
138 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Robust Restoration of Sparse Multidimensional
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Abstract—The challenges of real world applications of the laser
detection and ranging (Lidar) three-dimensional (3-D) imaging
require specialized algorithms. In this paper, a new reconstruc-
tion algorithm for single-photon 3-D Lidar images is presented
that can deal with multiple tasks. For example, when the return
signal contains multiple peaks due to imaging semitransparent
surfaces, or when imaging through obscurants such as scattering
media. A generalization to the multidimensional case, including
multispectral and multitemporal 3-D images, is also provided. The
approach is based on the minimization of a cost function accounting
for Poissonian observations of the single-photon data, the nonlocal
spatial correlations between pixels and the small number of depth
layers inside the observed range window. An alternating direction
method of multipliers that offers good convergence properties is
used to solve this minimization problem. The resulting algorithm
is validated on synthetic and real data and in challenging realistic
scenarios including sparse photon regimes for fast imaging, the
presence of high background due to obscurants, and the joint
processing of multispectral and/or multitemporal data.

Index Terms—Three-dimensional (3-D) imaging, Lidar, multi-
spectral imaging, multitemporal imaging, obscurants, image
restoration, ADMM, non-local total variation, collaborative
sparsity.

I. INTRODUCTION

THREE-DIMENSIONAL (3-D)-imaging using Lidar sys-
tems has generated significant interest from the scientific

community in recent years. This is due to its ability to provide
rich and high-resolution information regarding the depth profile
and reflectivity of observed targets, which can be combined
with other imaging modalities such as Radar or Sonar to im-
prove the navigation performance of autonomous vehicles, etc.
Lidar systems work by emitting laser pulses and recording
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Fig. 1. Schematic description of 3-D Lidar imaging in presence of obscurants
or camouflages.

the arrival times of the reflected photons using for example a
time-correlated single-photon counting (TCSPC) module. A his-
togram of photon counts with respect to (w.r.t.) time-of-flight is
constructed for each beam location corresponding to a pixel (see
Fig. 1). This operation is repeated for different beam locations
to build a cube of data containing the 3D information about the
target. As shown in Fig. 1, the reflected photons from a given
target are gathered into a peak whose location and amplitude
are related to the depth and reflectivity of the observed target.
Extracting this information from the histograms provides depth
and reflectivity images of the target, i.e., its 3D image. Note
that it is also possible to expand dimensions in the Lidar system
by for example (i) varying the wavelength of the laser pulses,
which allows the acquisition of multispectral 3D images [1],
[2], (ii) acquiring successive frames, leading to 3D videos or
multitemporal 3D images.

In this paper, we are interested in challenging imaging
scenarios encountered in real world applications including the
photon starved regime when reducing the acquisition times or
for long-range imaging [3], [4]; the presence of multiple peaks
due to imaging through semi-transparent surfaces or when the
laser beam covers many depth surfaces [5], [6]; a high back-
ground level due to imaging through obscurants [7]–[9], and
the multidimensional case due to multispectral or multitemporal
3D imaging (see Fig. 1 for some illustrations). Some of these
challenges have been addressed in the literature. The authors of
[10] and [11] proposed Markov chain Monte-Carlo (MCMC)
algorithms leading to promising results for the restoration of
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sparse Lidar data and multilayered data, respectively. However,
these algorithms are computationally complex which might limit
their use in practical situations (see for example [12] for a
computational comparison between an optimization algorithm
and the MCMC algorithm proposed in [10]). An alternative
algorithm was recently proposed in [5] which considers a convex
formulation coupled with an �1 sparsity promoting regularizer.
This approach takes into account the Poisson statistics of the
data and assumes the sparsity of the received photons. However,
it does not account for the target continuity of surfaces and may
lead to false detections when imaging through obscurants. The
latter problem has also been studied in several papers as in
[8], [13], which considered spatial correlation between pixels
to remove false detections.

This paper proposes a solution which addresses all of these
challenges by considering an optimization algorithm that recon-
structs 3D scenes while taking into account prior knowledge
about the observed targets. Target reconstruction is obtained
by minimizing a convex function composed of a data fidelity
and regularization terms. The former is based on the Poisson
statistics of the observed photon counts and models the presence
of multiple peaks and background noise in each histogram. With
regards to the regularization terms, we first assume the presence
of spatial correlation across pixels due to the spatial extent of the
observed object, which is introduced using a convex non-local
total variation (TV) regularizer [14]. Thanks to the fine depth
resolution and the large observed range window, we also assume
that the number of depth layers is lower than the number of
available time bins, which is introduced using a collaborative
sparse prior (group-sparsity) [15]–[17]. This leads to a convex
cost function that is easily generalized to multidimensional cases
as multispectral or multitemporal imaging. To provide a fast
solution, the cost function is minimized using a new variant of an
alternating direction method of multipliers (ADMM) algorithm
[18] which has shown good results in several applications [12],
[19], [20]. The new algorithm is tested on synthetic and real data
showing promising results, when compared to state-of-art algo-
rithms, to solve the previously described real world challenges.

The paper is organized as follows. The observation model
and motivation of the proposed approach are described in
Section II. The proposed formulation for the regularized problem
and the estimation algorithm are presented in Sections III and IV.
Section V analyses the proposed algorithm’s performance when
considering synthetic data with known ground-truth. Results on
real data are presented in Section VI. Conclusions and future
work are finally reported in Section VII.

II. PROBLEM FORMULATION

A. Observation Model for 3D Lidar Imaging

A Lidar system operates by sending light pulses and detecting
the reflected photons and their time of flight from the target,
where each illumination can cause up to one photon detection.
This operation can be repeated for each pixel location when
using a scanning system (e.g., raster scan systems [21], [22]) or
by directly acquiring an array of pixels (e.g., array based systems
[23]). For both approaches, a histogram can be constructed

for each pixel by representing the number of received counts
with respect to their time of arrival. More precisely, the Lidar
observation can be gathered in the matrix yn,t which represents
the number of photon counts within the tth bin of the nth
pixel, where n ∈ {1, . . . , N}, t ∈ {1, . . . ,K}, T is the timing
resolution of the system and N,K are the number of pixels
and time bins, respectively. If the laser beam is reflected by a
single surface, the histogram will contain a single peak whose
amplitude and position are related to the target’s reflectivity
and depth, respectively. However, when the observed scene
contains obscurants, semi-transparent or scattering surfaces, or
the laser beam covers many depth surfaces, the returned signal
may contain multiple peaks, located at distances related to the
observed depths (see Fig. 1).

