequency selective reconstruction (FSR) [10]. In order to judge
the quality of the reconstructed images, the PSNR defined as

PSNR = −10 log10
(

1

X · Y
∑
x,y

(
f [x, y]− f̂ i[x, y]

)2)

(18)
with respect to the reference image f [x, y] ∈ [0, 1] is calculated
and averaged for all images of a dataset at a fixed sampling den-
sity. In order to remove boundary effects, a border of 14 pixels
is neglected in the PSNR calculation.

To generate the dynamic sampling patterns, the parameters
of the algorithms need to be set. For the gradient based ap-
proach [16], we set the number of measurements added in each
iteration to N+ = 1% and initialize it with a random sampling
pattern at a sampling density of 1%. Besides this, there are no
further parameters to be adapted. For SLADS [17], [18], we
performed a training of the regression function using the Kodak
dataset [27]. The continuous variant of the implementation is
chosen and the remaining default settings are left unchanged. As
initialization, a random pattern at a sampling density of 1% is
chosen and 10 samples are added in each step. Half of the Kodak
dataset [27] is used for the least square regression in the training.
The other half is used to determine the optimal parameter c of
SLADS. Testing c ∈ {2, 4, 8, 16}, we find c = 4 being the best
solution. SLADS uses a custom weighted neighbor interpolation
(WI) for the required image reconstructions in this step. For
SLADS-Net, we use the pre-trained model provided by the
authors, which is trained on the cameraman image [19]. Again,
the continuous variant of the implementation is chosen and the
remaining default settings are left unchanged. In order to identify
the parameter c, we created the dynamic sampling patterns for
all images of the Kodak dataset using the provided models for
c ∈ {2, 4, 8, 16}. We then compared the mean PSNR of the

Fig. 5. Parameter training for the proportionality constant γ of PADIS. The
maximum is at γ = 1.2.

reconstruction results with LIN at a sampling density of 10%.
This leads to c = 2 being the optimal parameter choice.

For PADIS the parameters were set as follows: We use sb = 6
for the size of the weighting kernel of the weighted variance
map which is small enough to keep the structures of the image
visible but large enough to get a smooth result. For the number
of samples added in each iteration, we set N+ = 1% as for the
gradient-based approach. Additionally, we perform a parameter
optimization for the the parameter γ required for the scaling
of σmax in (15). We use the Kodak dataset [27], a sampling
density of 10% and FSR [10]. Fig. 5 shows the PSNR result for
different values of γ leading to an optimal value of γ = 1.2, i.e.,
σmax = 1.2/

√
ds. For the initialization of PADIS, we use the

sampling pattern from [12] at a sampling density of dinit = 3%.
This is high enough to ensure that the summations in (9) and
(10) are not zero.

B. Qualitative Comparison of the Different Sampling Patterns

Fig. 6 depicts the generated sampling patterns for the different
static and dynamic sampling methods. For the dynamic sampling
patterns, an exemplarily section of size 128× 128 pixels from
one SEM image is shown. For the static patterns, such a section
is not representative. Therefore, the sampling patterns are shown
for an auxiliary image of size 128× 128 pixels. We observe that
the gradient based approach, SLADS and SLADS-Net strongly
focus on the edges. However, it is apparent that some details
seem to be missed. For the proposed PADIS, the sampling pattern
is also strongly adapting to the image content. However, it does
not miss the details in the structure of the algae. Since the found
details are sampled at a smaller density, the remaining sampling
positions can be spend in other regions, which again allows to
find further fine structures.

In order to actually judge the performance of the dynamic
sampling approaches, it is required to take a look at the recon-
struction results using appropriate reconstruction algorithms.

