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X-Ray Ghost-Tomography: Artefacts, Dose
Distribution, and Mask Considerations

Andrew Maurice Kingston , Glenn R. Myers, Daniele Pelliccia, Imants D. Svalbe , and David M. Paganin

Abstract—Ghost imaging has recently been successfully
achieved in the X-ray regime. Due to the penetrating power of X-
rays this immediately opens up the possibility of ghost-tomography.
No research into this topic currently exists in the literature.
Here, we present adaptations of conventional X-ray tomography
techniques to this new ghost-imaging scheme. Several numerical
implementations for tomography through X-ray ghost-imaging are
considered. Specific attention is paid to schemes for reducing the
noise-like artefacts of the resulting tomographic reconstruction,
issues related to dose fractionation, and considerations regard-
ing the ensemble of illuminating masks used for ghost-imaging.
Each theme is explored through a series of numerical simulations,
and several suggestions offered for practical realisations of ghost-
tomography.

Index Terms—Tomography, x-rays, reconstruction algorithms,
radiation imaging, biomedical imaging, geometrical optics, optical
signal processing, inverse problems.

I. INTRODUCTION

GHOST imaging is an indirect-imaging technique that
utilises intensity correlations to enable spatial informa-

tion of an object to be determined using a spatially-insensitive
detector. The concept originated in the domain of visible-light
optics [1]–[4] and has two key features: (i) only photons (or
other imaging quanta, e.g., atoms [5]) that do not interact with
the object are registered by a position-sensitive detector, and
(ii) imaging quanta that do interact with the object are not reg-
istered by a position sensitive detector but rather with a large
single-pixel detector commonly called a bucket [6]. Neither of
these two sets of measurements is sufficient to form an image of
the object, however, through the correlations between them an
image can be computed. The computer thus forms an intrinsic

Manuscript received August 13, 2018; revised October 30, 2018; accepted
November 2, 2018. Date of publication November 9, 2018; date of current
version February 7, 2019. The work of A. M. Kingston and G. R. Myers was
supported by the Australian Research Council and FEI-Thermo Fisher Scien-
tific through Linkage Project LP150101040. The work of D. M. Paganin was
supported by the Experiment Division of the ESRF. The associate editor coor-
dinating the review of this manuscript and approving it for publication was Dr.
Kees Joost Batenburg. (Corresponding author: Andrew Maurice Kingston.)

A. M. Kingston and G. R. Myers are with the Department of Applied Math-
ematics, Research School of Physics and Engineering, CTLab: National Lab-
oratory for Micro Computed-Tomography, and Advanced Imaging Precinct,
The Australian National University, Canberra, ACT 2601, Australia (e-mail:,
Andrew.Kingston@anu.edu.au; glenn.myers@anu.edu.au).

D. Pelliccia is with Instruments & Data Tools Pty Ltd., Rowville, VIC 3178,
Australia (e-mail:,daniele@idtools.com.au).

I. D. Svalbe and D. M. Paganin are with the School of Physics and As-
tronomy, Monash University, Clayton, VIC 3800, Australia (e-mail:, Imants.
Svalbe@monash.edu; david.paganin@monash.edu).

Digital Object Identifier 10.1109/TCI.2018.2880337

Fig. 1. Generic experimental setup for X-ray ghost imaging and tomography
with X-ray source, σ, mask for producing structured illumination, M, beam
splitter, S, position-sensitive detector, D, bucket detector, B, and object, O.
Note that the axes labelled r1 , x1 and y1 are out-of-the-page (see Section II).

component of the technology and ghost imaging is a quintessen-
tial example of computational imaging.

Interaction with the object in ghost imaging (GI) has
traditionally been via the mechanism of reflection, but with
the recent translation to the X-ray regime, transmission ghost
imaging is now possible. Ghost-tomography then becomes
accessible, however, no research on this currently exists in the
literature. Here we explore numerically some techniques to
adapt conventional X-ray tomography approaches to GI. In
particular, we explore schemes for (i) reducing the noise-like
artefacts of the resulting tomographic reconstruction, (ii) issues
related to dose fractionation, and (iii) considerations regarding
the ensemble of illuminating masks used for GI. We also offer
several suggestions towards achieving a practical realisation of
ghost-tomography.

Initial developments of ghost imaging (GI) were quantum-
mechanical in nature, utilising “spooky action” of entangled
photon pairs [7]. Under such formulations, one photon from
an entangled pair would be recorded by a position sensitive
detector, while the other photon might, or might not, be recorded
by a bucket detector depending on its interaction with an object.
Since that time classical GI has been realised using intensity
correlation between pairs of coherent wavefields with spatially
highly-structured patterns [8], [9]. Paired coherent wavefields
can be generated through use of a beam-splitter as depicted in
the schematic of an experimental X-ray GI set-up in Fig. 1. The
bucket detector records a single number (the bucket signal) for
each illuminating pattern. This bucket signal is proportional to
the total number of imaging quanta transmitted (or reflected) by
the object. The patterned structure may be random (e.g., through
speckle fields or photon shot noise [10]) or can be engineered
into the illumination through the use of coded apertures [11]
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or spatial light modulators [8], [9]. More recently, a technique
known as computational GI has arisen from these engineered
methods [12]. Rather than the wavefields being paired in time
through a beam-splitter, here wavefields are paired in space by
pre-recording a set of structured illuminations with high-fidelity
and subsequently recording the effects of these illuminations
when interacting with an object using a bucket detector. For
further information we refer the reader to a recent GI review by
Moreau et al. [13].