This paper deals with the latter case, i.e., restoration of Lidar
data in presence of multi-peaks, and a high level of noise due
to imaging through obscurants or a scattering environment.
For these data, the observed photon counts yn,t are distributed
according to a Poisson distribution P(.) as follows [10], [24]

yn,t ∼ P (sn,t) (1)

where

sn,t =

Mn∑

m=1

[rn,mg0 (t− kn,mT )] + bn (2)

and Mn is the number of layers in the nth pixel, kn,m ≥ 0
is the range of the mth object from the sensor (related to its
depth), rn,m ≥ 0 is the reflectivity of the mth target, bn ≥ 0
denotes the background and dark counts of the detector, and
g0 represents the system impulse response (SIR) assumed to
be known from a calibration step. The discrete time version of
(2), when considering K time bins, can be expressed as a linear
system as follows [5]

sn = Gxn (3)

where G = [g1, . . . , gK ,1K×1] is aK × (K + 1) matrix gath-
ering shifted impulse responses, 1i×j denotes the (i× j) matrix
of 1, gi = [g0(T − iT ), g0(2T − iT ), . . . , g0(KT − iT )]� is
a (K × 1) vector representing the discrete impulse response
centered at iT and xn is a (K + 1)× 1 vector whose value are
zero except for xn(kn,m) = rn,m, ∀m, and xn(K + 1) = bn.
Using (3), straightforward computations show that the negative-
log-likelihood associated with the discrete observations yn,k ∼
P[(Gxn)k] is given by

Ln (xn) = Hn (Gxn) (4)

whereHn : RK → R ∪ {−∞,+∞} is given by

Hn (z) =
K∑

k=1

{
zk − yn,k log

[
z
(+)
k

]
+ iR+

(zk)
}

(5)

where z(+)
k = max{0, zk} and iR+

(x) is the indicator function
that imposes non-negativity (iR+

(x) = 0 if x ≥ 0 and +∞
otherwise).

Finally, denoting Y (resp. X) is a K ×N (resp. (K + 1)×
N ) matrix gathering the vectors yn (resp. xn), and assuming
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that yn,t, ∀n, t are conditionally independent given X , leads to
the following negative-log of the joint likelihood

L (X) = − log [P (Y |X)] =
∑

n

Ln (xn). (6)

The goal is then to estimate the sparse matrix X , where the
positions and values of the non-zero elements correspond to the
target depths and intensities, respectively.

B. Generalization to Multidimensional Data

In addition to the rich 3D spatial information, Lidar sys-
tems can be generalized to acquire other dimensions leading
to high dimensional data. For example, this might include the
following: the acquisition of multispectral or polarimetric 3D
images, which allow target identification using reflectivity or
texture information; and the acquisition of multitemporal 3D
images to capture time varying phenomena. While it is common
to assume a fixed scene while acquiring a 3D images, the model
associated with more dimensions (i.e., multispectral, temporal or
polarized images) should take into account fluctuations between
successive measures as the other dimensions might be acquired
at different time instants or under a different configuration.
Under this assumption, the general model will be given by

yn,t,d ∼ P (sn,t,d) (7)

where

sn,t,d =

Mn∑

m=1

[
rn,m,dg

d
0 (t− kn,m,dT )

]
+ bn,d (8)

where it should be noted that the target parameters (reflectivities
and depths) depend on the dth dimension to account for the
target, system and environment variations between successive
images. Similarly, we allow the system impulse response to vary
with respect to d as for the case of multi-wavelength imaging.
The matrix expression associated with the nth pixel and dth
image is given by

sn,d = Gdxn,d. (9)

The goal is then to estimate the sparse matrices Xd, while
considering that the targets are observed by different dimensions
d ∈ {1, . . . , D}.

C. Challenges/Motivations for the Proposed Algorithm

This paper considers three major challenges whose solution
will help to expand the use of Lidar systems to environmental,
medical, or industrial applications. The first is related to the
sparse photon regime that is encountered when reducing the
acquisition times (i.e., fast imaging [10], [12], [13]) or for long
range imaging (i.e., imaging at several kilometres [3]). In such
cases, the constructed histograms will contain a reduced number
of photons or, in the extreme case, no photons at all which
corresponds to empty pixels (i.e., pixels with no photon counts).
The second challenge appears when imaging through obscurants
(e.g. camouflage or semi-transparent surfaces [5], [11], [25]) or
a scattering media (e.g. water, fog [7], [26]). This leads to the
presence of multiple peaks or a high level of background noise

in the pixel’s histograms, which might affect the detection of
the target’s peak especially when using classical single-peak
based algorithms (such as cross-correlation with the system
impulse response). The third challenge is related to the need
to extend the 3D Lidar data to higher dimensions by acquiring
several wavelengths for 3D multispectral imaging, or different
time instants for 3D videos to capture time varying phenomena
or moving objects. These challenges limit the use of classical
single-peak based approaches and require the development of
specialized algorithms to estimate X (resp. Xd) while taking
into account these extreme imaging scenarios.

III. REGULARIZED PROBLEM

This section presents the proposed regularized problem to
estimate the restored point cloud matrix X . To this end, we
adopt an optimization approach that minimizes a regularized
data fidelity cost function. More precisely, considering that the
observed data is Poissonian distributed, then the data fidelity
term L(X) is given by (6). Estimating the matrix X is an
ill-posed inverse problem that requires the introduction of prior
knowledge (or regularization terms) related to the target depths
and reflectivities. The latter should be carefully chosen as they
introduce some estimation biases regarding the observed data.
With these considerations in mind, we propose to solve the
following optimization problem

C (X) = L (X) + iR+
(X) + τ1φ1 (X) + τ2φ2 (X)︸ ︷︷ ︸

regularization terms

(10)

where τ1 > 0, τ2 > 0 are two regularization parameters,
iR+

(X) =
∑
n,k iR+

(xn,k) and φ1, φ2 are two regularization
functions associated with the depth and reflectivity, respectively.
These terms will account for two properties of Lidar data: (i) the
detected photons associated with a target are generally clustered
inside the cube of histograms in contrast to the background
counts that spread over the full cube, (ii) the number of detected
photons associated with a target presents spatial correlations,
i.e., 3D points of a target often show similar count values whether
it is locally (i.e., neighbour pixels) or non-locally (i.e., non
neighbour pixels with similar target reflectivities). Based on
these properties, we define the regularization functions φ1, φ2
as detailed in the next sub-sections.