C. Quantitative Evaluation of the Reconstruction Quality

Fig. 7 shows the reconstruction quality in terms of the average
PSNR as a function of the sampling density. Here, the SEM
dataset and FSR are used. The axes are clipped to the relevant
sections. The lineskip sampling starts at very low reconstruction
qualities and stays roughly -2dB below the other algorithms. It
can serve as a baseline since this is a very simple approach.
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Fig. 6. Various static sampling patterns for an image of size 128× 128 pixels
(top) and sections of dynamic sampling patterns for an example from an SEM
image (bottom). (Please pay attention, additional aliasing may be caused by
printing or scaling. Best to be viewed enlarged on a monitor.)

The regular pattern, the random pattern, and the optimized
non-regular pattern from [12] achieve a reconstruction quality
of more than 20dB even at a sampling density of 1%. Their
reconstruction quality steadily increases for higher sampling
densities and the optimized non-regular patterns from [12] per-
form better than the random and regular patterns as shown in
the corresponding publication. Notably, the regular sampling
pattern accomplishes a competitive reconstruction quality for
sampling densities above 40%.

The proposed PADIS algorithm outperforms all static and
dynamic patterns. Compared to the optimized non-regular sam-
pling patterns from [12], it gains +0.72dB at a sampling density
of 15% and +1.42dB at a sampling density of 35%. Comparing
PADIS to the other dynamic approaches, gains of more than
+1.51dB at a sampling density of 15% and +0.92dB at a sampling
density of 35% are found. Interestingly, SLADS converges to the
performance of PADIS at sampling densities larger than 60%.

Fig. 7. Reconstruction quality in terms of average PSNR as a function of the
sampling density for the SEM images and FSR as reconstruction method.

In Table I we consider three additional reconstruction algo-
rithms, namely LIN, WI, and SKR. Again, the SEM dataset is
used and representative sampling densities are shown. For the
gradient based approach [16] and SLADS [17], [18], we find
that LIN results in a notably better reconstruction quality in
terms of PSNR compared to FSR. Using each sampling method
with its best reconstruction algorithm, PADIS surpasses the other
dynamic sampling methods by more than +0.85dB at a sampling
density of 15%, and +0.39dB at a sampling density of 35%. For
5% and 70%, PADIS with WI/FSR performs only -0.06dB and
-0.3dB worse than the best choice from the other algorithms.
Taking the overall performance across all sampling densities
into account, we can summarize that PADIS is superior to the
other sampling strategies in a majority of cases for the SEM
dataset as can be seen from the values highlighted in bold font
in Table I.

For the TECNICK dataset, a shortened overview of the results
is given in Table II. We only show LIN and FSR and the most
relevant sampling methods for convenience. Here, PADIS per-
forms especially well for the sampling densities below 35% but
is also very close to the optimal choices for the higher sampling
densities. We would like to note again that even though the
other dynamic sampling approaches have cases where they have
slightly better reconstruction quality than PADIS, the proposed
PADIS performs better taking all combinations of sampling
densities, reconstruction algorithms and image datasets into
account.

D. Visual Comparisons

For a visual comparison of the reconstruction quality, Fig. 8
provides examples for three sampling densities. In terms of the
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TABLE I
RECONSTRUCTION QUALITY IN TERMS OF AVERAGE PSNR IN DB USING THE SEM IMAGES FOR FOUR SAMPLING DENSITIES AND VARIOUS (DYNAMIC) SAMPLING

PATTERNS. FOR THE RECONSTRUCTION, LINEAR INTERPOLATION (LIN), WEIGHTED INTERPOLATION (WI) FROM [17], STEERING KERNEL REGRESSION

(SKR) [26], AND FREQUENCY SELECTIVE RECONSTRUCTION (FSR) [10] ARE USED. BOLD FONT HIGHLIGHTS THE BEST PSNR VALUE IN EACH COLUMN

TABLE II
RECONSTRUCTION QUALITY IN TERMS OF AVERAGE PSNR IN DB USING THE TECNICK IMAGES FOR FOUR SAMPLING DENSITIES AND VARIOUS (DYNAMIC)

SAMPLING PATTERNS. FOR THE RECONSTRUCTION, LINEAR INTERPOLATION (LIN), AND FREQUENCY SELECTIVE RECONSTRUCTION (FSR) [10] ARE USED. BOLD