A. Advantages of Ghost Imaging

To date ghost imaging has been shown to have possible ad-
vantages over conventional imaging, in terms of both resolution
and reduced-data/dose as well as imaging in turbulent environ-
ments. In terms of resolution, a traditional GI set-up is limited
by the point-spread function of the position sensitive (or two-
dimensional (2D)) detector or the probe wavelength. However,
in computational GI coded-apertures that are fabricated with
structure known accurately below the resolution of a 2D detec-
tor, or patterned illuminations modulated with sub-wavelength
precision, can enable super-resolution imaging. For example,
resolution below the probe wavelength has been achieved using
GI in this fashion with THz radiation [14]. In terms of imaging
the object with a reduced number of measurements (or com-
pressed sensing), GI is very similar to the single-pixel camera
(SPC) which is ideal for this scenario [15]. In SPC, the illumi-
nation resulting from interaction with the object is structured by
a programmable mask at the camera prior to measurement; the
total intensity along with the mask structure is recorded. A set of
these SPC measurements, combined with the appropriate com-
pressed sensing (CS) denoising scheme, can obtain an image
from far fewer measurements than conventional imaging [15].
This efficiency is achieved by leveraging the knowledge that the
objective function (or image of the object) can be represented
in some transform space with a sparse set of coefficients [13].
In contrast to SPC, the GI technique involves structuring the il-
lumination incident on the object. Typically, these scenarios are
equivalent mathematically, and the same CS properties apply to
GI. However, two key differences arise: (i) when using ionising
radiation GI reduces dose while SPC does not, and (ii) structur-
ing the incident illumination field in GI enables one to probe the
object using optical effects such as refraction [16]–[18], diffrac-
tion [16], [19], and polarisation [20]–[22] which is not possible
when filtering at the camera in SPC. The success of CS schemes
in SPC to obtain an image from fewer measurements is surely
one of the keys to reducing dose in X-ray ghost imaging (and
tomography). A complementary technique for image recovery
recently introduced in GI is that of deep-learning [23]; this is
not explored here.

B. X-Ray Ghost Imaging and Ghost Tomography

Here we focus on the translation of GI concepts to the X-
ray domain, a relatively recent development for which there
are only several currently-published papers as of this writing
[24]–[29]. Due to the penetrating power of X-ray radiation,
these techniques produced transmission images rather than the
traditional reflection images generated by GI with visible-

light. The ability to perform transmission GI opens up the
possibility for three-dimensional (3D) X-ray GI or X-ray ghost-
tomography (XGT) of optically opaque objects. The majority
of published X-ray ghost-imaging reconstructions to date are in
essence one-dimensional (1D). 2D stencil (i.e., binary) images
have been obtained with relative accuracy [27], [28]. We show
in this paper that the method used to compute the 2D transmis-
sion images, in these papers, is not sufficient for performing
tomography.

A practical realisation of 3D X-ray GI is not a straightforward
progression from 2D X-ray GI: further exploration is required.
To identify and overcome the key practical obstacles to 3D X-
ray GI, we conduct a case study by numerical simulation. Our
objective here is not to tackle the general XGT problem in a
mathematically rigorous fashion. We instead opt for a thorough
exploration of the impact that experimental factors have on the
problem, and design a feasible experimental protocol for 3D
X-ray GI. We therefore restrict ourselves to a very simple object
(that one would consider for an initial experimental attempt)
and less than 100,000 measurements in total (since we recorded
10,000 per 24 hr period in the 2D X-ray GI experiment reported
in Pelliccia et al. [28], at the European Synchrotron Radia-
tion Facility). Having established the feasibility of conducting
a multi-day 3D X-ray GI synchrotron experiment, we then de-
velop algorithms that offer improved tomographic reconstruc-
tion quality, when compared to our initial naive implementation.
The understanding gained from this study, along with these tech-
niques developed, formed the foundation underpinning the first
experimental realisation of X-ray ghost tomography [30].

Computed tomography (CT) of optically opaque objects us-
ing X-ray GI has not been considered in the literature, how-
ever, the concept of ghost-tomography and 3D ghost-imaging
does indeed exist. 2D ghost-tomography of simple objects has
been explored using THz radiation [31], however, refraction
effects typically dominate transmission imaging with THz pho-
tons (as for infra-red and optical photons) and compensating
for these effects is the focus of the paper. Direct 3D imaging
has been achieved using GI in an optical coherence tomogra-
phy (OCT) context [32]. While limited to optically transparent
objects, this quantum-OCT system has advantages in dealing
with group-velocity dispersion, enabling imaging with a higher
spectral bandwidth, and resolution given a Gaussian spectrum.
A method for 3D imaging of a surface by GI, i.e., ghost to-
pography, has also been developed using time-of-flight with a
single-pixel camera, in the context of remote sensing [33].

C. Comparison of Ghost Tomography and Compressive
Tomography

3D CT using illumination masks (known as compressive to-
mography, see e.g., [34], [35]) also has many similarities to the
current work. In compressive tomography the bucket signal is
measured with a position sensitive detector and there is only one
mask applied per view-angle. This can be viewed as a subset
of 3D XGT since each unobstructed pixel-value measured can
be produced as a bucket signal with a pin-hole mask translated
to the said pixel. Thus the image/volume reconstruction tech-
niques developed in the context of compressive tomography are
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generally applicable here and the properties and advantages of
XGT are a super-set of those determined for compressed to-
mography. Compressive tomography has been shown to be a far
more effective way to reduce dose in CT compared with reduc-
ing the number of viewing angles [36], and we expect XGT to
be even more effective. The principal limitation in compressive
tomography, is that reduced sampling (or measurements) ap-
plies to transmission image space, while in XGT the sampling
can occur in any transform space of the transmission images,
and is determined by the structure of the illumination patterns.