A. Priors on the Support: Depth Regularization

This section presents the regularization term associated with
the data support. As highlighted in [5], [27], 3D Lidar data is
sparse especially in the low acquisition time regime. However,
considering sparsity alone does not help separate the target’s
returns from those due to the background noise. In [25], an �2,1
mixed norm was considered to promote the presence of sparse
depth clusters in the full image. This regularization showed good
results for scenes presenting objects well separated in depth,
however, it might be inappropriate for targets with distributed
depths which will occupy the full depth histogram when con-
sidering all the pixels. A possible strategy to deal with this is to
impose this depth localization locally, i.e., for each small patch of
pixels. In this paper, we choose to combine the priors in [5], [27]
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Fig. 2. Illustrative examples of the effect of different support regularizations,
i.e., (left) effect of the �1-based regularization in [5], [27], (middle) the �2,1-
based regularization in [25], and (right) the �2,1-based regularization proposed
in this paper. The black cubes represent the obtained histograms, the dots
represent the detected photons (red for the target and yellow for the background
returns) and the green cubes represent the detected supports promoted by the
regularizations.

and [25] to benefit from their advantages and provide a solution
to their limitations mentioned above. To separate the noise from
the signal return, we assume sparsity on a down-sampled image.
This will detect clusters of returns in the cube that are probably
due to the target, while it will eliminate the isolated counts due
to noise (see Fig. 2). To achieve this, we consider an �2,1 mixed
norm that impose collaborative sparsity [15], [17], i.e., sparsity
on small cubes obtained by grouping local pixels and depth bins.
The �2 is first applied to sum the quadratic returns of each small
cube, then, an �1 norm is applied to the resulting small cubes
to promote their sparsity. Formally, the obtained regularization
term is given by

φ1 (X) = ||diag(v)KFX(:)||2,1 (11)

where X(:) ∈ R(K+1)N×1 denotes the vectorization of the ma-
trix X , F ∈ RKN×(K+1)N is a matrix that selects the first K
rows of X and discard the background row, diag(v)K can be
gathered inKv : R

KN×1 → RSb×NB which is a linear operator
that provides an Sb ×NB matrix as an output where its column
gathers the Sb elements of a bloc of size Sb = (rb × cb × tb)
and NB denotes the number of these blocs in the data cube
and v ∈ RNB×1 contains weights for each bloc. This can be
formulated as follows

KvFX(:) =

⎡

⎢⎢⎣

v1K1FX(:) · · · 0

...
...

...

0 · · · vNB
KNB

FX(:)

⎤

⎥⎥⎦ (12)

with Ki ∈ RSB×KN , ∀i ∈ {1, . . . , NB} is a matrix that selects
the ith bloc and vi > 0 is a predefined weight associated with
the ith bloc. Using (12), one can express φ1(X) as follows

φ1 (X) =

NB∑

i=1

vi

√√√√√

⎛

⎝
∑

(t,n)∈ψi

x2n,t

⎞

⎠ (13)

where ψi contains the pixel and time bin indices of the ith bloc.

Fig. 3. Illustrative example of the range down-sampling benefits to impose
spatial correlations.

B. Priors on the Counts: Regularized Intensity

This section presents the regularization associated with the
count values, i.e., target reflectivities. To restore the observed
count values, the proposed term will mainly exploit the spa-
tial correlation between count values of the images. Several
denoising strategies have previously been proposed to account
for spatial correlation and we distinguish between local [14],
[20] and non-local [28]–[30] approaches. The latter have shown
promising results to restore natural images (especially textured
images) and represent a key ingredient in most state-of-the-art
algorithms [28]–[30]. While local algorithms only use neigh-
bourhood pixels to restore a given pixel, non-local approaches
also exploit the information contained in distant pixels that
have similar characteristics, which lead to a better denoising
thanks to a wider averaging. In this paper, we consider an NL
approach to restore the intensity of the Lidar data obtained
in a photon-staved regime. In this case, the histograms are
sparse and prevent the direct application of spatial correlation
regularizations. To solve this problem, the spatial regularization
is performed on a range down-sampled image that benefits from
the clustered target’s photon, thus, improving the separation
between the target features and the background noise (see Fig. 3
for an illustrative example of the benefit of the range down-
sampling). This idea of using down-sampled images (spatially or
in depth) in photon-starved regime has shown good results in the
restoration of sparse data as highlighted in [13], [25]. Note that
the down-sampling is only performed in the depth dimension
which has a very high resolution (i.e., millimetre resolution
even at long ranges), while the non-local regularization term
will restore the spatially corrupted data due to the noise or
the absence of detected photons. To achieve this, each pixel is
connected to the other similar pixels in the image (through the
consideration of similarity weights W ) and will benefit from
their information to improve its estimate, as illustrated in Fig. 4.
Under these considerations, the proposed regularization term
can be mathematically expressed as

φ2 (X) = ||diag(w)HDhFX(:)||2F (14)

whereDh ∈ RKhN×KN is a matrix summing the photon counts
of each #h successive time bins as illustrated in Fig. 3, Kh is
the integer part of the division K/h, and H ∈ RndKhN×KhN

is a block-circulant-circulant-block matrix which computes
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Fig. 4. Illustrative example of the connection of a given pixel i with nd other
pixels. For this image, the weights can be ordered as follows wi,1 = wi,2 <
wi,j < wi,nd

where the more similar is the connection, the higher is its weight.

weighted differences between each pixel and other nd
pixels located in a predefined field. More precisely, the
operator diag(w)H = Hw : RKhN → RndKhN performs the
following operation

||Hwz||2F =

nd∑

i=1

N∑

n=1

Kh∑

�=1

w2
i,n

(
HDiff
i z�

)2∣∣∣
n

(15)

wherez� ∈ RN denotes the �th column of a matrixZ ∈ RN×Kh

built from z ∈ RKhN as follows Z = [z1, ..., zKh
], HDiff

i ∈
RN×N computes the difference between each pixel and that lo-
cated at the ith direction (the algorithms consider nd predefined
directions or shifts), andw2

i,n are the weights associated with the
nth pixel and ith direction. For simplicity, we treat the matrices
HDiff
i with periodic boundary conditions as cyclic convolutions.