FONT HIGHLIGHTS THE BEST PSNR VALUE IN EACH COLUMN

reconstruction algorithm, LIN is chosen for the gradient based
approach and SLADS, because this results in higher PSNR val-
ues than SKR and FSR as shown in Tables I and II. For the other
methods, FSR is used for the reconstruction since it overall leads
to better results. The PSNR of the individual image sections is
provided as inset. It can be seen that PADIS significantly reduces
the number of missing details and visual artifacts that occur
for the other dynamic sampling approaches. The details of the
algae in the SEM image are inconsistent for the gradient based
approach, SLADS and SLADS-Net. Some of the structures are
not yet recovered while others are sampled with high accuracy.
This can straightforwardly be explained by taking the respective
sampling patterns into account (see Figure. 6). The missing
details are a direct consequence from the respective sampling
patterns. As another example for visual artifacts, the roof of the
house in the second image can be taken. It is incomplete for
the gradient based approach, SLADS and SLADS-Net even at
a sampling density of 35%. In both cases, PADIS leads to less
visual artifacts and details can be recovered at lower sampling
densities. Overall, the visual comparisons show that the gradient
based approach, SLADS, and SLADS-Net miss out important
details in presumably homogeneous regions, as they focus too
much on the inhomogeneous parts of the image. For PADIS, this
is not the case and more details of the image can be recovered
while at the same time the sampling pattern is adapted to the
content.

E. Noise Analysis

In this section, we would like to elaborate on the effects arising
in presence of measurement noise. Since all dynamic sampling
algorithms depend on the measured data, measurement noise
can impair the quality of the patterns and therefore the quality

of the reconstruction. In order to get a first intuition about the
role of measurement noise, we performed an experiment for the
first SEM image of our dataset. We added Gaussian noise with
a variance of σ2

n = 0.01 to the image f . Afterwards, we run the
(dynamic) sampling algorithms to acquire measurement data.
For the reconstruction, LIN is used. We restrict the analysis to
one simple reconstruction algorithm such that the influence of
the reconstruction algorithm on noise is kept constant.

Fig. 9 shows the sampling patterns and reconstruction re-
sults for an exemplarily section at a sampling density of 15%.
We observe that some of the dynamic sampling patterns are
strongly altered in presence of noise. For the gradient based
approach from [16], this can be explained by rather large
gradients occurring from the measurement noise. For SLADS
and SLADS-Net, similar observations are made. While SLADS
finds different structures than before, SLADS-Net troubles to
identify relevant parts and the altered sampling pattern has little
resemblance to the noise-free sampling pattern. For PADIS, the
sampling pattern is also altered though it still has a remarkable
resemblance and the key features are still identified. This is
due to the averaging used for calculating the variance in (8)
as well as the fact that PADIS is based on a probability mass
function. Consequently, even strong noisy alterations still give
comparable sampling patterns. This is a key difference compared
to the other maximization-based algorithms for which noisy
measurement values can strongly influence the location of the
maximum.

The reconstruction quality is mainly dominated by the noise
present in the measurements. Nevertheless, for the given image
sections, PADIS performs slightly better than the other methods
in terms of PSNR. For the gradient based method, SLADS and
SLADS-Net, disturbing artifacts arise in regions that are only
sparsely sampled.
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Fig. 8. Visual comparison of the reconstruction results using various static (first three rows) and dynamic (last four rows) sampling patterns. The reconstruction
algorithm is chosen based on best average performance in Tables I and II. (Please pay attention, additional aliasing may be caused by printing or scaling. Best to
be viewed enlarged on a monitor.).