D. Paper Outline

The methods used to simulate radiographic volume projec-
tion, illumination patterns, and the corresponding bucket sig-
nals are presented in Section II. Section III treats X-ray GI in
2D to obtain projection images. Four approaches are compared,
and recommendations made for future experiments in 2D X-ray
GI. Section IV considers a naive two-step approach to ghost-
tomography, which first separately reconstructs a series of two-
dimensional projection X-ray ghost images and then combines
that series into a 3D ghost tomogram. For the GI step, the same
suite of algorithms is considered as was used in the preceding
section; for the subsequent tomography step, two standard meth-
ods are considered: (i) filtered back-projection (FBP) [37], and
(ii) the simultaneous iterative reconstruction technique (SIRT)
[38]. We also consider regularisation techniques such as CS
that exploits sparsity to remove noise-like artefacts from the re-
constructions, as well as studying dose fractionation. Section V
develops a single-step X-ray ghost tomographic reconstruction
that does not require the intermediate step of reconstructing 2D
ghost projection images. We compare spatially random speckle
masks with coded masks, for both 2D and 3D X-ray ghost imag-
ing, in Section VI. Section VII discusses possibilities for reduced
dose in X-ray GI compared to direct X-ray imaging, gives gen-
eral remarks regarding random versus coded masks, and gives
a way to avoid ring artefacts in ghost-tomography. Section VII
outlines future research followed by some concluding remarks
in Section VIII.

II. METHOD

In this section we describe the simulation process to gen-
erate data for the following ghost-tomography study. We first
outline the experimental set-up used for the simulations as well
as the synthetic object (or phantom) used for this case study.
To simulate a ghost tomography experiment, we are required to
produce (i) transmission functions of a 3D volume containing
a simple phantom, (ii) a set of illumination masks, and (iii) the
corresponding bucket values by applying these masks to (i). We
conclude this section by observing some important assumptions
made herein and establish a quality benchmark for subsequent
ghost imaging and ghost tomography reconstruction results.

A. Experimental Set-Up

The experimental geometry used here follows the schematic
in Fig. 1, similar to that used in previous experimental X-ray

Fig. 2. (a) Orthogonal 2D slices through the 643 voxel tomogram recon-
structed with FBP. (b) The 642 pixel projection image of the phantom at 0◦.
Slices through the reconstructed volume at r2 = 18 reconstructed by (c) FBP,
and (d) 32 iterations of SIRT. All reconstruction is based on noise-free simulated
conventional imaging of each projection image.

studies for 1D and 2D GI [24], [25], [28]. Here, a synchrotron
X-ray source, σ, illuminates a thin transmissive mask,M, with a
parallel beam. A beam-splitter, S, creates two arms in the ghost-
imaging setup. The transmitted beam has its transverse spatial
intensity structure registered by a position-sensitive detector, D.
The reflected beam passes through an object, O, before having
the total intensity, transmitted by the object, recorded by the
bucket detector, B. The distance Z1 is made similar to the dis-
tance Z2 since the transverse spatial distribution of intensity
transmitted by the mask will in general exhibit Fresnel diffrac-
tion, and it is important that the illuminating patterns measured
at D be equal to the intensity field illuminating the object, up
to a multiplicative constant. We choose Z1 (and thus Z2) to be
sufficiently small that Fresnel diffraction can be ignored.

B. Phantom (or Simulated Object)

The phantom considered here is comprised of three non-
overlapping, identical spheres arranged in a 3D volume param-
eterised by Cartesian coordinates r = (r1 , r2 , r3). The 3D X-ray
linear attenuation coefficient μ(r), is modelled using N 3 cubic
voxels with arbitrary dimension ε and N = 64. The spheres
have a diameter of 12 voxels and an attenuation of 1.0 per voxel
that can also be arbitrarily scaled. A depiction of this volume
can be found in Fig. 2a.

C. Simulating Transmission Functions

Since we have a parallel X-ray beam we use square pixels,
again with dimensions ε, to represent the N ×N = 64 × 64
pixel transmission and projected attenuation images of the
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phantom, μ(r). These are denoted T (x) and A(x) respectively
where the 2D Cartesian coordinates x = (x1 , x2) parameterise
the transverse position in the contact plane: the plane normal to
the direction of X-ray propagation through the object, contact-
ing the downstream side of the object. Parallel beam geometry
implies rotation by azimuthal angle ϕ, about a single axis, and
provides sufficient information for exact 3D tomographic recon-
struction. ϕ denotes rotation of μ(r) about the r2-axis (which
corresponds to the x2-axis of the imaging system), and describes
the angle between the r1-axis and the x1-axis. Projected atten-
uation, Aϕ (x), of the volume representing the object, μ(r), at
angle ϕ is simulated by applying the X-ray projection trans-
form P to each horizontal slice of the volume independently as
follows:

Aϕ (x) = Pϕ [μ(r)]