This non-local total variation can also be expressed in matrix
form as follows

||Hwz||2F =

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

{
IKh
⊗ [

diag(w1,:)H
Diff
1

]}
z

...
{
IKh
⊗ [

diag(wnd,:)H
Diff
nd

]}
z

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

2

F

(16)

where ⊗ denotes the Kronecker product and IKh
is the iden-

tity matrix, wi: ∈ RN are the weights associated with the ith
direction, and diag is the diagonalization operator.

C. Choice of the Weights

The regularization terms introduce two weighting vectors
w,v that should reflect our prior knowledge regarding possible
correlations between spatial regions of the image and/or the
expected depth of the target. Such information can be extracted
from complementary imaging modalities of the same scene such
as a 2D panchromatic image to determine pixel’s correlations,
or radar image to approximate the depth. In the presence of
such complementary information, it is possible for the proposed
algorithm to combine the information obtained by these modal-
ities, i.e., it will perform a fusion task. Note also that setting
equal weights for a local neighbourhood (e.g., 4 neighbourhood
structure) will lead to the common local total-variation approach.
In this paper, we do not use other imaging modalities, and only

use the Lidar data to fix these weights. Akin to [31], [32], the
weights w are chosen to reduce the spatial smoothing across
discontinuities. The weights v are chosen to enforce removing
isolated photons and promote the presence of a target in re-
gions presenting clustered photons. However, setting accurate
weights require the use of a relatively clean image to improve
the restoration results of the overall algorithm. Such an image
is not available as we observe a noisy, sparse and temporally
convolved Lidar image, however, it can be approximated as
follows. A spatial low pass filter is applied to the histogram
data (by using a square window of size

√
nd ×√nd pixels)

to fill empty pixels/histograms and reduce the noise as already
used in [13], [33], [34]. A simple method will then be used to
extract kp depth and reflectivity estimates from each pixel. More
precisely, a classical cross-correlation method (see Section V-B
for a detailed description of this method) is used on each pixel
to extract the depth and reflectivity parameters of a first peak.
The counts associated with this peak are then removed from the
histogram and the classical algorithm is used again to estimate a
new peak. This procedure is repeated kp times or until no-peak
is detected (in which case reflectivity is put to zero). Intensity
images are then obtained by multiplying the reflectivity images
by the sum of the impulse response’s counts. The weights w
being related to intensity, they can be fixed as follows (see [31])

wij = max

[
0.5, exp

(
−|Ii − Ij |

σw

)]
(17)

where I denotes the sum of the kp intensity images, σw = 0.1
is a fixed coefficient and max(.) denotes the maximum operator
that truncates the coefficients to 0.5 (this empirically improves
the results as shown in [31]). Similarly, the weights v are fixed
by considering the kp depth and intensity images. For this, we
first reconstruct a data cube ỹ by associating to each depth loca-
tion obtained from downsampled histograms the corresponding
intensity value. Second, the resulting reconstructed blocs with
higher intensities are assigned lower coefficient values v, as
follows

vi = max

[
0.5, exp

(
−
∑

(t,n)∈ψi
ỹn,t

σw

)]
. (18)

Under these considerations, the weights v enforce more sparsity
regularization on isolated photons due to background, than on
clustered ones related to signal. Note finally that kp has a limited
effect on the final result of the algorithm as it is only used to
set the weights (it is not related to the final estimated number
of peaks) and most counts are generally contained in the first
two peaks. We choose in the following to fix kp = 2 since this
provides a reduced computational complexity.

D. Generalization to Multidimensional Data

The proposed approach is general and can be easily extended
to account for the presence of multidimensional data (e.g. mul-
titemporal, multispectral, polarimetric data either separately or
jointly). Note first that each dimension of this data can be
processed independently. However, this is not optimal as these
dimensions might have complementary information, thus, the
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need for a joint processing algorithm, that will help downstream
applications (such as object tracking) operating in one dimension
by bringing information from other dimensions. Joint processing
requires, however, the adoption of some additional assumptions
for optimal exploitation of these data. We therefore assume
that the multidimensional data corresponds to the same scene
with a slight movement of the observed object or the camera as
considered in many studies [35]–[38]. Under this assumption,
we might assume that the support of the downsampled images
is almost the same leading to

Φ1

(
X̃
)
=

NB∑

i=1

vi

√√√√√

⎛

⎝
D∑

d=1

∑

(t,n)∈ψi

x2n,d,t

⎞

⎠ (19)

=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

diag(v)KFX1(:)

...

diag(v)KFXD(:)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2,1

. (20)

where (̃.) denotes the matrix that gathers the data or operations
for all D dimensions. Similarly, the intensity regularization can
be assumed as

Φ2

(
X̃
)
=

D∑

d=1

||HwDhFXd(:)||2F . (21)

Note first that spatial correlation is promoted between the pixels
belonging to the same dimension, as different dimensions might
have different intensity responses (e.g. multispectral imaging).
Note also that this term introduces correlation between dimen-
sions as we assume the same weights w (that can obtained using
all dimensions) for all of them. However, the independent case
can be easily obtained by associating a different vector wd to
each dimension. Note finally that the weights can be fixed using
the procedure described in the previous section. This can be
done by considering all dimensions or by only considering the
more informative dimensions, if available, as will be seen in the
results.

For simplicity of notation, we rewrite the obtained
regularization terms Φ1, Φ2 using new operators as follows

Φ1 (X) = ||diag(v)K̃F̃ X̃(:)||2,1 (22)

Φ2 (X) = ||H̃wD̃hF̃ X̃(:)||2F . (23)

IV. THE ESTIMATION ALGORITHM

A. The ADMM Algorithm

Consider the optimization problem

argmin
X,C

g (C) , subject to AX +BC = 0 (24)

where X ∈ R(K+1)×N , g(.) is a closed, proper, convex func-
tion, and A, B are arbitrary matrices. The ADMM algo-
rithm consists first in computing the augmented Lagrangian for
problem (24), as follows

AL (X,C,J) = g (C) +
μ

2
||AX +BC − J ||2F (25)

Algorithm 1: ADMM for (24).
1: Initialization
2: Initialize X(0),C

(0)
j ,J

(0)
j , ∀j, μ > 0.

