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Abstract—Light-field microscopy (LFM) is a type of all-optical
imaging system that is able to capture 4D geometric information
of light rays and can reconstruct a 3D model from a single snap-
shot. In this paper, we propose a new 3D localization approach
to effectively detect 3D positions of neuronal cells from a single
light-field image with high accuracy and outstanding robustness to
light scattering. This is achieved by constructing a depth-aware
dictionary and by combining it with convolutional sparse cod-
ing. Specifically, our approach includes 3 key parts: light-field
calibration, depth-aware dictionary construction, and localization
based on convolutional sparse coding (CSC). In the first part, an
observed raw light-field image is calibrated and then decoded into
a two-plane parameterized 4D format which leads to the epi-polar
plane image (EPI). The second part involves simulating a set of
light-fields using a wave-optics forward model for a ball-shaped
volume that is located at different depths. Then, a depth-aware
dictionary is constructed where each element is a synthetic EPI
associated to a specific depth. Finally, by taking full advantage of
the sparsity prior and shift-invariance property of EPI, 3D local-
ization is achieved via convolutional sparse coding on an observed
EPI with respect to the depth-aware EPI dictionary. We evaluate
our approach on both non-scattering specimen (fluorescent beads
suspended in agarose gel) and scattering media (brain tissues of
genetically encoded mice). Extensive experiments demonstrate that
our approach can reliably detect the 3D positions of granular tar-
gets with small Root Mean Square Error (RMSE), high robustness
to optical aberration and light scattering in mammalian brain
tissues.

Index Terms—Light-field microscopy, epi-polar plane image,
convolutional sparse coding, depth-aware dictionary.
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I. INTRODUCTION

UNDERSTANDING mechanisms of perception, cognition,
and complex behavior emerging from global dynamics of

neuronal network activity is a fundamental problem in neuro-
science. Progress depends on development of technologies to
simultaneously track the activity of hundreds to thousands of
neurons. Optical technologies could achieve this by imaging
photons from many neurons in parallel without mechanically
perturbing the brain tissue. In particular, dyes and proteins
have been engineered to transduce changes in membrane po-
tential and calcium concentration into optical contrasts such as
fluorescence [1], [2]. Despite its immense promise, optically
imaging the activity of mammalian neuronal networks poses
two key challenges: first, neurons are distributed in three spatial
dimensions while traditional microscopes focus on a single
two-dimensional plane; and second, mammalian brain is highly
scattering. Not only absorbing light, mammalian brain tissues
also scatter incident light many times, causing images to look
diffused. Imaging through scattering tissue remains an important
problem in optics, and advanced methods are required.

Two-photon microscopy [3]–[6] is one of the most popu-
lar imaging techniques due to several significant advantages
on deeper tissue penetration, efficient light detection, reduced
photo-bleaching, and mitigating the scattering issue. These
benefits come from exploitation of near-infrared (longer wave-
length) light for reducing scattering and absorption, as well as
exploitation of the non-linear excitation property of multiphoton
absorption to restrict fluorescence excitation to a small local
spot. Such localized excitation has been applied to point by
point scanning when imaging a 3D volume. However, this serial
acquisition limits the imaging speed. Efforts to increase acquisi-
tion speed include engineered beam trajectories [7]–[10], spatial
and/or temporal multiplexing of multiple foci [6], [11]–[17], as
well as sculpting fluoroscence excitation into an extended point-
spread function [18]–[21], either scanned or targeted statically
onto neurons of interest.

By leveraging light-field imaging [22], light-field microscopy
(LFM) [23]–[28] provides an alternative for 3D imaging of
neural activity with fast frame rate. In contrast to conventional
optical microscopy that records only lateral information as a 2D
projection of light rays, LFM is effectively a 3D optical imaging
technique with the capability of simultaneously gathering both
position and angular information of the incident light rays arriv-
ing at the sensor. This is achieved by incorporating a microlens
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Fig. 1. Flow chart for localization using convolutional sparse coding (CSC) on epipolar plane images. The real (on the left-hand side) and simulated (on the
right-hand side) light-field microscopy (LFM) images are first calibrated and decoded into two-plane parameterized 4D format in order to obtain sub-aperture
images. Then, the epipolar plane images and dictionary are constructed from the sub-aperture images. Finally, convolutional sparse coding is performed on the EPI
with respect to the EPI dictionary to detect the 3D location of targets.

array (MLA) at the original imaging plane and by moving the
imaging sensor to the rear focal plane of the microlenses [23].
With this structure, LFM is able to acquire 4D data containing
both spatial positions and direction of propagation of light rays
with a single snapshot. This non-scanning imaging mechanism
contributes to high light efficiency and fast imaging speed,
facilitating the recording of neural population activity at high
frame rates [26]–[28]. The promising application at the tissue
level holds great potential for observing structures and dynamics
across whole brain volumes.

However, the benefits of light-field imaging on light efficiency
and imaging speed come at the cost of reduced spatial resolution
due to the recording of angular information using some pixels. It
also suffers from substantial image degradation due to scattering
in deep layers of brain tissue. To this end, various approaches
were developed to improve spatial resolution via, for example,
3D deconvolution [25], [26], sparse decomposition in phase-
space [28]–[30].

Different from existing methods, we propose a new approach
to address the issues in LFM imaging and provide the ability
to measure 3D positions of neurons from a single snapshot
with high accuracy, efficiency and robustness. Our approach is
based on the epi-polar plane image (EPI), an effective tool to
analyze 3D information in 4D light-field data [31]–[35]. Since
each point source traces out a tilted line in an EPI, the intrinsic
dimension of an EPI is much lower than the ambient dimension
of the raw light-field data, making the 3D localization highly
tractable and thereby offering a path toward efficient 3D local-
ization. Moreover, by skipping the time-consuming and error-
prone 3D volume image reconstruction explicitly, our approach

reduces computational complexity significantly and improves
localization accuracy. The overall procedures of the proposed
approach are shown in Fig. 1. The novelties of our approach
include the following aspects:
� An automatic calibration and decoding method is devel-

oped to convert a raw 2D light-field image to the two-plane
parameterized 4D format, which allows the EPI to be built
accurately.

� Considering that neurons have a compact somata, they are
effectively modeled as ball-shaped volumetric sources. A
wave-optics forward model [24] is adopted to synthesize a
series of light-field images for a ball-shaped volume located
at different depths.

� From the set of synthesized light-field images, a novel
depth-aware dictionary is constructed, in which each ele-
ment, often called atom, is an EPI associated with a specific
depth. This EPI dictionary serves as the bridge to link an
observed EPI to the 3D positions of the targets via our
localization algorithm.

� By exploiting spatial sparsity and shift-invariance prop-
erties of EPI, we develop a specific convolutional sparse
coding (CSC) algorithm for 3D localization from a single
light-field image.

II. BACKGROUND

Light-field imaging and two-plane parameterization: Our
LFM system adopts a MLA based optical design [23]. The
schematic diagram is shown in Fig. 2(a), where a MLA is
inserted at the imaging plane between a 4-f optical system
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Fig. 2. Illustration of microlens-based light-field imaging. (a) Schematic for microlens-based LFM imaging system. MLA: microlens array. (b) A raw 2D
light-field image I(i, j, k, l) of a bead with 10 µm diameter at a certain depth. Simulated for a microlens-based light-field system. White lines indicate the virtual
profile of lenslets at the imaging side of the system, and each square represents a micro-image associated with a specific lenslet. (c) An array of sub-aperture
images I4D(i, j, k, l), a.k.a. multi-view images, are converted from the raw light-field image. Each sub-aperture image indicates a specific view specified by (i, j).
Namely, it is composed of pixels that share the same relative position (i, j) in each micro-image.

(consisting of an objective lens and tube lens) and the camera
sensor. Similar designs have also been adopted in commercial
light-field cameras via inserting a MLA between the main lens
and sensor, such as Lytro Illum by Lytro Inc. [36], [37] and
Raytrix GmbH [38].