= 〈μ(r1 , x2 , r3)|δ(r1 cos ϕ + r3 sin ϕ − x1)〉(r1 ,r3 ) ,
(1)

where 〈|〉(r1 ,r3 ) denotes the inner product spanned by Cartesian
coordinate (r1 , r3). Observe in Fig. 1 that co-ordinate systems x
and r share a common axis x2 = r2 , with the position of axis r1
(and axis r3) relative to axis x1 being defined by the object ro-
tation angle, ϕ, about the r2 axis. Projection (as defined in Eqn.
1) can be achieved numerically by rotating the volume, μ(r),
about the r2-axis, perpendicular to the X-ray beam direction, by
ϕ and then summing rows along the beam axis. An example of
a projected attenuation image at ϕ = 0 is given in Fig. 2. To sat-
isfy Nyquist angular-sampling requirements, πN/2 azimuthal
angles are required [39]; we have thus generated 90 projected
attenuation images with ϕ distributed evenly over π radians.
The transmission function of the object is found as

Tϕ (x) ≡ exp[−Aϕ (x)]. (2)

D. Simulating Illumination Patterns

Let there be an ensemble of N illumination masks, M =
{Mn (y) : n ∈ ZN }, used to generate N illumination patterns
registered by the position sensitive detector D, {In (y) : n ∈
ZN }. Here, y = (y1 , y2) denotes Cartesian coordinates in
planes orthogonal to the optic axis from source to detector.
The masks, Mn , and corresponding illuminating patterns, In ,
are again discretised using square pixels with arbitrary physical
dimensions ε. Two classes of mask will be of particular interest
here: (i) random masks whose transmitted intensity distribu-
tion is a spatially random speckle field. Each realisation has the
same characteristic transverse length scale (speckle size) and
root-mean-square (RMS) intensity at every point in the field of
view of the mask. Here, the illuminating N ×N -pixel patterns
constitute an ensemble of realisations of an N ×N pseudo-
random binary matrix with a mean of 0.5 [40], [41]; (ii) coded
masks whose transmitted intensity distribution generates a lin-
early independent set of illuminating intensity maps, according
to a deterministic algorithm such as is used to calculate uni-
formly redundant arrays [42], so-called perfect arrays [43], etc.
A spatially uniform flux of X-rays with arbitrary intensity of 1.0

is assumed such that the illuminating intensity patterns, In (y),
generated by each mask are simply In (y) = Mn (y).

E. Computing Bucket Values

The jth XGT measurement, from a total of J measure-
ments, is comprised of three elements: the estimated inten-
sity distribution, the object orientation, and the bucket sig-
nal, i.e., {Ij (x), ϕj , Bj}. The intensity distribution (measured
at D) Ij (y) is generated by one of the N masks such that
Ij (y) ∈ {In (y) : n ∈ ZN } and Ij (x) is estimated from this. In
a system of the type shown in Fig. 1, x is the 2D coordinate
system normal to the bucket-arm of the system, and y is the
2D coordinate system normal to the detector D arm. The ob-
ject orientation ϕj is one of the L azimuthal angles such that
ϕj ∈ {ϕl : l ∈ ZL}. The bucket value or signal, Bj , is the inte-
grated intensity incident on the bucket detector, B. As Fresnel
diffraction has been assumed negligible, the transmitted X-ray
intensity in the contact plane I ′n (x), is

I ′j (x) = Ij (x)Tϕj
(x), (3)

and the bucket signal, Bj , is then approximated via

Bj ≈ 〈Ij (x)|Tϕj
(x)〉x . (4)

F. Fundamental Assumptions

There are several important points to note here: (i) Our sim-
ulations all assume zero noise in the photon detection process,
i.e., the effects of noise (e.g., photon shot noise, detector noise)
and other detector imperfections (e.g., hot detector pixels, dead
detector pixels, non-uniformities in detector gain, imperfections
and losses of the beam-splitter) are not considered; (ii) The phys-
ical pixel/voxel size, ε, does not need to be specified; (iii) The
projected attenuation also has no scale. (iv) To linearise the
problem we assume both that the phantom is weakly absorbing,
and that the mean illuminating intensity, 〈Ij (x)|1〉x , is constant.
This enables us to work directly with projected attenuation (as
expanded below). An example phantom may be composed of
three poly(methyl-methacrylate), or PMMA, spheres of 2 mm
diameter imaged with 30 keV X-rays. PMMA has a density of
1.18 g cm−3 giving a linear attenuation coefficient of 0.072 cm−1

or 93% transmission. Transmission bucket measurements, Bj

can then be found directly from the projected attenuation bucket
measurements, BA

j ≈ 〈In (x)|Aϕl
(x)〉x by approximating the

exponential term with the first order Maclaurin expansion:

Bj = 〈Ij (x)| exp[−Aϕj
(x)]〉x

≈ 〈Ij (x)|1 − Aϕj
(x)〉x

= 〈Ij (x)|1〉x − BA
j . (5)

This approximation greatly simplifies the following numerical
study, since we can work directly with attenuation data, with-
out compromising the validity and implications of the results.
A significant difference does occur when tomographic recon-
struction is performed directly from measured bucket values
(Section V); the determination of error in projected attenuation
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from intensity bucket residuals will be presented for both cases
(weak X-ray absorption and otherwise).