3: Set i← 0, conv← 0
4: while conv= 0 do
5: X(i+1) ← argmin

X
AL

(
X,C(i),J (i)

)

6: C(i+1) ← argmin
C
AL

(
X(i+1),C,J (i)

)

7: J (i+1) ← J (i) −AX(i+1) −BC(i+1)

8: conv← 1, if the stopping criterion is satisfied.
9: end while

where μ is a positive constant, and J/μ denotes the Lagrange
multipliers associated with the constraint AX +BC = 0. As
a second step, the algorithm optimizes AL sequentially with
respect to X and C, and then updates the Lagrange multipliers
as shown in Algorithm 1.

Algorithm 1 converges when the function g is closed, proper,
and convex and A is full column rank [39, Theorem 1]. The
latter theorem also states that the sequence X(i) converges to
a solution of (24), for any μ > 0, if it has a non-empty set of
solutions. If (24) does not have a solution, then at least one of
the sequences X(i) or J (i) diverges. Note that the details of
the steps of Algorithm 1 are not provided for brevity, however,
they reduce to the solution of a linear system of equations (line
5), the computation of Moreau proximity operators [40] (line
6), and the updating of the Lagrange multipliers (line 7). The
convergence speed of the algorithm is affected by the parameter
μ, that has been updated using the adaptive procedure described
in [17], [18]. This procedure keeps the ratio between the ADMM
primal and dual residual norms within a given positive interval,
as they both converge to zero. The algorithm is stopped when
these residual norms are lower than a given threshold [18]. The
interested reader is invited to read [18] for more details regarding
the ADMM algorithm and [19], [41], [42] for its application to
solve inverse imaging problems.

B. Proposed Algorithm

This section presents the optimization problem considered for
estimating the matrix of interest X̃ . Using the same notation as
in (24), problem (10) can be expressed as follows

g (C) = H (C1) + iR+
(C2)

+ τ1||diag(v)C3||2,1 + τ2||diag(w)C5||2F (26)

with C1 = G̃X̃ , C2 = X̃ , C3 = K̃F̃ X̃(:), C4 = D̃hF̃ X̃
(:), C5 = H̃C4 leading to A = [G̃, I, K̃F̃ , D̃hF̃ ,0]

� and

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 0

0 −I 0 0 0

0 0 −I 0 0

0 0 0 −I 0

0 0 0 H̃ −I

⎤

⎥⎥⎥⎥⎥⎥⎦
(27)
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where I (resp. 0) denotes the identity matrix (resp. a vector of
zeros) of adequate size. Note that the use of two variablesC4 and
C5 allows decoupling of the optimization in the spatial domain
from the optimization in the time (or range) domain (since D̃hF̃
operates on the range dimension and H̃ on the spatial one).
This operation reduces the computational cost associated with
the resulting optimization problems (see (29)) and has been
previously used for processing hyperspectral imagery in [20].
For this problem, the matrix A is full column rank. This matrix
and the properties of g(.) ensure the algorithm convergence.
Moreover, to accelerate convergence, the algorithm is initialized
using a relatively clean image X(0) = Ỹ , where Ỹ has been
defined in Section III-C and used to set the weights. Finally,
the optimization problems shown in line 5 and 6 of algo. 1, and
resulting from the minimization of the AL given by

AL
(
X̃,C,J

)

= H (C1) + iR+
(C2) + τ1||diag(v)C3||2,1

+ τ2||diag(w)C5||2F +
μ

2

(
||G̃X̃ −C1 − J1||2F

+ ||X̃ −C2 − J2||2F + ||K̃F̃ X̃ −C3 − J3||2F
+ ||D̃hF̃ X̃ −C4 − J4||2F
+ ||H̃C4 −C5 − J5||2F

)
. (28)

admit analytical solutions as follows (see also [12], [19], [20]
for more details regarding similar optimization problems)

X̃
(i+1) ←

{
G̃
�
G̃+ I+ F̃

�
K̃
�
K̃F̃ + F̃

�
D̃
�
hD̃hF̃

}−1

×
{
G̃
�
ξ
(i)
1 + ξ

(i)
2 + F̃

�
K̃
�
ξ
(i)
3 + F̃

�
D̃
�
hξ

(i)
4

}

c
(i+1)
1,k,n,d ←

1

2

⎡

⎣zk,n,d − 1

μ
+

√[
zk,n,d − 1

μ

]2
+ 4

yk,n,d
μ

⎤

⎦

C
(i+1)
2 ← max

{
X̃

(i) − J̃
(i)

2 , 0
}

c
(i+1)
3,n,t ← vect-soft

(
J

(i)
3,n,t − K̃F̃ x̃

(i)
n,t,

τ1vj
μ

)
, ∀n, t ∈ ψj

C
(i+1)
4 ← (

H̃
�
H̃ + I

)−1 [
D̃hF̃X(i) − J

(i)
4 + H̃

�
ξ5

]

C
(i+1)
5 ← diag

[
μ

2τ2(w w) + μ

] [
H̃C

(i)
4 − J

(i)
5

]
(29)

where ξj = C
(i)
j + J

(i)
j for j∈{1, 2, 3, 5}, zk,n,d=(Gdx

(i)
n,d)k

− J
(i)
1,k,n,d,  denotes the term-wise product, soft(X, τμ ) =

sign(X)max{|X| − τ
μ , 0} denotes the soft threshold oper-

ator, vect-soft(x, τμ ) = x(
max{||x||2− τ

μ ,0}
max{||x||2− τ

μ ,0}+ τ
μ
) is the vect-soft-

threshold operator, and |.|, sign(.), max(.) are the element-wise
operators corresponding to the absolute value, the sign function
and the maximum operator, respectively. Note that the required

matrix inversion to update X̃ is done once outside the itera-
tive loop. The two other matrix inversions involve a diagonal
and Fourier diagonalizable matrices whose inverses can be
efficiently computed.

V. RESULTS ON SYNTHETIC DATA

A. Evaluation Metrics

The performance of the proposed algorithm is evaluated qual-
itatively by visual inspection of the estimates and quantitatively
using different metrics. For histograms showing a single peak,
the depth results are quantitatively evaluated using the root
mean square error defined by RMSE =

√
1
N ||dref−̂d||2 (as used

in [13]), and the reflectivity using the signal to reconstruction
error SRE = 10 log10(

||rref||2
||rref−r̂||2 ) criterion (as used in [12] and

similarly to NMSE measure adopted in [33]), where xref (resp.
x̂) is the reference (resp. estimated) depth or reflectivity image,
and the higher SRE (in dB) the better. For those algorithms
not using spatial correlation, the reflectivity and depth of empty
pixels are replaced by the average of available pixels before
evaluating RMSE and SRE. Note that the reference depth and
reflectivity images are available for synthetic data. For real
data, we consider images obtained with the highest acquisition
times and under clear environment conditions as references.
In presence of multiple peaks, we consider the point detection
criteria introduced in [33]. This includes the percentage of true
detections as a function of the distance τ , where a true detection
occurs if an estimated point of a given nth pixel has a reference
point in its surrounding such that |d̂n − dref

n | ≤ τ . The estimated
points that can not be assigned to any true point at a distance of
τ are considered as false detections.