According to ray-optics, each lenslet in the MLA is treated as
an ideal pinhole and the main lens is treated as a thin lens. Thus,
Fig. 2(a) indicates that the coordinates (k, l) of the lenslets and
the coordinates (i, j) of the pixels behind each corresponding
lenslet lead to a radiance-valued function I(i, j, k, l) which
determines each ray uniquely by the quadruple (i, j, k, l) and
assigned radiance value I . In other words, (k, l) index the spatial
positions of lenslets while (i, j) index the relative positions of
pixels behind each corresponding lenslet. Namely, each pixel
behind a lenslet captures a specific perspective.

The microlens-based light-field imaging systems aim to trans-
form the light-field from the world space into the image space of
the main lens and thereby sampling the light-field at the sensor
plane. Each lenslet with its underlying group of pixels forms
an in-camera sampling scheme, analogous to a tiny camera
with very few pixels, that observes the in-camera light-field.
The observation recorded by all the pixels in a sensor leads
to a raw light-field image I(i, j, k, l), as shown in Fig. 2(b),
where each square represents a micro-image associated with a
specific lenslet (7 by 7 micro-images are shown here with white
lines indicating the virtual profile of lenslets at the imaging side
of the system). Note that exact coordinates (i, j, k, l) remains
unknown in the raw light-field image until the profile of lenslets
is computed. That is why it is called a 2D raw light-field image
even though it already contains 4D information.

Once the profile of lenslets is computed during calibration,
fixing i and j leads to an image I(i, j, :, :), referred to as a
sub-aperture image, that is composed of pixels that share the
same relative position (i, j) in each micro-image, thus indicating
a specific view specified by (i, j). An array of sub-aperture
images I4D(i, j, k, l), as shown in Fig. 2(c), are obtained from
the raw light-field image in Fig. 2(b) by rearranging the pixels
referring to their angular positions (i, j). It is noticed that the
perspective changes along rows (from left to right) and columns

Fig. 3. Illustration of camera-array based light-field imaging. (a) For a camera-
array based light-field system, a light ray that propagates from the surface of
the scene is uniquely determined by the intersections with two parallel planes,
leading to a relative two-plane parametrization of light-field. By convention, the
s− t plane is closer to the camera, and the u− v plane is closer to the scene.
(b) An array of multi-view images shows that the view changes along different
directions. (c) A EPI (up) in u− s space for fixed (v, t) and an EPI (right) in
v − t space for fixed (u, s). (Images are from [39], [40].)

(from up to down). Such sub-aperture images depict varying
perspectives of the scene, which is similar to the multi-view
images captured by a camera-array. This confirms that the
microlens-based light-field imaging system allows for multi-
view acquisition. Therefore, using sub-aperture images as a
bridge, the representation for microlens-based light-field can
be converted to an equivalent representation for camera-array
based light-field which is often parameterized by two parallel
planes.

Specifically, the light-field captured by a camera-array is
commonly represented by relative two-plane parameterization,
as shown in Fig. 3(a), where a light ray that propagates from
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Fig. 4. An illustration of 2D light-field (with fixed s and u) and EPI. Left:
each point is observed by two cameras with centers at 0 and t; Right: Stacking
pixels captured along the camera path leads to an epipolar line in the EPI for
the corresponding point. The slope is related to the depth of the point in world
space. The deeper the point, the more tilted the epipolar line.

the surface of the scene is determined by the intersections with
two parallel planes. Following the notations in the Lumigraph
paper [33], the parameterization then consists of the intersection
position (u, v) of the ray with the first plane (closer to the scene
and called the image plane), and the intersection position (s, t)
with the other parallel plane (closer to the camera and called
the camera plane) at a distance D. Note, the intersection (u, v)
denotes the relative position with respect to the intersection
(s, t), which accounts for the “relative” two-plane parameter-
ization. By convention, D is often set to be the focal length f .
In this way, the light-field is represented by a radiance-valued
function I(u, v, s, t) which determines each ray uniquely by
the quadruple (u, v, s, t) and assigned radiance value I . A 2D
signal obtained by fixing s and t resembles an image with
a specific perspective, whereas fixed values of u and v give
a hypothetical radiance function. Fig. 3(b) shows an array of
multi-view images that are tiled together according to their (s, t)
positions to visualize the 4D light-field. It can be noted that
under the two-plane parameterization, the two types of light-field
systems are analogous, with (i, j) equivalent to (s, t) and (k, l)
equivalent to (u, v).

Epipolar plane image: Fixing s and u (or t and v) gives
rise to a 2D slice with angular and spatial directions, referred
to as an Epipolar Plane Image (EPI) [31]–[35], as shown in
Fig. 3(c). A point in the world space traces out a straight and
tilted line, referred to as an epipolar line, determined by only a
few meaningful parameters, as shown in Fig. 4. In particular, the
slope is inversely proportional to the depth while the horizontal
position is proportional to the lateral positions of the point in the
real world scene. The EPI allows an easy illustration of the light-
field in two dimensions and its characteristics lay the foundation
for our study and inspire us to develop effective algorithms for
3D localization. Similarly, fixing i and k (resp. j and l) gives
rise to an EPI I(i, :, k, :) (resp. I(:, j, :, l)) in which the two
axes represent spatial and angular dimension, and each epipolar
line reveals the depth and lateral positions for the corresponding
point in the scene, as shown in Fig. 5(a).

III. DICTIONARY CONSTRUCTION

A. Preliminaries

The proposed 3D localization approach is based on convo-
lutional sparse coding for EPIs. Our approach comes from the
following insights.

Fig. 5. Illustration of pattern recognition using convolutional sparse coding
on EPI. (a) An observed EPI constructed from a raw light-field image for a ball-
shaped volume at 10 µm depth. It contains an epipolar line corresponding to the
ball-shaped volume. (b) The matching EPI atom in a simulated EPI dictionary.
(c) Convolving the EPI with the matching atom results in a coefficient map with
a peak at the best overlapping position.

Depth related property of EPI: As introduced in the back-
ground, a raw light-field image captured by a microlens-based
light-field imaging system can be converted into an array of
multi-view images with two-plane parameterized 4D format.
Then, EPIs can be constructed from the 4D data, in which a
point forms an epipolar line, as shown in Fig. 4. A change
in the depth position results in the change of the slope of the
straight line in the EPI, that is, the shift operation in the depth
axis corresponds to a shearing operation in the EPI domain.
Specifically, the deeper the point source, the larger the slope of
the line, as shown in Fig. 4. This characteristic of EPI inspires
us to leverage EPI as an effective feature to perform pattern
recognition in order to detect the depths of target objects.

Shift-invariance property of EPI: Given the fixed depth
of a point source, shifting its lateral position along a spatial
dimension, e.g. horizontal direction, results in the shift of the
epipolar line in the EPI along corresponding spatial dimen-
sion. Specifically, the horizontal (resp. vertical) shift of a point
source corresponds to the shift of the epipolar line along the
spatial dimension in the horizontal (resp. vertical) EPI. Such
translation-invariance property accounts for why convolution
is an effective operation to search for specific patterns and to
perform pattern recognition. Relying on this insight, we develop
an algorithm to efficiently search and identify target EPI patterns
in a sub-space spanned by a set of elements in an EPI dictionary.
In such an EPI dictionary, each element is an EPI associated with
a specific depth, thus it allows shearing and shift being taken into
account through convolution. Furthermore, the size of each EPI
atom can be much smaller than the input observed EPI, and thus
significantly reducing computational complexity.

Ray-optics model vs wave-optics model: A ray-optics for-
ward model is commonly used to formulate the light-field
imaging process for opaque scenes and diffusely reflecting
objects that are at typical macroscopic photographic scales.
However, for LFM, the samples are so small that they are largely
transparent or semi-transparent and the diffraction effects of
light need to be taken into account. To this end, a wave-optics
model should be used to replace the rays-optics model to bet-
ter formulate the imaging process. Here, we exploit a wave-
optics forward model introduced in [24] to emulate the imaging
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process which has been proved to be more accurate than the
ray-optics model. In this way, we ensure that the simulated light-
field images match real images. Consequently, EPIs constructed
from the simulated light-field data closely match those obtained
from real data.