G. Quality Standard for Comparison

As a first benchmark for quality of tomographic reconstruc-
tion, the result of conventional (i.e., direct imaging) X-ray to-
mography using filtered back-projection is presented in Fig. 2.
Central 2D slices in the r1−, r2−, and r3− directions are pre-
sented in Fig. 2a, with the r2 = 18 slice shown in Fig. 2c. Hence-
forth only this slice will be presented for comparison. Note that
the mild streaks in the r2-slice are due to a half-pixel offset
introduced between the actual rotation axis, and the location of
the axis used in the FBP reconstruction. This offset was kept
in all remaining simulations. As a second benchmark, Fig. 2d
shows the result of applying SIRT to the original projections,
with 32 iterations. Regularisation can be achieved by reducing
the number of iterations performed. In this initial ideal case,
32 iterations reconstructs the objective function with reasonable
fidelity. Since this work is predominantly an exploration of tech-
niques in the new field of ghost-tomography, we are as much
interested in the type/appearance of image quality degradation
as in the amount of degradation. Therefore, we principally rely
on visual comparison with these benchmarks for quality inspec-
tion rather than simple quantitative metrics. Quality metrics will
be used to indicate trends where full suites of images could not
be presented.

III. X-RAY GHOST PROJECTION IMAGING

A naive method for XGT is an obvious two-step approach:
first perform ghost imaging (GI) to recover each projection im-
age; second, apply the conventional tomographic reconstruction
technique of filtered back-projection. In this section we explore
the first step of this process, namely how best to obtain projection
images. We start by outlining the four different GI approaches
considered in the present paper, then present and compare the
results from employing each method to recover the projection
image at angle 0◦.

A. Ghost Imaging Techniques

1) Cross-Correlation: The conventional method for ghost
image reconstruction, here termed cross correlation (XC) [9]
and written as the operator Cϕl

, approximates the intensity trans-
mission function Tϕl

(x) of the object using

T ′
ϕl

(x) = Cϕl
(Bj ) (6)

≡ 1
N

J∑

j=1

(Bj − B)Ij (x)δ(ϕl − ϕj ), (7)

where B = 1
J

∑J
j=1 Bj is the average bucket value, N is the

number of measurements at angle ϕl = ϕj , and δ denotes the
Kronecker delta.

2) Iterative Cross-Correlation: Given a current estimate
Tk

ϕl
(x), which may be obtained by XC, an improved estimate is

obtained via the update scheme

Tk+1
ϕl

(x) = Tk
ϕl

(x) + γCϕl
[Bj − 〈Ij (x)|Tk

ϕl
(x)〉x ]. (8)

Identifying the GI operator as the adjoint of the XC operator

C∗
ϕj

[Tk
ϕl

(x)] ≡ 〈Ij (x)|Tk
ϕl

(x)〉x (9)

this can be written as

Tk+1
ϕl

(x) = Tk
ϕl

(x) + γCϕl
{Bj − C∗

ϕj
[Tk

ϕl
(x)]}, (10)

suggesting this is a gradient descent method where γ is a
Landweber relaxation factor with the objective function:

arg min
Tϕ l

(x)

∑

j

(Bj − 〈Ij (x)|Tϕl
(x)〉x)2 . (11)

We use γ = α/σ2 where σ2 is the spatially averaged variance of
Ij (x). Given complete data, we set α = 0.25(J/N 2)2 since this
adds more relaxation as the problem becomes under-constrained
(J < N 2). This iterative cross-correlation (IXC) process is
iterated until a suitable convergence criterion is achieved
[28], [44].

3) Conjugate-Gradient Method: The IXC concepts can be
adapted to utilise the conjugate-gradient method [45], i.e., con-
jugate gradient cross-correlation (CGXC), to iteratively improve
the reconstruction [46].

4) Regularisation Methods: Regularisation of IXC is also
considered (RXC), utilising various forms of a posteriori as-
sertions about the objective function [9], [15], [35], [47], [48].
The objective function for IXC, Eq. (11) can be regularised as
follows

arg min
Tϕ l

(x)

∑

j

(Bj − 〈Ij (x)|Tϕl
(x)〉x)2 + λR(Tϕl

(x)),

(12)
where R is a function that penalises the deviation of Tϕ (x) from
the assertions, and λ weights the importance of this penalty.
Three typical assertions, relevant in the present context, are (a)
image-space sparsity, where Tϕl

(x) is assumed to be negligible
for most pixels, (b) gradient sparsity, for which |∇⊥Tϕl

(x)| is
negligible for most pixels, ∇⊥ being the gradient operator in the
x plane, and (c) smoothness, where the values of F [Tϕl

(x)] are
negligible for high-spatial frequencies, with F denoting Fourier
transformation.

B. Results and Discussion

1) Cross-Correlation: The XC GI method was applied to
reconstruct the object transmission function in Fig. 2b from
J = 1000, 2000, 3000, and 4000 masks. The corresponding
normalised mean absolute deviation (MAD) values – namely
the mean absolute value of the difference between the recon-
structed and input projection image (see Fig. 2), scaled by the
maximum image value – are 0.317, 0.230, 0.187, and 0.164.
This error metric decreases as J is increased. Fig. 3a, b, c
shows the resulting ghost projection images for J = 1000, 2000,
and 4000.

2) Iterative Cross-Correlation: The images recovered by
XC GI can be improved using IXC, as shown in Fig. 3d, e,
f for J = 1000, 2000, and 4000. The normalised MAD values
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Fig. 3. The 0◦ projection ghost-images recovered from J measured bucket
values generated with random binary masks with a mean value ≈ 0.5. Recovery
performed using either the XC method or 100 IXC iterations (as specified).
(a) XC, J = 1000, (b) XC, J = 2000, (c) XC, J = 4000, (d) IXC, J = 1000,
(e) IXC, J = 2000, and (f) IXC, J = 4000.