B. Comparison Algorithms

The performance of the proposed algorithm is compared to
several state-of-the-art algorithms depending on the consid-
ered scenario. For scenes having only one peak per pixel, the
algorithm is compared with:
� the classical algorithm (denoted Class.) which estimates

depth using the maximum of matched filtered his-
tograms by the impulse response, i.e., k̂n = argmaxkn∑T
t=1 g0(knT − t)yn,t, ∀n. Reflectivity is obtained by

summing the recorded photons around the peak normalized
by the number of counts in the impulse response as follows

r̂n =
∑th

t=tl
ynt

∑K
t=1 g0(t−k̂nT )

, ∀n, where tl = max(1, k̂n − tle),
th = min(K, k̂n + tte), and tle, tte represent the length
of the leading and trailing edge of the impulse response,
respectively. This algorithm is denoted by Class. when
applied to noisy data and by BF-classical or BFC when
applied to background-free data.

� RDI-TV algorithm [12] which computes the maximum-a-
posteriori estimates of the depth and reflectivity images
while considering a total-variation regularization term.
This algorithm assumes the presence of one peak and
known corrupted pixel positions. The algorithm in [43]
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assumes similar regularizations and we expect its perfor-
mance to be of the same order of magnitude as for RDI-TV.

� TV-�21 algorithm [25] which generalizes RDI-TV by ac-
counting for the presence of multiple peaks and is designed
to reconstruct scenes presenting objects well separated in
the depth dimension, as for the studied mannequin face real
target.

� Unmixing algorithm (denoted UA) [13] which is the state-
of-the-art algorithm in presence of one surface per pixel
and high background levels. The algorithm also assumes
that the target lies inside the observation window and some
known parameters from a calibration step.

In presence of multiple surfaces per pixel, we compare with
� TN-Class.: which is the classical algorithm with known

true number of peaks per pixel. In this case, the classical
algorithm is iteratively applied to each pixel to estimate
the parameters of all peaks. At each iteration, a peak is
estimated using Class. and then removed from histogram
by enforcing ynt = 0 for t ∈ [tl, th]. The Class. algorithm
is then applied on the resulting histogram to estimate the
next peak.

� SPISTA [5]: This algorithm minimizes a cost function that
accounts for the data Poisson statistics and enforces an �1-
regularization term to recover the peaks. In this paper, the
minimization is performed using an ADMM algorithm as
for the proposed algorithm. Comparing with this algorithm
highlights the benefit of considering spatial correlation
between peaks which is not considered by SPISTA.

� MANIPOP [33]: This algorithm considers a Bayesian strat-
egy coupled with a reversible jump MCMC algorithm to
obtain clean point cloud estimates. It assumes the presence
of multiple peaks and considers local spatial correlations
for restoration. Comparisons with this algorithm highlight
the robustness of our algorithm to noise as a result of the
non-local spatial correlations.

C. Robustness to Background and Sparse Photon Regime

This section evaluates the performance of the proposed al-
gorithm using synthetic bowling data generated from a real
physical scene and provided in the Middlebury dataset1 [13],
[44]. The depth and reflectivity images in Fig. 5 have been used
to generate a 123× 139× 300 data cube following model (1)
while considering a real impulse response g(.) measured from
our imaging system which has a leading-edge of 10 bins and
trailing-edge of 70 bins (the same impulse response will be
considered for all simulated synthetic data). Different signal
levels have been considered to obtain an average of signal
photons-per-pixel (PPP) ranging from 0.2 ppp to 25 ppp. To
simulate variations in the signal-to-background ratio (SBR) the
background level was varied from bn = 1, ∀n to bn = 8, ∀n
leading to SBR values in the interval [0.025, 25] (we emphasise
here that the PPP levels are related to signal or target counts and
that the count levels of the observed histograms Y is denoted by

1[Online]. Available: http://vision.middlebury.edu/stereo/data/

Fig. 5. Synthetic image (123× 139 pixels) of a bowling scene. (Top-left)
Depth map, (top-right) reflectivity and (bottom) point cloud combining depth
and reflectivity.

Fig. 6. Quantitative evaluation of different algorithms for reflectivity and depth
estimation on simulated data sets with different signal photon per pixel on
average and two background levels (i.e., different SBR values).

YPPP and can be obtained by summing PPP with the background
level bn of the data, i.e., YPPP = PPP+bn). The proposed
algorithm, denoted multidimensional-Nonlocal Restoration of
3D (M-NR3D) images or just NR3D when applied to a sin-
gle data cube, is run using (rb, cb, tb, h, nd) = (4, 4, 50, 5, 9)
(which are empirically chosen depending on the data size) and
is compared to several algorithms. The NR3D regularization
parameters are manually selected to provide best performance
when testing nine log-spaced values inside the following inter-
vals τ1 ∈ [0.001, 1000] and τ2 = [0.0005, 10]. Fig. 6 shows the
obtained depth RMSE and reflectivity SRE for six algorithms
on data generated with different PPP and SBR levels, where we
considered the main peak for NR3D and MANIPOP. Regarding
depth, NR3D and UA provides best performance with a slight ad-
vantage to UA as it estimates less parameters (UA only assumes
one peak). RDI-TV and MANIPOP algorithms are sensitive
to background noise as they only consider local correlations
and this leads to intermediate depth restoration performance. As
expected, BFC provides better performance than Class. where

http://vision.middlebury.edu/stereo/data/
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Fig. 7. Simulated depth results (123× 139 pixels) for Bowling scene [16]
at 0.4 signal photon-per-pixel (ppp) and background fixed to (top row) 1 and
(bottom row) 8.