Based on above insights and analysis, it is observed that
the convolution of an EPI image with a matching EPI atom
gives a spiking coefficient map with the highest response at the
overlapping position, as shown in Fig. 5. In contrast, convolution
with a non-matching EPI (that is an EPI related to a different
depth) leads to an unstructured, lower response at the overlap-
ping position in the coefficient map. If the EPI is sparse, that is,
contains only a few epipolar lines, the coefficient maps are also
sparse with only a few large responses. These account for why
convolutional sparse coding on EPIs can identify the matching
atoms, thereby leading to the depth position detection via search-
ing a look-up-table. Accordingly, it also allows identifying the
lateral positions from the coefficient maps by examining the
largest responses.

B. Wave-Optics Model for Synthesizing EPI Dictionary

Our localization approach requires an EPI dictionary that con-
tains a set of EPIs corresponding to different depths. We propose
simulating LFM imaging and synthesizing such a dictionary by
exploiting a wave-optics forward model [24].

The wave-optics forward model describes how to evaluate the
light-field for an ideal point source that passes through a LFM
system, i.e. the impulse response function, a.k.a. point spread
function (PSF) which characterizes the properties of the optical
system.

In particular, given an ideal point source located at p =
(p1, p2, p3), the PSF h(x,p) at the sensor plane is given by

h(x,p) = F−1{F{Ui(x,p)Φ(x)}G(x̂)} (1)

where, Ui(x,p) = Uo(−x/M,p) and Uo denotes the virtual
wavefront at the native object plane computed using Debye the-
ory.Ui is the resulting light-field at the native image plane of a 4-f
system and is formulated as the inverted and stretched version of
Uo(x,p).Φ(x) denotes the lens mask of a MLA that is described
as the convolution of a 2D Dirac impulse with the transmittance
of a lenslet. After multiplying Ui(x,p) by the lens mask Φ(x),
the propagation of the result from the MLA to the sensor plane
using the paraxial approximation can be formulated using the
transfer function G(x̂) = exp(− i

4πλfML‖x̂‖22)) where fML

denotes the focal length of the MLA. More details can be found
in the supplemental material VII-A or literature [24].

Given the PSF, the wavefront recorded at the sensor plane is
described using a general linear superposition integral [24]:

f(x) =

∫
|h(x,p)|2g(p)dp, (2)

where p ∈ R3 is the position in a volume containing isotropic
emitters whose combined intensities are distributed according
to g(p).

Observing that compact somata of neuronal cells results in
fluorescence in the cytoplasm mainly confined to a tiny (around

Fig. 6. Simulated EPI dictionary. (a) Some examples for simulated LFM
images for a volume ball of diameter 10µm at different depths and corresponding
EPIs. (b) Some atoms in the simulated EPI dictionary, indicating that the slope
in an EPI is associated with the depth of the volume ball. Here, the horizontal
and vertical EPIs constructed from simulated LFM images are the same to each
other.

10 μm diameter) region, it is therefore reasonable to model a
neuron as a ball-shaped volume of 10μm diameter. Accordingly,
we simulate a series of light-field images for such a ball-shaped
volume located at different depths and then construct EPIs from
them to synthesize a depth-aware EPI dictionary. Specifically,
given the ball volume at a specific depth, we discretize it into
points on a regular grid, and use the aforementioned wave-optics
forward model and the general linear superposition integral op-
eration to produce a synthetic light-field image for this volume.
We then convert the light-field into the standard 4D format
according to the two-plane parameterization, and construct an
EPI associated with the specified depth. In this way, a series of
EPIs associated with a variety of depths are generated and form
a depth-aware EPI dictionary, as shown in Fig. 6.

We note that due to the adopted wave-optics model, the lines
in the EPIs are not straight but slightly curved due to shear-
ing. Nevertheless, the introduced characteristic and translation-
invariance property are still valid. Therefore, the convolution
based pattern recognition still makes sense and can be adapted
for the specific application.

IV. LOCALIZATION ALGORITHM

Based on the designed depth-aware EPI dictionary, we are
now in a position to describe the proposed location algorithm.
We first note that the real data used in our experiments are
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Fig. 7. (a) LFM schematic. The designed LFM is modified from a fluorescence
microscopy by inserting a MLA at the imaging plane of an objective lens and
tube lens with a CMOS sensor placed at its back focal plane. (b) Comparing
light-field (left) and wide-field (right) images for a fluorescent bead of 10 µm
diameter. The zoom-in region shows that light-field image is composed of small
round spots which correspond to the back-aperture of each lenslet. The wide-field
image was taken using the same microscope with the MLA removed.

provided using a light-field microscope designed in our labo-
ratory. As shown in Fig. 7, the microscope is modified from a
fluorescence microscopy by inserting a MLA (pitch 125 μm,
f/10, RPC Photonics) at the imaging plane of an objective lens
(25×, NA = 1.0, Olympus) and tube lens (180 nm, Thorlabs)
with a CMOS sensor (ORCA Flash 4, Hamamatsu) placed at its
back focal plane. By the principles of light-field imaging, each
lenslet records the angular distribution of light rays, therefore
such design allows to capture both position and direction of
propagation of light rays with a single-shot in a 2D intensity
image. We refer to the supplemental material (Subsection VII-B)
for a description of the specifics of our microscope.

The location algorithm operates in two steps. We first need to
calibrate the LFM. Contrary to standard approaches that perform
calibration off-line and require a white image, we achieve this
using an out-of-focus real light-field image of the experiment.
This is described in Section IV(A). In Section IV(B), we then
describe our localization approach based on convolutional sparse
coding.

A. Calibration and EPI Construction

In this part, we introduce the procedures for calibrating the
raw LFM images obtained from our LFM system, as well as
constructing sub-aperture images and EPI images. Note that,
our approach differs from conventional light-field decoding and
calibration performed with white images as we use a raw, out-
of-focus light-field image. This ensures a better matching of the
detected parameters with the target data, as well as simplifies
the whole procedure by eliminating the demand for acquisition
of white images which are usually harder to obtain.

1) Detection of Rotation Angle and Lenslet Pitch: Since a
raw LFM image may be rotated, we need to compute the rotation
angle in order to perform rotation calibration, followed by the
detection of the lenslet pitch.

Our angle detection approach is based on the observation that
a light-field image shows the grid structure of the MLA with

Fig. 8. Automatic angle and pitch detection for calibration. (a) illustration
of the relation between the intensity contrast and the rotation angle. (b) angle
detection via computing the intensity contrast at different angles. (c) an example
of rotation calibration using detected angle. (d) Detection of lenslet pitch in
frequency domain.

bright and dark spots. After performing column-wise summa-
tion, the resulting row vector looks like a stripe with varying
levels of brightness. We define the intensity contrast by the
difference between the maximum and minimum intensity in the
stripe. It is clear that the intensity contrast depends on the rotation
angle of the image. Specifically, the smaller the rotation angle,
the higher the intensity contrast, as shown in Fig. 8(a) for the
case of angle 5◦, 3◦, and 0◦. Taking the extreme case for example,
when the rotation angle is zero, all the brightest pixels are added
together and the same operation is applied to the darkest pixels,
therefore the difference between the maximum and minimum
intensity reaches the highest level.

By exploiting this fact, we develop a coarse-to-fine approach
to detect the rotation angle progressively. We first search the
angle in a coarse range, e.g. [−5◦, 5◦] with an increment step of
0.1◦. In each step, the whole image is rotated by the increment
step and then pixels are added along the columns, leading to a
row vector. After applying a Butterworth highpass filter on the
row vector to remove the DC component, the intensity contrast
of the filtered vector is computed for the current rotation angle.
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Algorithm 1: Center Detection for MLA.
Input:
Raw light-field image. Lenslet pitch. A proper threshold for
binarization.

Output:
A location map for the MLA centers.
Procedures:
1) Design a disc-shape kernel with the diameter of the

disc equal to the lenslet pitch. Alternatively, for better
robustness, we design a multi-disc-shape kernel that
consists of n× n (e.g. 3× 3) identical discs, with the
diameter of each disc equal to the lenslet pitch.

2) Binarize the LFM image with a manually specified
threshold.

3) Use a window to extract a region of interest (ROI)
from the binarized LFM image and then perform
convolution on the ROI using the designed kernel.

4) The point with the largest value in the convolved
image is found to serve as the center of the ROI.

5) Move the window by a pitch. Repeat the procedure
(3)–(5) until all the centers in the binarized LFM
image are detected.