F. Runtime Analysis

In addition to the reconstruction quality, the runtime plays
an important role in dynamic sampling. It is crucial since the
dynamic patterns need to be calculated dynamically during the
actual measurement process. All investigated dynamic sampling
algorithms are written in Python allowing for a fair comparison.
Table III summarizes the runtime to generate the sampling

patterns up to a sampling density of 100%. One of the SEM ima-
ges of size 1024× 576 pixels is used. An Intel Xeon E3-2690 v2
processor with 3.0 GHz is used for the timings.

While the runtime for the gradient based approach [16] is in
the same order of magnitude as PADIS, generating the patterns
with SLADS [17], [18] and SLADS-Net [19] takes more than
two orders of magnitude longer. PADIS is therefore a very good
candidate for fast dynamic sampling. We would like to note
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Fig. 9. The patterns and reconstruction results for the different dynamic
sampling approaches are shown for the noise-free as well as the noisy scenario.
For the reconstruction, LIN is used. The sampling density on the entire images
is 15%. The PSNR with respect to the noise-free reference section is given as
inset. (Please pay attention, additional aliasing may be caused by printing or
scaling. Best to be viewed enlarged on a monitor.).

TABLE III
RUNTIME (SMALLER IS BETTER) TO GENERATE THE DYNAMIC SAMPLING

PATTERNS. THE RUNTIME RELATIVE TO THAT OF PADIS IS GIVEN, TOO. BOLD

FONT HIGHLIGHTS THE BEST RESULT

that the runtimes for SLADS and SLADS-Net scale strongly
non-linear with the sampling density and the size of the im-
ages. This is not an issue in the original publications [17],
[18] and [19], since only tiny images were used. However, for
mega-pixel images runtime increases tremendously for these
two approaches. This non-linear scaling is not observed for the
gradient based approach and the proposed PADIS, making those
suitable also for very large images.

VI. CONCLUSION

In this work, we proposed a novel probabilistic approach
for dynamic sampling (PADIS). Our objective is to acquire a
high quality image including texture and fine details as good

as possible. Literature algorithms with similar objectives have
shown to mainly perform well on images with clear shapes
or segmented images [16]–[19]. PADIS aims at improving the
state of the art for a broader class of image content including
natural images. It incrementally adds new sampling positions by
evaluating the local variance of previously sampled pixel values
and creating a data driven probability mass function from which
the next sampling positions are drawn. We compare PADIS with
conventional static sampling approaches including a lineskip
pattern, a regular pattern, a random pattern, and an optimized
non-regular pattern, as well as three state of the art dynamic
sampling algorithms from literature, namely the gradient based
approach from [16], SLADS [17], [18] and SLADS-Net [19].
For the reconstruction of the images from the sampled data,
we use different algorithms including frequency selective re-
construction (FSR) [10]. PADIS outperforms the static as well
as the dynamic approaches for most combinations of image
content, reconstruction algorithms, and sampling densities. Us-
ing a dataset of scanning electron microscope (SEM) images, a
sampling density of 35% and FSR for reconstruction, gains of
+1.42 dB compared to the best static sampling pattern and at
least +0.92 dB compared to the other dynamic sampling meth-
ods are achieved. Even higher gains are found for natural image
content.

Our findings are supported by visual examples showing that
the image quality of the reconstructed images is superior us-
ing PADIS and reliable information about the image content
can already be recovered using fewer samples. In presence of
measurement noise, we showed that PADIS shows superior
performance as its sampling patterns are less affected. Regarding
the runtime of the algorithms, PADIS was 4.3-fold faster than
the gradient based method. The other two methods required two
orders of magnitude more processing time. Altogether, PADIS
enables a high quality acquisition with less time and therefore
potentially lower dose.

Future work will cover whether PADIS can be tailored specif-
ically towards to the used reconstruction algorithm. In case of
FSR, choosing appropriate sampling positions might help to
distinguish between otherwise equally likely frequency compo-
nents. A similar concept has been used for wavelet basis func-
tions in [28]. Besides this, future image compression techniques
based on PADIS are regarded to be promising. Other than in [20],
the dynamically adapted sampling positions do not need to be
transmitted as detailed in the introduction.
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