Fig. 4. Convergence plots for 100 iterations of IXC and 16 iterations of CGXC
for J = 1000, 2000, 3000, and 4000.

following 100 IXC iterations corresponding to J = 1000, 2000,
3000, and 4000 masks are 0.101, 0.0943, 0.0750, and 0.0450.
Convergence plots are shown in Fig. 4.

3) Conjugate-Gradient Method: Faster convergence than
that of IXC can be achieved, for a moderate number of mea-
surements, using the third means for 2D X-ray GI mentioned
here, i.e., CGXC. However, for highly under-constrained data,
stability becomes a problem. The normalised MAD values fol-
lowing 16 CGXC iterations corresponding to J = 1000, 2000,
3000, and 4000 masks are 0.102, 0.0949, 0.0747, 0.0423. The
MAD values for J = 3000, and 4000 are already better than for
100 iterations of IXC after 16 iterations and continue to improve
(e.g., MAD = 0.0238 for J = 4000 after 100 CGXC iterations).
However, for J = 1000 and 2000 the MAD values are worse
than for IXC and start to diverge after 16 CGXC iterations: for
this reason the comparison plot stops at 16 iterations. These
robustness issues suggest that CGXC would not be the method
of choice given noisy and under-constrained experimental data.

4) Regularisation Methods: One can further improve on the
IXC results for highly under-constrained problems by regular-
ising the problem using a priori knowledge of the objective

Fig. 5. The 0◦ ghost projection images recovered from J = 1000 measured
bucket values generated with random binary masks with a mean value ≈ 0.5.
Recovery using 1000 IXC iterations with a posteriori assertions. (a) None. (b)
Image-space sparsity. (c) Gradient sparsity. (d) Smoothness. MAD: (a) 0.101,
(b) 0.0547, (c) 0.0363, (d) 0.0487.

function, cf. Yao et al. 2014 [49]. This is the fourth and final 2D
GI method considered here. The three relevant assertions are
image-space sparsity, gradient sparsity and smoothness. The
results of applying these to the 1000-bucket-measurement prob-
lem are shown in Fig. 5. We have used 1000 iterations of IXC
since for best results these priors are enforced very lightly and
gradually, e.g., α = 0.025(J/N 2)2 . All sparsity assumptions
yield significant reduction in the noise-like artefacts, with gra-
dient sparsity seeming to be the most appropriate.

From this set of simulations we observe the following: XC
GI alone can be used provided the number of measurements,
J , approaches the number of pixels, N 2 (which is unlikely
on a real experiment). IXC GI, although very slow, is robust
and could improve on XC results for all images (although im-
provement decreases with J). Faster convergence was achieved
by CGXC, however, this became unstable in the highly under-
constrained cases, namely where J � N 2 . Since, for the object
considered here, a posteriori properties can be asserted, regu-
larisation techniques such as compressed sensing and Bayesian
approaches were favourable when J � N 2 . This is an impor-
tant observation, especially considering the limited number of
total measurements expected in our experimental tomography
scenario.

IV. GHOST-TOMOGRAPHY: TWO-STEP APPROACH

From this point we begin investigating XGT. We first ex-
plore performance of the naive two-step approach: (1) 2D ghost
projection images are first recovered at each object orienta-
tion. These projections can be determined using one of the four
2D GI methods introduced earlier (XC, IXC, CGXC and RXC).
(2) Conventional tomographic reconstruction, using these recov-
ered X-ray ghost projection images, is then performed to com-
pute the volume. Here the reconstruction is performed by em-
ploying two different standard tomographic approaches, namely
(i) the analytic approach of filtered back-projection (FBP), or
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Fig. 6. The r2 = 18, slice through the 643 voxel tomogram reconstructed
from ghost projections recovered by (a) and (d) XC, (b) and (c), (e) and (f)
16 CGXC iterations from J measured bucket values using FBP or 100 SIRT
iterations (as specified).

(ii) iterative refinement using the simultaneous iterative recon-
struction technique (SIRT) [38].

There are assumed to be J = NL total recorded measure-
ments, with N measurements performed at each of L object
orientations ϕ. Here, {ϕl} samples from an equally spaced sub-
set of the 90 equally spaced azimuthal angles for which projec-
tion images are simulated {ϕl : l ∈ Z90}. In order to design a
first XGT synchrotron experiment, we need to gain an appreci-
ation of the effects of reducing N compared to reducing L, and
which regularisation technique is most useful for this type of
under-constrained system.

A. Number of Bucket Measurements Per Projection, N

We investigate the effect of altering the image quality of each
X-ray ghost projection by changing the number of bucket value
measurements N per projection to N = 1000, 2000, 3000, and
4000 with the number of viewing angles, L, set to 90. The results
from applying FBP to projections generated by XC from 1000
and 4000 measurements are presented in Fig. 6a, d (XC+FBP).
As expected, image quality improves with increasing N . Similar
results from FBP applied to projections generated by 16 CGXC
iterations from 1000 and 4000 measurements are presented in
Fig. 6 b, e (CG+FBP). Here we observe the improvements that
can be realised using iterative refinement to XC given N 
 N 2 .
A certain degree of regularisation can be achieved by exiting
SIRT before convergence. The result of applying 100 SIRT iter-
ations, with a relaxation scaling of 0.5 N/N 2 applied to updates,
to the N = 1000 and 4000 CGXC cases (CG+SIRT) are given
in Fig. 6c, f. We observe that for N = 4000 this seems sufficient
regularisation, however, significant artefacts still appear for the
N = 1000 case. The latter could benefit from some regularisa-
tion.