6) Perform average along each row and each column to
give the final results.

In this way, we obtain an intensity contrast curve with respect
to a series of rotation angles, as shown in Fig. 8(b). The rotation
angle corresponding to the highest intensity contrast will be the
detection result. Then, we further refine the detection result in a
smaller angle range, e.g. [α− 1◦, α+ 1◦]whereα is the detected
angle. One example of rotation calibration using the detected
angle is shown in Fig. 8(c). It demonstrates that the raw LFM
image can be accurately rotated back to the zero-angle position
using the proposed method.

Given the rotation calibration result, the detection of lenslet
pitch is performed in the frequency domain, as shown in
Fig. 8(d). The idea is that if we add the pixels of the calibrated
LFM image along the columns, the resulting 1D signal is approx-
imately periodic and the period corresponds to the pitch of the
lenslets. Therefore, a fast Fourier transform (FFT) is performed
on the signal to find the largest frequency which represents
the changing rate of the intensity. Accordingly, the reciprocal
of the largest frequency gives the period of the signal which
approximates the lenslet pitch.

2) Center Detection for MLA: Center detection and calibra-
tion for a MLA is an imperative operation that facilitates accurate
decoding of raw LFM data into the standard 4D format. To
this end, we introduce a robust center detection method that
is able to take advantage of neighbourhood information during
the detection.

Given a LFM image with rectified rotation angle and detected
lenslet pitch, the center detection is implemented based on the
convolution of the LFM image with a properly designed kernel
containing specific patterns, as described in Algorithm 1 and
illustrated in Fig. 9(a)–(b).

Fig. 9. Automatic center detection via convolving the region of interest (ROI)
with a designed kernel, such as (a) disc-shape kernel or (b) multi-disc-shape
kernel. The latter kernel is more structured so that it exploits additional neighbor-
hood information and makes the detection more robust. (c) Detect lenslet centers
from a binarized out-of-focus light-field image. (d) Apply detected centers on
raw real LFM images of a bead (left) and a neuron (right).

Some center detection results are shown in Fig. 9(c)–(d). It
is observed that the proposed method is able to robustly and
accurately detect the centers of a MLA from an LFM image,
even for those regions in the image where quality is poor. This is
due to the convolution with a structured kernel which is designed
to contain specific patterns so that it can take full advantage of
neighbourhood information during the detection.

The obtained MLA centers and lenslet pitch from previous
operations allow transforming a raw LFM image into the stan-
dard 4D format, further leading to EPI construction, as described
in the next subsection.

3) 4D LFM Data and EPIs: Given the detected lenslet cen-
ters and pitch, we are able to extract each micro image, i.e.
I(:, :, k, l) for the (k, l)-th lenslet, from a raw 2D light-field
image shown in Fig. 10(a) or 11(a), and then re-arrange them into
a 4D matrix, thereby leading to the standard 4D format light-field
I4D(i, j, k, l), (∀i, j, k, l). Once the raw 2D light-field image
is decoded into the standard 4D format, sub-aperture images
can be easily obtained by extracting 2D slices I4D(i, j, :, :)
for specific views indexed by (i, j). As aforementioned, each
sub-aperture image is composed of pixels that share the same
relative position behind each lenslet. All the sub-aperture images
can be combined into an array with (k, l) as the inside axes and
(i, j) as the outside axes, as shown in Fig. 10(b) and Fig. 11(b).

In each sub-aperture image array, each row indicates hori-
zontal change of view (from right to left) while each column
indicates vertical change of view (from down to up). This phe-
nomenon becomes more apparent after extracting the central row
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Fig. 10. Non-scattering case. (a) Raw LFM images of a fluorescent bead immersed in agarose at different depths away from the focal plane. The pattern is
expanded when the bead is far away from the focus plane. In each light-field image, we can see an array of small round spots which are the back-aperture of lenslets.
The axes inside each spot are indexed by i and j, while the positions of each spot are indexed by k and l. (b) Sub-aperture image arrays for different depths. After
a raw 2D light-field image is converted into the standard 4D format, we can re-arrange the pixels into sub-aperture images. Each sub-aperture image is composed
of pixels that share the same relative position behind each lenslet. All the sub-aperture images can be tiled into an array with k-l as the inside axes, and i-j as the
outside axes, just opposite as in the raw data. (c) From a row or a column of the sub-aperture image array, it is noticed that the positions of the bright area are
shifting, which means the view direction of the bead and cell is changing horizontally or vertically. Such view changing accounts for the slope of epipolar lines in
the EPIs. (d) Constructed i− k and j − l space EPIs. We concatenate a set sub-aperture images from a specified row (i.e. fixed i) or specified column (i.e. fixed j)
of the sub-aperture image array in the third dimension. Then, each horizontal 2D slice (with fixed k) leads to an EPI in the j − l space. Similarly, each vertical 2D
slice (with fixed l) leads to an EPI in the i− k space. Best seen by zooming on a computer screen.

and central column from a sub-aperture image array, as shown
in Fig. 10(c) and Fig. 11(d). The view change accounts for the
slope of epipolar lines in an EPI.

When constructing an EPI, a specified row (i.e. fixed i) of
sub-aperture images are concatenated in the third dimension and
then a 2D slice (for a fixed k) leads to an EPI in the j − l space.
Similarly, a pair of fixed j and l leads to an EPI in the i− k
space, as shown in Fig. 10(d) and Fig. 11(e). In these EPIs, one
can easily notice aforementioned characteristics that the slope of

an epipolar line is associated with the depth of a corresponding
source – the deeper the source, the more tilted the epipolar line.

B. 3D Localization

3D Localization is based on convolutional sparse coding on
an observed EPI with respect to the synthesized EPI dictio-
nary. Specifically, given an observed EPI (in vectorized form)
Y ∈ RN as input, we first solve a convolutional sparse coding
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Fig. 11. Scattering case. (a) Raw LFM images of a neuronal cell (from a genetically encoded mouse) at different depths away from the focal plane. The pattern
is expanded when the neuronal cell is far away from the focus plane. Due to scattering and blurring, the cell images have a bright background and those for deeper
positions have a weaker intensity contrast, thus making post-processing challenging. In each raw LFM image, we can see an array of small round spots which are
the back-aperture of lenslets recorded in micro-images. (b) Sub-aperture image arrays for different depths. After a raw LFM image is converted into the standard
4D format, pixels can be re-arranged into sub-aperture images. Each sub-aperture image is composed of pixels that share the same relative position (i, j) in behind
each lenslet, indicating a specific view. All the sub-aperture images are tiled into an array with k-l as the inside axes, and i-j as the outside axes. (c) The separated
foreground and background of a sub-aperture image array via matrix factorization. (d) From a column of the sub-aperture image array, it is noticed that the positions
of the bright area are shifting, which means the view direction is changing vertically. Such view changing accounts for the slope of epipolar lines in the EPIs. The
corresponding purified versions do not suffer from scattering as the background has been effectively removed by matrix factorization. (f) Constructed j − l space
EPIs and corresponding purified versions. Best seen by zooming on a computer screen.

problem (3):

min
z

1

2
‖Y −

M∑
m=1

dm ∗ zm‖22 + β
M∑

m=1

‖zm‖1 (3)

where,dm ∈ Rn(n < N) is them-th atom of the EPI dictionary
{d1, . . . ,dM} where each atom represents a vectorized EPI
containing a single epipolar line associated with a specific depth.
Moreover, zm ∈ RN is the corresponding coefficient map.