Fig. 8. Simulated intensity results (123× 139 pixels) for Bowling scene [16]
at 2 signal photon-per-pixel (ppp) and background fixed to (top row) 1 and
(bottom row) 8.

these two algorithms do not consider spatial correlation which
explain their limited performance. Regarding reflectivity, NR3D
showed more robustness to photon sparsity and to the presence
of background as highlighted in the right column of Fig. 6.
Note that negative reflectivity SREs are due to the presence
of corrupted pixels for reduced PPP. Fig. 7 shows example of
estimated depth maps by Class., UA and NR3D algorithms for
two background levels. These figures show that the classical
algorithm performs poorly and is sensitive to low PPP levels
and presence of background noise. Although UA shows better
RMSE values, it can be seen that the obtained images are
blurry and that NR3D shows a better separation between the
scene components. Fig. 8 shows estimated reflectivity maps for
different SBR levels. Since Class. algorithm does not consider
spatial correlation, it provides noisy estimates. UA algorithm
estimates better maps but NR3D provides best maps where the
scene objects are recognizable under these extreme conditions.
Note finally that the average computational times to process a
data cube was 44s for RDI-TV, 18 s for UA, 132 s for MANIPOP
and 119 s for NR3D, however, better results could be obtained
for the proposed strategy by adopting parallel computations as

Fig. 9. Reflectivities for synthetic data. From top to bottom: Reference images
used to create synthetic data, TN-Class., SPISTA, MANIPOP, and M-NR3D. The
reflectivity SRE in dB are provided bellow images.

for UA. These results confirm the robustness of the proposed
strategy in presence of empty pixels (due to low acquisition
times or long-range measurements) or a high background level
(due to obscurants).

D. Restoration of Multidepth-Multispectral Targets

This section highlights M-NR3D’s ability to deal with mul-
tidimensional data obtained using several wavelengths in pres-
ence of multiple peaks (note that a multitemporal case for a
static scene in presence of obscurants will be presented when
considering real data). The synthetic data (of size (x, y, t) =
100× 100× 300) contains three geometrical objects of differ-
ent colours (see Fig. 9 (top-row)) which are located at different
depths. To assess the proposed strategy and weights setting,
the objects have been selected to have different geometrical
properties including different angles (as for the ball) and sharp-
narrow edges (as for the star). This is a simulated scene where
the objects are considered to be semi-transparent as for stained
glasses, allowing the laser pulses to see behind them, leading
to the presence of multiple peaks in some pixels as indicated in
Fig. 10 (left). We assume that this scene is observed using three
wavelengths corresponding to red, green and blue leading to
three data cubes as shown in Fig. 11 (top-row). Note that, for each
wavelength, higher reflectivity values (i.e., photon counts) are
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Fig. 10. Number of peaks per pixel averaged through the RGB dimensions.
(top-left) true number, (top-right) estimated using SPISTA, (bottom-left) es-
timated using MANIPOP, and (bottom-right) estimated using M-NR3D. The
average of absolute differences (AAD) between the true and estimated numbers
are provided bellow images.

Fig. 11. 3D-point cloud corresponding to three colours (i.e., wavelengths) for
synthetic data. (First row) reference depth and reflectivity cubes, (Second row)
classical algorithm with true number of peaks, (Third row) SPISTA, (Fourth
row) joint estimation using M-NR3D.

obtained from the geometrical object that has the same colour.
As previously, the histogram data was generated using model
(1), a real impulse response g(.), a background level bn = 1, ∀n
and a signal PPP equal to 10 corresponding to an SBR= 10.
The three data cubes have been independently processed using
the TN-classical, the SPISTA and MANIPOP algorithms. The
proposed M-NR3D algorithm has also been used to jointly pro-
cess the three cubes to improve performance with the following
parameters (rb, cb, tb, h, nd) = (2, 2, 10, 20, 9). Fig. 10 shows
the estimated number of peaks per pixel for SPISTA, MANIPOP

Fig. 12. Top: Percentage of true detections for different algorithms as a
function of maximum distance (in bins). Bottom: Number of false detections.
(Left) red dimension, (middle) green dimension, (right) blue dimension.

and M-NR3D after averaging through the RGB dimensions. This
figure shows best estimates for MANIPOP and M-NR3D which
is confirmed by computing the average of absolute differences
between the true and estimated numbers leading to 0.2 for
SPISTA and 0.03 for MANIPOP and 0.05 for M-NR3D. Fig. 9
presents the obtained reflectivity results for the three objects. The
classical and SPISTA algorithms provide noisy images while
both MANIPOP and M-NR3D results are cleaner thanks to
imposing spatial correlations. The four algorithms also provide
depth estimates for each wavelength as represented in Fig. 11. As
expected, the TN-classical and SPISTA algorithms show noisy
results since they do not account for spatial correlations, nor
correlations between wavelengths. In contrast, M-NR3D and
MANIPOP present cleaner point clouds with best performance
for the latter. These results are quantitatively confirmed in Fig. 12
which provides the probabilities of true and false detections for
the algorithms (the results of Class. algorithm are obtained by
applying it to three depth gated parts including at most one peak
each). This figure highlights the superiority of MANIPOP (that is
optimized to deal with multiple-peaks) followed by the proposed
algorithm. Finally, these results confirm the ability of M-NR3D
to use spatial and spectral correlations to restore multispectral
data in presence of multilayered objects.

VI. RESULTS ON REAL DATA: MULTITEMPORAL IMAGING

THROUGH OBSCURANTS

The proposed algorithm is validated on real data under chal-
lenging scenarios including photon starved regime and high
background levels due to the presence of obscurants. The scene
considered, consists of a life-sized polystyrene head as shown
in Fig. 13 (left), and was set in a fog chamber (of dimen-
sions 26× 2.5× 2.3 meters) located in an indoor facility at the
French-German Research Institute of Saint-Louis (ISL). The
target was located at a distance of 21.5 m from the sensor,
and 5 m inside the fog chamber and was acquired in March
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Fig. 13. Picture of the mannequin target: (left) in air, (right) three successive images in presence of a decreasing fog density (acquired with a gated camera as
indicated in [45]).

Fig. 14. Depth maps (92× 67 pixels) of a life-sized polystyrene head acquired under different level of water fog. From left to right: classical, RDI-TV, UA,
MANIPOP, TV-�21, proposed NR3D and M-NR3D algorithms. The acquisition time per pixel is 187μs.