B. Regularisation Techniques

Here we briefly investigate the noise-like high-frequency arte-
facts that arise above for the N = 1000 measurements seen in
Fig. 6a, b, c. Results in Section III suggest that regularisation,
where applicable, can achieve superior results compared to the

Fig. 7. Tomogram slice r2 = 18 reconstructed from ghost projections re-
covered by 16 CGXC iterations from N = 1000 measured bucket values per
azimuthal angle ϕl using 256 iterations of SIRT with regularisation. (a) None.
(b) Image-space sparsity. (c) Gradient sparsity. (d) Smoothness.

marginal improvements obtained by IXC GI compared to XC
GI for N � N 2 . The same three regularisation assertions are
explored here, now in tomogram space during the iterative tomo-
graphic reconstruction stage. A limit of 256 iterations has been
adopted, since each such iteration is computationally costly in
3D GI when compared to 2D GI.

Fig. 7 shows regularisation to be quite effective at suppress-
ing noise-like artefacts resulting from insufficient measurements
per viewing angle, as was the case for 2D GI in Section III.
Combining image-space and gradient sparsity we expect results
approaching that for N = 4000 can be achieved with four times
less experiment time (at the expense of computation time). This
is an important and encouraging result when designing syn-
chrotron experiments. The next question to address is, given a
fixed experiment time (or X-ray dose) how should this best be
distributed amongst view-angles?

C. Dose Distribution

In conventional tomography, the dose fractionation theorem
states that it is better to utilise many viewing angles, L, with low-
dose than fewer viewing angles with high-dose [50]. Recall that
in XGT, the total number of bucket measurements is J = LN ,
with N illumination patterns being used at L viewing angles.
Assuming time per measurement is fixed, we can explore the
effect of dose fractionation by keeping J constant, while varying
the number L of azimuthal orientations equally-spaced over π
radians.

Initially, we limit the numerical experiment to J ≈ 90, 000
bucket measurements. We investigated scenarios with N =
1000, 2000, 3000, and 4000 and corresponding L = 90, 45, 30,
and 22. The tomographic slices generated by a naive XC+FBP
two-step approach (i.e., XC recovery of ghost projection images,
followed by FBP) in Fig. 8a, d show the results for N = 1000
and 4000 respectively. We have not used any iterative refine-
ment here, to emphasise the type of artefacts present; we ob-
serve noise-like artefacts appear similar, with more streaking
apparent as L reduces. The degree of these noise-like artefacts
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Fig. 8. Tomogram slice r2 = 18 reconstructed from ghost projections recov-
ered by XC or 16 CGXC iterations (as specified) from J = LN measured
bucket values using FBP or 256 SIRT iterations (as specified). (a) and (d) Show
J ≈ 90, 000 measurements while (b), (c), (e), and (f) show J ≈ 30, 000.

Fig. 9. Tomogram slice r2 = 18 reconstructed from ghost projections recov-
ered by 10 IXC iterations from J = LN ≈ 30, 000 measured bucket values
using 256 SIRT iterations with a posteriori assertions. (a) and (d) Image-space
sparsity. (b) and (e) Gradient sparsity. (c) and (f) Smoothness prior.

(from noise-free simulated data) again demonstrates the need
for more sophisticated means of realising 3D X-ray GI in a
practical manner, given the current experimental limitation that
J � 100, 000.

Further reducing the total number of bucket measurements to
J = 30, 000 (more realistic experimentally), we used the same
set of four values for N with the corresponding number of
viewing angles of L = 30, 15, 10, and 7. The results from two-
step XGT for N = 1000 and 4000 are given in Fig. 8 b, c,
e, f. The tomograms reconstructed by XC+FBP are again pre-
sented to emphasise artefacts; they are too degraded for all but
the most crude tomographic requirements. The backgrounds are
dominated by noise-like artefacts making it difficult to see the
spheres. The streaking artefacts that arise when too few viewing
angles, L, are utilised is more evident in this scenario (Fig. 8e)
than for J = 90, 000. 100 SIRT iterations applied to ghost pro-
jection images recovered by 16 CGXC iterations indicate what
can be achieved without asserting priors. The difference in arte-
facts becomes quite clear here (Fig. 9c compared to 9f); to-

mograms from many low-dose projections are dominated by
high-frequency artefacts, while tomograms from few high-dose
projections are dominated by low-frequency streak artefacts.
This affects suitability for regularisation as we explore next.

Given J ≈ 30, 000 ghost projection images recovered by 16
CGXC iterations, we investigated the effectiveness of employ-
ing 256 SIRT iterations with a posteriori regularisation. Selected
results are presented in Fig. 9. We observe that for the 7 × 4000
measurements, gradient-space sparsity and smoothness priors
have little effect on the low-frequency streak artefacts; in this
case image sparsity most effectively suppresses artefacts since
the streaks are low-intensity. For the case of 30 × 1000 measure-
ments, all three methods have a similar degree of effectiveness
and perhaps combined priors would prove useful.