To solve Problem (3) efficiently, we transform the variables
into the Fourier domain so that the convolutional operation in the

original domain becomes element-wise multiplication, similar
to [41]–[45]. Then, by exploiting the Parseval’s theorem, we
obtain:

min
zm

1

2
‖Ŷ −

M∑
m=1

d̂m � ẑm‖22 + β

M∑
m=1

‖zm‖1 (4)

where � is element-wise product, i.e. Hadamard product, which
corresponds to convolution in the original spatial domain. Here,
Ŷ = F(Y) ∈ RN , ẑm = F(zm) ∈ RN , d̂m = F(dm) ∈ RN ,
and F(·) indicates the Fourier transform operator.
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To make the formulation concise, we define D̂ = [diag

(d̂1), . . . ,diag(d̂M )] ∈ RN×MN as the whole dictionary, and
Z = [z1; · · · ; zM ] ∈ RMN as the concatenated version of all
the column vectors z. Then, Equation (4) becomes

min
Z

1

2
‖Ŷ − D̂Ẑ‖22 + β ‖Z‖1 . (5)

We use the alternating direction method of multipliers
(ADMM) to solve the optimization problem in (5). Introducing
auxiliary variable T leads to (6):

min
Z

1

2
‖Ŷ − D̂Ẑ‖22 + β ‖T‖1

s.t. Z = T (6)

and the augmented Lagrangian of the objective is formulated as:

L(Z,T,γ) =
1

2
‖Y −DZ‖22 + β‖T‖1 + γ�(Z−T)

+
μ

2
‖Z−T‖22 . (7)

Then, the following 3 subproblems are alternatively solved:

Z(i+1) = argmin
Z

L(Z,T(i),γ(i))

= argmin
z

1

2
‖Ŷ − D̂Ẑ‖22 + γ(i)�(Ẑ− T̂(i))

+
μ

2
‖Ẑ− T̂(i)‖22

= F−1{(D̂�D̂+ μI)−1(D̂�Ŷ − γ̂ + μT̂(i))} (8)

T(i+1) = argmin
T

L(Z(i+1),T,γ(i))

= argmin
t

β‖T‖1 + γ(i)�(Z(i+1) −T)

+
μ

2
‖Z(i+1) −T‖22

= Sβ/μ(Z
(i+1) + γ(i)/μ) (9)

where Sβ/μ(·) is the soft-thresholding function defined as
Sλ(x) = sign(x) · (|x| − λ)+, and

γ(i+1) = argmin
γ

L(Z(i+1),T(i+1),γ) = γ(i)

+ μ(Z(i+1) −T(i+1)) . (10)

To summarize, subproblem z is a least square problem, subprob-
lem t is a �1 regularized soft-thresholding problem, also called
LASSO [46], and subproblem γ is to update the Lagrangian
multipliers.

Once the coefficient maps {z1, . . . , zM} are obtained, we
compute a vector that contains the energy of each maps, and
then the S centroids {zΩ} can be found via clustering on the
energy vector, where S denotes the number of point sources
and Ω is the set containing the indices of the S representative
coefficient maps. Then, the target atoms {dΩ} indexed by Ω
lead to the depths directly, while the peak value in each selected
coefficient map indicates the lateral positions. Together, they
give the 3D positions {p(s) ∈ R3, s = 1, . . . , S} of associated
point sources.

Algorithm 2: Location Detection Algorithm.
Input:
Observed horizontal EPI Yh and vertical EPI Yv;
A pre-simulated EPI dictionary D.
Output:
Coefficient maps Zh and Zv; 3D locations of sources
p(1), . . . ,p(s).

Procedures:
1) Convolutional Sparse Coding

Solve Convolutional Sparse Coding problem (6) via
alternating between (8), (9) and (10) to obtain Zh

and Zv .
2) Detecting 3D locations

From Zh and Zv), find the indices Ω of the S

representative coefficient maps, which lead to p
(s)
h

(resp. p(s)
v ).

3) Computing weights
Computing weights for each EPI using (11).

4) Computing final 3D locations
Perform weighted average using (12) to get final 3D
locations.

However, in practice, due to blurring, noise and scattering, the
coefficient mapsZh of convolutional sparse coding on horizontal
EPIs (i.e. in i− k space) may be different from Zv on vertical
EPIs (i.e. in j − l space). Therefore, the 3D location p

(s)
h found

using Zh are often different from the p
(s)
v found using Zv. To

determine which one to select, a naive way is to average the two
estimated locations. Alternatively, we suggest taking advantage
of coefficient maps to compute weights which assess how well
the convolutional sparse coding has performed on the EPIs and
how reliable the estimated locations are. In this way, the weights
act as auxiliary information to facilitate the manipulation of the
results. In particular, considering that the target atoms should
have a large response in corresponding coefficient maps, we
compute a ratio w (i.e. wh or wv) for each coefficient matrix Z
(i.e. Zh or Zv) as the weights using:

w = ‖Z:,Ω‖2F /‖Z‖2F . (11)

Given the weights wh, wv and 3D locations ph,pv , the final
locations are obtained via weighted averaging:

p(s) = whp
(s)
h + wvp

(s)
v . (12)

The overall localization process is summarized in Algorithm 2.

V. EXPERIMENTS

In this section, we evaluate the 3D localization capabilities
of the proposed method. We also compare our approach with
the 3D deconvolution-based method (3D-Deconv for short) [24]
where 3D deconvolution is followed by 3D localization, and the
phase-space based method (Phase-Space for short) [28], [30] on
both non-scattering and scattering specimens. In particular, for
the case without scattering, we image a suspension of fluorescent
beads of 10 μm diameter in agarose to get the raw LFM data,
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as shown in Fig. 10(a). For the case involving scattering, we
use mouse brain tissues as specimens, and the obtained raw
light-field data is shown in Fig. 11(a).

The light-field images of specimens were captured by system-
atically changing the distance between the objective lens and
the specimens. Therefore, each light-field image corresponds
to a specified depth and captures a 3D volume, not a single
layer. In other words, each light-field image is an observa-
tion of the whole 3D space, rather than a slice of it. Further-
more, each light-field image is used independently to detect
3D positions of sources. Note that, 3D-Deconv [24] exploits
a layer-by-layer approach to reconstruct the whole 3D volume
using the Richardson-Lucy deconvolution algorithm. However,
such layer-by-layer reconstruction is completely unrelated to our
approach and the Phase-Space method [28], [30] as they focus
on localization, i.e. detecting 3D positions of sources, instead
of 3D volume reconstruction. This is a significant difference
from 3D-Deconv [24]. All the localization experiments were
conducted using MATLAB R2018a in a computer equipped with
an Intel hexa-core i7-8700 U CPU at 3.20 GHz with 28 GB of
memory, and 64-bit Ubuntu operating system.

A. Experimental Setup and Data Preprocessing

We provide a brief introduction to the experimental setup to
describe how the light-field data is acquired and preprocessed.
More details about the experimental setup can be found in
Section VII-B in the supplemental material.

Non-scattering case: The non-scattering samples used in our
experiment are static suspension (5.0 ∗ 103μL−1) of fluorescent
beads with 10 μm diameter and sparsely distributed in a slice
of agarose gel. To obtain ground-truth positions of the beads, a
wide-field microscope (the same as the LFM but with the MLA
removed) is used to scan the imaging volume at a sequence of
depths. This leads to an image stack where each image frame
corresponds to a specific depth. By changing the depth gradually,
the depth and spatial positions for each target bead can be man-
ually found when it is in focus at a specific image frame. A set of
single-shot light-field frames are obtained for a bead at different
depths 0 - 48 μm away from the focal plane. Some examples
of the raw light-field images for fluorescent bead immersed in
non-scattering media are shown in Fig. 10(a). Obviously, the
light-field pattern recorded by the sensor is expanded when the
bead is further away from the focus plane.

Given measured 2D raw LFM data, we perform calibration,
and then convert the data into the two-plane parameterized 4D
format followed by the construction of EPIs using the procedures
introduced in Section IV-A. Fig. 10(b)–(c) show the sub-aperture
images converted from the raw light-field images. Fig. 10(d)
shows the constructed EPIs. Evidently, the bead forms a tilted
epipolar line in the EPI with the slope inversely proportional to
its depth.

Scattering case: The scattering samples used in our experi-
ment are from brain tissues of a genetically encoded mouse. The
imaging, calibration and decoding procedures are similar to that
for fluorescent beads. However, scattering tissues induce blurs
and background noise in the light-field images and consequently

in the EPIs constructed from them, as shown in Fig. 11(a)–(b).
Point sources located at deeper positions suffer more from
blurring and noise. Such corruption may hinder the localization
operation and result in performance degradation.