2017. The scanning imaging system operates at a wavelength of
1550 nm, and uses a Peltier cooled InGaAs/InP single-photon
avalanche diode (SPAD) detector. This imaging system uses a
pulsed laser with a 15.6 MHz repetition rate. Only a maximum
of one photon event can be recorded for each laser pulse. The
time between the emission of the outgoing laser pulse and the
recorded photon event is recorded and a histogram of photon
counts is formed by repeating this operation at each pixel
location for a given acquisition time. The reader is invited to
see [9], [45] for more details regarding the imaging system
and the effect of obscurants on the background level. To study
the effect of different fog levels, the chamber was filled with
water fog with a high density, then a succession of 3D images
were taken as the fog density decreased. In this paper, we study
three successive images showing a decreasing level of fog (i.e.,
decreasing background level) as represented in Fig. 13 (right)).
These data present decreasing attenuation lengths (AL) levels
with respect to time given by AL= 3.8, AL= 3.1 and AL= 2.8
as indicated in [9], where one attenuation length is defined as the
distance after which the transmitted light power is reduced to 1/e
of its initial value. The data cube were acquired every 60 s, where
each image contains 92× 67 pixels, and was acquired during

18.5 seconds (i.e., 3 ms acquisition time per pixel). However,
since the TCSPC system [21], [22] delivers time-tagged data,
this allows the construction of histograms with lower acquisition
times to study the photon starved case. Therefore, we build
new data by considering 0.75 ms acquisition times per pixel
(4.6 s full image acquisition time) and 0.1875 ms acquisition
times per pixel (1.15 s full image acquisition time). The data
is processed using seven algorithms, namely: Class., RDI-TV,
UA, MANIPOP, TV-�21, NR3D and M-NR3D algorithms. All
algorithms have been run with different hyperparameters and we
only show those providing best performance. For NR3D and M-
NR3D, we considered (rb, cb, tb, h, nd) = (3, 3, 5, 20, 64) and
tested nine log-spaced values inside the following intervals
τ1 ∈ [0.001, 1000] and τ2 = [0.0005, 10]. We first focus on the
images obtained at the lowest acquisition times (i.e., 0.1875 ms
acquisition times per pixel) which represent extreme conditions
in terms of SBR and YPPP. Figs. 14 and 15 show the depth
images and point clouds obtained for this lowest acquisition
time (0.1875 ms acquisition times per pixel) using different
algorithms for three time instants, where the fog density de-
creases from top to bottom rows. Except Class. and RDI-TV that
are sensitive to background, all the other algorithms provided
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Fig. 15. Cloud points (92× 67 pixels) of a life-sized polystyrene head acquired under different level of water fog. From left to right: classical, RDI-TV, UA,
MANIPOP, TV-�21, proposed NR3D and M-NR3D algorithms. Normalized reflectivity is colour coded between 0 and 1. The acquisition time per pixel is 187μs.

Fig. 16. Percentage of (top) true and (bottom) false detections of different
algorithms on a life-sized polystyrene head acquired under different level of
water fog. The acquisition time per pixel is 187μs.

good results in presence of a low fog density. However, the
advantage of both NR3D and M-NR3D with respect to Class.
RDI-TV, TV-�21, MANIPOP and UA becomes clear in presence
of a dense fog (see top images) since they better exploit the
non-local spatial correlation of the histograms. The multidi-
mensional NR3D performs the best under extreme conditions
(see top row of Figs. 14 and 15) as it accounts for the temporal
evolution of the scene and processes the three datasets jointly.
Fig. 16 shows the probabilities of true and false detections of
the different algorithms as a function of distance. This figure
confirms previous results, where it shows similar performance of
the proposed algorithm and UA for low SBR (i.e., background)
and better results by M-NR3D for very low SBR. A quantitative
evaluation was also performed when considering the higher
acquisition times 0.75 ms and 3 ms per pixel. Fig. 17 represents
the probabilities of true and false detections at fixed distance
(τ = 2.4 cm) when considering different fog levels (columns)
and different acquisitions times (x-axis of each sub-figure).
Again, MNR3D and NR3D show best performance for extreme
scenarios while they perform similarly to UA for higher SBRs or

Fig. 17. Percentage of (top) true and (bottom) false detections of different
algorithms on a life-sized polystyrene head acquired under different level of
water fog (i.e. SBR) and YPPP (i.e., acquisition times).

TABLE I
AVERAGE COMPUTATIONAL TIMES IN SECONDS OF RDI-TV, UA, MANIPOP,
TV-�21, NR3D AND M-NR3D FOR THE MANNEQUIN FACE SCENES IN FOG

FOR DIFFERENT ACQUISITION (ACQ.) TIMES

YPPP. These results highlight the interest of M-NR3D and the
importance of the joint processing of the multidimensional data.
Table I finally shows the averaged computational times of the
different algorithms. It can be observed that both RDI-TV and
M-NR3D time increases with the data sparsity while MANIPOP
and NR3D present opposite behaviour. TV-�21 presents the
highest processing times while UA is the fastest algorithm as it
uses parallel processing. Finally, Table II summarises the main
properties and performance of the studied algorithms.
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TABLE II
SCOPE OF THE STUDIED ALGORITHMS

VII. CONCLUSION

This paper presented a new algorithm to restore multidimen-
sional 3D Lidar images obtained with several wavelengths or
at different time instants under challenging cases. The latter are
related to the starved photon regime, multilayered objects or
a high background level due to obscurants. In addition to the
Poisson statistics of the data, the proposed method accounts for
available prior knowledge related to the presence of non-local
spatial correlation between pixels and the small number of depth
layers inside the observed range window. A convex cost function
was defined and minimized using an ADMM algorithm that
has good convergence properties. The proposed formulation
and algorithm showed good restoration results when processing
simulated and real images representing different scenarios, i.e.,
sparse regime, multilayered, multispectral and multitemporal
data, and imaging through fog. Despite the good performance
of the algorithm, there are still points to improve in future work.
For example, the algorithm complexity is related to the size
of the data cube and it would be interesting to study other
approaches that scale well for very high dimensional data. Con-
sidering distributed algorithms and sophisticated strategies to
learn non-local correlations [46] are also interesting to perform
real time processing. The study of other imaging scenarios such
as moving objects in presence of obscurants, and/or the use of
complementary information from other sensors (e.g., radar) to
learn the weights are of significant interest and will be considered
in future studies. Finally, including measures of uncertainty
about the inferred parameters using the strategy in [47] will also
be investigated in the future.
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