To alleviate the interference, we develop a set of purification
operations. First, we vectorize all the sub-aperture images into
column vectors and concatenate them into a 2D matrix A.
We then perform a singular value decomposition (SVD) based
matrix factorization operation on the matrix A to get the largest
singular value σmax and corresponding singular vectors umax

and vmax so that the rank-one matrix B = umaxσmaxv
�
max

represents the background. Subsequently, the foreground can
be separated out by subtracting the background B from A,
followed by re-arranging each column vector back into a 2D
image, as shown in Fig. 11(c)–(d). Then, we construct EPIs using
max-projection1 which projects the largest value per row and per
column onto the vertical and horizontal axes, respectively. This
also helps to reduce the interference of background blurring.
Alternatively, referring to the spatial positions detected from
the center-view sub-aperture image, one can also extract EPIs
at those specified positions. This may lead to EPIs containing
very few epipolar lines and therefore benefits the subsequent
localization procedure. The remaining noise in constructed EPI
can be further attenuated via using some denoising techniques.
However, we found that such denoising operation is optional, as
the capabilities of the proposed method are not significantly af-
fected by the presence of interference due to robustness induced
by sparsity.

B. Experimental Results and Discussion

Given the constructed EPIs, 3D localization is achieved using
proposed Algorithm 2 to perform convolutional sparse cod-
ing with respect to a synthetic EPI dictionary. The dictionary
elements found for sparse representations indicate the depth
positions while the obtained coefficients a.k.a feature maps
lead to transverse positions, with reconstructed clean EPIs as
by-product. The estimated 3D locations are compared with the
proxy of groundtruth to obtain Root Mean Square Error (RMSE)
for evaluating the performance.

The results for non-scattering and scattering cases are shown
in Fig. 12 and Fig. 13, respectively. In general, 3D-Deconv [24]
and our approach perform well on localizing transverse po-
sitions, i.e. x and y coordinates, and both outperform Phase-
Space [28], [30]. However, when it comes to detecting depth
positions, our approach and Phase-Space [28], [30] demonstrate
superior performance and outperform 3D-Deconv [24] with
notable gains. We also note that the performance of both 3D-
Deconv [24] and Phase-Space [28], [30] suffer more at increased
depths than our approach.

1Given a 2D EPI image X with i = 1, . . . , I , j = 1, . . . , J representing
row and column indices, respectively, the max-projection onto the vertical
axis implies picking, from each row Xi,:, the brightest pixel Xi,max and
concatenating them as a vector [X1,max, . . . ,Xi,max, . . . ,XI,max]. Sim-
ilarly, max-projection onto the horizontal axis implies picking, from each
column X:,j , the brightest pixel Xmax,j and concatenating them as a vector
[Xmax,1, . . . ,Xmax,j , . . . ,Xmax,J ].
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Fig. 12. Non-scattering case. Compare performance of localizing a fluorescent
bead using three different methods, including the 3D deconvolution [24], phase-
space method [28] and our proposed method. Depth varies from 0 µm to 48 µm.

The good performance of 3D-Deconv [24] on localizing
transverse positions is mainly due to the super-resolution ef-
fect induced by Richardson-Lucy deconvolution algorithm. This
effect results in a finer discretization (δ = d

M∗Ni
= 125

25×19 =
0.26 μm) in x and y coordinates, even smaller than the reso-
lution limit (δ = d

M = 5 μm) of light-field microscopy, where
d is lenslet pitch, M is the magnification factor, and Ni is
the number of pixels behind each lenslet. On the other hand,
3D-Deconv [24] suffers from significant degradation of per-
formance on detecting depth positions. This is because, for a
deep position, both the correct PSF (2D matrix) and similar
PSFs may produce similar reconstructions, and what is more
problematic is the fact that the PSFs corresponding to shallower
depths give better reconstructions with higher intensity than
the correct PSF. As shown in Fig. 14, it can be seen that the
reconstructions from a range of PSFs can be similar, and better
reconstructions with higher intensity tend to be obtained with
respect to shallower PSFs, rather than the correct PSF. This
is why it experiences an increased underestimation error with
increasing depth. Such performance degradation becomes even
more severe for a scattering case, as shown in the rightmost
figures 12(a) and 13(a).

Phase-Space [28], [30] incorporates the wave-optical and
geometric effects into their model using a phase-space Wigner
function (and its Fourier spectrogram) so that the light

Fig. 13. Scattering case. Compare performance of localizing a neuronal cell
using three different methods, including the 3D deconvolution [24], phase-space
method [28] and our proposed method. Depth varies from 0 µm to 36 µm.

propagation in space can be easily represented by a simple shear-
ing operation in phase-space. However, the effects of the main
lens and the microlens array were ignored. The fact that these
effects were not fully incorporated may account for why their
phase-space dictionary elements are straight lines with uniform
shearing everywhere, as shown in Fig. 15. It can be noticed that
the simulated dictionary elements do not resemble real phase-
space observations, in particular at deeper positions, as shown in
Fig. 10(d) and Fig. 11(e), where the real observations exhibit an
‘S’-shape due to distortion and aberrations from the lenses. In
addition, the elements in the phase-space dictionary [28], [30]
are PSFs that correspond to ideal point sources without con-
sidering a reasonable radius. All these mismatches may reduce
robustness, leading to notable localization errors, in particular at
deeper positions, as shown in figures in Fig. 12(b) and Fig. 13(b).
Note that, for a fair comparison, we have applied the same con-
volutional sparse coding algorithm for both Phase-Space [28],
[30] and our approach, and the only difference is in the design
of the dictionary. We also test a set of scattering parameters
and select the best one for Phase-Space [28], [30]. As shown in
Fig. 16, the coefficients are sparse and the reconstructions are of
good quality for shallower positions, but they degrade consid-
erably for deeper positions as straight lines in the phase-space
dictionary are not able to represent the ‘S’-shape observations
well enough. In spite of these drawbacks, Phase-Space [28],



SONG et al.: 3D LOCALIZATION FOR LIGHT-FIELD MICROSCOPY VIA CONVOLUTIONAL SPARSE CODING ON EPIPOLAR IMAGES 1029

Fig. 14. 3D deconvolution [24] tends to give large deviation in depth detection. In each subfigure, the first row denotes reconstructed 2D images from light-field
of a fluorescent bead and a neural cell via 3D deconvolution with respect to (w.r.t) a set of PSFs that correspond to a set of different depths. In each subfigure,
the middle image represents the reconstruction w.r.t the correct PSF (indexed by 0). The images on the left side represent reconstructions w.r.t shallower PSFs
(indexed by a negative number), while the images on the right side represent reconstructions using deeper PSFs (indexed by a positive number). It is evident that
when the source is at a shallow position, e.g. 8 µm for a fluorescent bead, the correct PSF and its adjacent PSFs give the best reconstruction, leading to correct
depth detection. However, for the source at a deep position, e.g. 24 µm or beyond, reconstructions w.r.t shallower PSFs are better than that w.r.t the correct PSF,
leading to increased underestimation errors.

Fig. 15. Phase-space dictionary model [28], [30]. It is noticed that the phase-
space dictionary elements are straight lines with uniform shearing everywhere.
There exists notable mismatches between the phase-space dictionary and real
light-field observations, which cause localization errors, in particular at deeper
positions.

[30] still outperforms 3D-Deconv [24] on depth detection with
significant improvements, in particular for scattering cases, ow-
ing to more structured patterns and redundant information of
light-fields in phase-space.

The enhanced localization performance of our approach is
due to the accurate light-field model and EPI dictionary, as well
as convolutional sparse coding-based localization algorithm.
In addition to wave-optical effects, our light-field model also
considers the effect of the main lens and the microlens array of
the microscopy system along the whole light-field propagation
path, which ensures our model represents the real observations
more accurately than the model [28], [30]. In particular, the main
lens together with the relevant 4F system makes sure that the
electromagnetic field is approximately band-limited in space.
They also result in non-uniform light distribution in the imaging
plane so that the light density is the largest at the center of the
imaging plane and becomes smaller for areas far away from the
center. This accounts for why epipolar lines in our EPIs tend to
be thicker at the center region and thinner at the two ends, as
shown in Fig. 6, in particular for out-of-focus sources, e.g. at a
depth of 20 um. This phenomenon also matches real light-field
observations, as shown in Fig. 10(d) and Fig. 11(e). In addition,
the blurring and downsampling effect from the microlens array
and associated pixels behind each lenslet are also incorporated
into the model. Owing to the exploitation of EPI/phase-space,
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Fig. 16. Due to mismatch between the synthesized phase-space dictionary
and the real light-field observation, the reconstructed EPIs with respect to the
phase-space dictionary model [28], [30] can not represent original EPIs well
enough, as shown in (a), and the sparse coefficients degrade in particular for
deeper sources, as shown in (b). The reconstruction and sparse coefficients, as
shown in (c) and (d) with respect to our dictionary model demonstrate better
quality and structured sparsity than [28], [30].

our approach exhibit a similar advantage to Phase-Space [28],
[30] in detecting depth positions over 3D-Deconv [24]. Fur-
thermore, the more accurate dictionary model contributes to
enhanced sparsity and robustness because fewer atoms are re-
quired for good representation. This enables us to outperform
Phase-Space [28], [30] at detecting deeper positions as well
as transverse positions. In addition, even though our approach
also focuses on localization without super-resolution effects
in the transverse dimension, thus preventing improvements to
discretization in x and y coordinates, we still obtain competitive
transverse localization performance with comparable RMSE
to 3D-Deconv [24]. This is because our approach improves
localization accuracy and thereby counteracts the adverse impact
of discretization to some extent. To summarize, based on the
accurate model and effective algorithm, our approach demon-
strates higher localization accuracy and robustness than previous
methods, as shown in Fig. 12(c) and Fig. 13(c). It produces
the best 3D localization performance at depth in scattering
conditions that normally prevent good localization in particular
along the axial (z) dimension.

We refer to the supplemental material (Subsection VII.B and
VII.C) for further results and for further discussion.

VI. CONCLUSION

A single LFM image captures 4D geometrics of light rays,
including both spatial and angular information. We propose
an efficient 3D localization approach to detect 3D positions of
neuronal cells from a single light-field snapshot. Our approach
first calibrates and decodes the raw light-field image into the
standard 4D format and then construct EPIs. By leveraging
EPIs as effective features, we perform convolutional sparse
coding with respect to a depth-aware synthesized EPI dictio-
nary to achieve 3D localization of targets. Since the proposed
approach skips time-consuming and error-prone 3D volume
reconstruction, it improves the efficiency and accuracy of the 3D
localization. Experiments on both non-scattering and scattering
media demonstrate that our approach can reliably detect the 3D
positions of granular targets with high fidelity and also exhibits
outstanding robustness to scattering and aberration effects.

ACKNOWLEDGMENT

The authors would like to thank Gerald Moore for preparing
the fluorescent brain sample.

REFERENCES

[1] T. Knöpfel and C. Song, “Optical voltage imaging in neurons: Moving
from technology development to practical tool,” Nature Rev. Neurosci.,
vol. 20, pp. 719–727, 2019.

[2] M. Z. Lin and M. J. Schnitzer, “Genetically encoded indicators of neuronal
activity,” Nature Neuroscience, vol. 19, no. 9, 2016, Art. no. 1142.

[3] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scan-
ning fluorescence microscopy,” Science, vol. 248, no. 4951, pp. 73–76,
1990.

[4] T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-
wide 3D imaging of neuronal activity in Caenorhabditis elegans with
sculpted light,” Nature Methods, vol. 10, no. 10, 2013, Art. no. 1013.

[5] G. Katona et al., “Fast two-photon in vivo imaging with three-dimensional
random-access scanning in large tissue volumes,” Nature Methods, vol. 9,
no. 2, pp. 201–208, 2012.

[6] S. J. Yang et al., “Extended field-of-view and increased-signal 3D
holographic illumination with time-division multiplexing,” Opt. Express,
vol. 23, no. 25, pp. 32 573–32 581, 2015.

[7] K. P. Lillis, A. Eng, J. A. White, and J. Mertz, “Two-photon imaging
of spatially extended neuronal network dynamics with high temporal
resolution,” J. Neurosci. Methods, vol. 172, no. 2, pp. 178–184, 2008.

[8] A. J. Sadovsky et al., “Heuristically optimal path scanning for high-
speed multiphoton circuit imaging,” J. Neurophysiol., vol. 106, no. 3,
pp. 1591–1598, 2011.

[9] R. Schuck, M. A. Go, S. Garasto, S. Reynolds, P. L. Dragotti, and
S. R. Schultz, “Multiphoton minimal inertia scanning for fast acquisi-
tion of neural activity signals,” J. Neural Eng., vol. 15, no. 2, 2018,
Art. no. 025003.

[10] K. N. S. Nadella et al., “Random-access scanning microscopy for 3D
imaging in awake behaving animals,” Nature Methods, vol. 13, no. 12,
2016, Art. no. 1001.

[11] A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau,
“Simultaneous two-photon calcium imaging at different depths with spa-
tiotemporal multiplexing,” Nature Methods, vol. 8, no. 2, pp. 139–142,
2011.

[12] P. Quicke, S. Reynolds, M. Neil, T. Knöpfel, S. R. Schultz, and
A. J. Foust, “High speed functional imaging with source localized mul-
tifocal two-photon microscopy,” Biomed. Opt. Express, vol. 9, no. 8,
pp. 3678–3693, 2018.

[13] M. Ducros, Y. G. Houssen, J. Bradley, V. de Sars, and S. Charpak, “En-
coded multisite two-photon microscopy,” Proc. Nat. Acad. Sci., vol. 110,
no. 32, pp. 13 138–13 143, 2013.

[14] M. L. Castanares, V. Gautam, J. Drury, H. Bachor, and V. R. Daria,
“Efficient multi-site two-photon functional imaging of neuronal circuits,”
Biomed. Opt. Express, vol. 7, no. 12, pp. 5325–5334, 2016.



SONG et al.: 3D LOCALIZATION FOR LIGHT-FIELD MICROSCOPY VIA CONVOLUTIONAL SPARSE CODING ON EPIPOLAR IMAGES 1031

[15] V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R.
Yuste, “SLM microscopy: Scanless two-photon imaging and photostim-
ulation using spatial light modulators,” Frontiers Neural Circuits, vol. 2,
pp. 1–14, Dec. 2008, Art. no. 5.

[16] S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin,
“Simultaneous high-speed imaging and optogenetic inhibition in the intact
mouse brain,” Scientific Rep., vol. 7, 2017, Art. no. 40041.

[17] P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and
E. D’Angelo, “High-throughput spatial light modulation two-photon mi-
croscopy for fast functional imaging,” Neurophotonics, vol. 2, no. 1, 2015,
Art. no. 015005.

[18] R. Prevedel et al., “Fast volumetric calcium imaging across multiple
cortical layers using sculpted light,” Nature Methods, vol. 13, no. 12, 2016,
Art. no. 1021.

[19] A. J. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani,
“Computer-generated holography enhances voltage dye fluorescence dis-
crimination in adjacent neuronal structures,” Neurophotonics, vol. 2, no. 2,
Art. no. 021007, 2015.

[20] D. Tanese et al., “Imaging membrane potential changes from dendritic
spines using computer-generated holography,” Neurophotonics, vol. 4,
no. 3, 2017, Art. no. 031211.

[21] F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-
dimensional imaging and photostimulation by remote-focusing and holo-
graphic light patterning,” Proc. Nat. Acad. Sci., vol. 108, no. 49,
pp. 19 504–19 509, 2011.

[22] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. 23rd Annual
Conf. Comput. Graph. Interactive Techn.. ACM, 1996, pp. 31–42.

[23] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field
microscopy,” ACM Trans. Graph., vol. 25, no. 3, 2006, pp. 924–934.

[24] M. Broxton et al., “Wave optics theory and 3-D deconvolution for the light
field microscope,” Opt. Express, vol. 21, no. 21, pp. 25 418–25 439, 2013.

[25] N. Cohen et al., “Enhancing the performance of the light field microscope
using wavefront coding,” Opt. Express, vol. 22, no. 20, pp. 24 817–24 839,
2014.

[26] T. Nöbauer et al., “Video rate volumetric Ca2+ imaging across cortex using
seeded iterative demixing (SID) microscopy,” Nature Methods, vol. 14,
pp. 811–818, 2017.

[27] R. Prevedel et al., “Simultaneous whole-animal 3D imaging of neuronal
activity using light-field microscopy,” Nature Methods, vol. 11, pp. 727–
730, 2014.

[28] N. C. Pégard, H.-Y. Liu, N. Antipa, M. Gerlock, H. Adesnik, and L. Waller,
“Compressive light-field microscopy for 3D neural activity recording,”
Optica, vol. 3, no. 5, pp. 517–524, 2016.

[29] L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and
coherence synthesis of optical beams,” Nature Photon., vol. 6, pp. 474–
479, 2012.

[30] H.-Y. Liu, E. Jonas, L. Tian, J. Zhong, B. Recht, and L. Waller, “3D imaging
in volumetric scattering media using phase-space measurements,” Opt.
Express, vol. 23, no. 11, pp. 14 461–14 471, 2015.

[31] R. C. Bolles, H. H. Baker, and D. H. Marimont, “Epipolar-plane image
analysis: An approach to determining structure from motion,” Int. J.
Comput. Vision, vol. 1, no. 1, pp. 7–55, 1987.

[32] H. H. Baker and R. C. Bolles, “Generalizing epipolar-plane image analysis
on the spatiotemporal surface,” Int. J. Comput. Vision, vol. 3, no. 1,
pp. 33–49, 1989.

[33] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumi-
graph,” in Proc. 23rd Annual Conf. Comput. Graph. Interactive Techn..
ACM, 1996, pp. 43–54.

[34] S. Wanner, J. Fehr, and B. Jähne, “Generating EPI representations of 4D
light fields with a single lens focused plenoptic camera,” in Proc. Int. Symp.
Visual Comput., 2011, pp. 90–101.

[35] S. Vagharshakyan, R. Bregovic, and A. Gotchev, “Light field reconstruc-
tion using shearlet transform,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 1, pp. 133–147, Jan. 2018.

[36] R. Ng, “Fourier slice photography,” ACM Trans. Graph., vol. 24, no. 3,
2005, pp. 735–744.

[37] R. Ng et al., “Light field photography with a hand-held plenoptic camera,”
Comput. Sci. Tech. Report, vol. 2, no. 11, pp. 1–11, 2005.

[38] C. Perwass and L. Wietzke, “Single lens 3D-camera with extended
depth-of-field,” in Human Vision and Electronic Imaging XVII, vol. 8291.
Bellingham, WA, USA: SCIE, 2012, Art. no. 829108.

[39] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, calibration
and rectification for lenselet-based plenoptic cameras,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit., 2013, pp. 1027–1034.

[40] D. G. Dansereau, “Plenoptic signal processing for robust vision in
field robotics,” 2013. [Online]. Available: https://ses.library.usyd.edu.au/
handle/2123/9929

[41] H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse coding,”
in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2013, pp. 391–398.

[42] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional
sparse coding,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2015, pp. 5135–5143.

[43] B. Wohlberg, “Efficient convolutional sparse coding,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2014, pp. 7173–7177.

[44] B. Wohlberg, “Efficient algorithms for convolutional sparse representa-
tions,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 301–315, Jan. 2015.

[45] C. Garcia-Cardona and B. Wohlberg, “Convolutional dictionary learning:
A comparative review and new algorithms,” IEEE Trans. Comput. Imag.,
vol. 4, no. 3, pp. 366–381, Sep. 2018.

[46] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Statist. Soc. Ser. B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[47] M. Gu, Advanced Optical Imaging Theory, vol. 75. Berlin, Germany:
Springer, 2000.

[48] D. A. Agard, “Optical sectioning microscopy: Cellular architecture in three
dimensions,” Annu. Review Biophys. Bioeng., vol. 13, no. 1, pp. 191–219,
1984.

[49] S. Inoué, Video Microscopy. Berlin, Germany: Springer, 2013.

Pingfan Song (Member, IEEE) received the bach-
elor and master degrees from the Harbin Institute
of Technology (HIT), China and the Ph.D. degree
from University College London (UCL), U.K. in
2018. He is a Postdoctoral Research Associate in the
Electrical and Electronic Engineering Department at
Imperial College London, U.K. His research interests
include signal/image processing, machine learning
with applications on medical imaging, neuroimaging,
light-field imaging, etc.

Herman Verinaz-Jadan (Student Member, IEEE)
received the bachelor degree in electronic and com-
munications engineering from Escuela Superior Po-
litecnica del Litoral (ESPOL), Guayaquil, Ecuador;
the master degree from Imperial College London,
U.K. He is currently working toward the Ph.D. de-
gree in the Department of Electrical and Electronic
Engineering, Imperial College London, U.K. His re-
search interests include sparsity-driven signal/image
processing, machine learning with applications in the
solution of inverse problems, Light Field Microscopy.

Mr. Verinaz-Jadan received the Universities of Excellence National Scholarship
from the Ecuadorian government. He is currently funded by the EEE Department
of Imperial College London.

Carmel L. Howe (Member, IEEE) received the
M.Eng. and Ph.D. degrees in electrical and elec-
tronic engineering from the University of Notting-
ham in 2014 and 2018, respectively. She is a Re-
search Associate at Imperial College London, U.K.
She is currently developing a new high-speed, high-
throughput, three-dimensional imaging modality to
track network-level neuronal activity in the mam-
malian brain. Her research combines the fields of neu-
rophysiology, optical engineering, signal and image
processing.

https://ses.library.usyd.edu.au/handle/2123/9929


1032 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Peter Quicke (Member, IEEE) received the M.Sci.
(with B.Sc.) degree in physics in 2014, the M.Res.
degree in neurotechnology in 2015 and the Ph.D. de-
gree in 2019. He is Postdoctoral Research Associate
in the Department of Bioengineering at Imperial Col-
lege London. His current research interests include
computational microscopy and functional voltage
imaging.

Amanda J. Foust (Senior Member, IEEE) stud-
ied Neuroscience with emphasis in computation and
electrical engineering (B.Sc.) at Washington State
University, and Neuroscience (M.Phil., Ph.D.) at
Yale University. She is a Royal Academy of Engi-
neering Research Fellow and Lecturer in the Impe-
rial College London Department of Bioengineering.
The aim of her research programme is to engineer
bridges between cutting-edge optical technologies
and neuroscientists to acquire new, ground-breaking
data on how brain circuits wire, process, and store
information.

Pier Luigi Dragotti (Fellow, IEEE) received the
Laurea Degree (summa cum laude) in Electronic
Engineering from the University Federico II, Naples,
Italy, in 1997; the Master degree in Communications
Systems from the Swiss Federal Institute of Technol-
ogy of Lausanne (EPFL), Switzerland in 1998; and
the Ph.D. degree from EPFL, Switzerland, in April
2002. He is Professor of Signal Processing in the
Electrical and Electronic Engineering Department at
Imperial College London. He has held several visiting
positions. In particular, he was a Visiting Student at

Stanford University, Stanford, CA in 1996, a Summer Researcher in the Math-
ematics of Communications Department at Bell Labs, Lucent Technologies,
Murray Hill, NJ in 2000 and a Visiting Scientist at the Massachusetts Institute of
Technology (MIT) in 2011. Before joining Imperial College in November 2002,
he was a Senior Researcher at EPFL working on distributed signal processing
for sensor networks for the Swiss National Competence Center in Research on
Mobile Information and Communication Systems.

Dr Dragotti was Technical Co-Chair for the European Signal Processing
Conference in 2012, Associate Editor of the IEEE TRANSACTIONS ON IMAGE

PROCESSING from 2006 to 2009, an Elected Member of the IEEE Image,
Video and Multidimensional Signal Processing Technical Committee and of the
IEEE SIGNAL PROCESSING THEORY AND METHODS TECHNICAL COMMITTEE.
He was also the recipient of an ERC starting investigator award. Currently, he
is Editor-in-Chief of the IEEE TRANSACTIONS ON SIGNAL PROCESSING and a
member of the IEEE COMPUTATIONAL IMAGING TECHNICAL COMMITTEE.

His research interests include sampling theory, wavelet theory and its ap-
plications, sparsity-driven signal processing with application in image super-
resolution, neuroscience and field estimation using sensor networks.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