Ghost-tomography by the two-step approach does not nec-
essarily follow the dose fractionation theorem [50]. Since each
projection image is recovered separately, there is a minimum
amount of information required for reasonable 2D GI and the
nature of the artefacts changes with the number of view-angles,
L. Regularisation techniques, particularly in compressive sens-
ing, are predominantly designed for denoising, thus in ghost-
tomography these schemes are better suited to many low-dose
projections. Of course this study used noise-free simulations and
we expect a compromise, e.g., N = 2000, would be preferable
experimentally when restricted to J 
 30, 000.

V. GHOST-TOMOGRAPHY: DIRECT APPROACH

The naive two-step approach to 3D X-ray GI explored in
the previous section only makes limited use of the information
available in the measured data. The first step, performing 2D
GI to recover projection images at each view-angle, treats each
object orientation separately; the iterative procedure considers
only data from measurements taken at the corresponding view-
angle. Tomographic reconstruction then proceeds from these
limited data 2D GI results. However, all measured data is of
the same object and should be used in each iteration in a direct
reconstruction from bucket signals to the 3D tomogram. A direct
approach is derived and explored in this section.

To motivate the direct XGT approach, consider the question
from an elementary perspective based on back-projection. A XC
form of XGT can be achieved by back-projecting

C(Bj ) ≡ [Bj − B]Ij (x) (13)

along the direction ϕj , and ensemble averaging over all of the
back-projections corresponding to all object orientations, ϕj

(see Fig. 1; cf. Eq. (6)). Note especially that the operator C is a
generalised form of Cϕ which is restricted to the sum over buck-
ets at angle ϕ. Also note that we have used the weak-absorption
approximation here. This XC XGT formulation permits as few
as one bucket signal per object orientation, e.g., if every suc-
cessive orientation over a sphere, (θj , ϕj ), or over a cylindrical
surface for cone beam radiation, (zj , ϕj ), is chosen randomly
with a uniform distribution over the sphere/cylinder. This lim-
iting case, of one bucket measurement per object orientation,
exemplifies the fact that it is not necessary to proceed via an
intermediate step of calculating 2D X-ray GI projections when
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undertaking 3D XGT. Of course, practically speaking, to avoid
rotating the object every time a subsequent bucket measurement
is taken, and also in light of simulations presented below, it will
often be advantageous to take a series of bucket measurements
for each object orientation.

Here we derive an iterative tomographic reconstruction algo-
rithm that operates directly from the measured bucket signal.
Starting from Eq. (1) for X-ray projection, optimisation by gra-
dient descent given a current estimate μk (r), for an improved
estimate μk+1(r) is then found as:

μk+1(r) = μk (r) + βP∗[Aϕ (x) − Ak
ϕ (x)]. (14)

Here, β is again a Landweber relaxation factor (typically set to
(LN )−1) and P∗ is the back-projection operator (the adjoint of
the projection operator, P).

Determination of the residual in projected attenuation,
Aϕ (x) − Ak

ϕ (x), depends on the relevant assumptions and sim-
plifications. In our simulations, we have utilised the weak-
absorption approximation, i.e., Tϕ (x) = exp[−Aϕ (x)] ≈ 1 −
Aϕ (x), yielding:

Aϕl
(x) − Ak

ϕl
(x) = Cϕl

{C∗
ϕj

[1 − Pϕl
μ(r)] − Bj}. (15)

Noting that the Radon transform is linear, we can re-write
Eq. (14) in the form discussed at the start of this section, fol-
lowing Eq. (13):

μk+1(r) = μk (r) + βP∗C{C∗
ϕj

[1 − Pϕl
μ(r)] − Bj}. (16)

Without the weakly-attenuating approximation, the required
correction in projected attenuation is determined as follows:

Aϕl
(x)−Ak

ϕl
(x)=log(Cϕl

Bj )−log{Cϕl
C∗

ϕj
exp[−Pϕl

μ(r)]}.
(17)

We will first compare the performance of this approach to
tomography with that of the two-step approach from the previous
section. We will then explore the effects of dose-fractionation
for direct XGT from bucket values.

A. Comparison With Naive Two-Step Ghost-Tomography

256 iterations of the above direct tomography algorithm were
applied to the simulated data with L = 90 azimuthal viewing
angles and N = 1000, 2000, 3000, and 4000 measured bucket
values per view-angle. The corresponding normalised root mean
squared error (RMSE) in the estimated bucket values after these
256 iterations is 4.63, 5.72, 6.24, and 6.44 (×10−3). Normali-
sation in this case means scaled by the maximum bucket signal
(3 × 4

3 π63). Each image appeared very similar, as indicated
by the similar residuals. The result for N = 1000 is presented
in Fig. 10c. For comparison, 16 CGXC iterations followed by
256 SIRT iterations was also performed for each scenario with
and without image-space sparsity regularisation. The results for
N = 1000 are presented in Fig. 10a, b for inspection. The power
of direct tomography from the measured bucket values, with re-
gard to the suppression of noise-like artefacts, can be observed
in this figure: there are less artefacts observed in the under-
constrained cases (N = {1000, 2000}) without any a posteri-
ori assertions. However, there is a trade-off with computation
time: the higher RMSE in the more well constrained problems

Fig. 10. Tomogram slice r2 = 18 generated from measured bucket values
with 90 equally spaced azimuthal viewing angles with 1000 bucket values per
view-angle. Reconstruction performed using (a) the two-step approach with 16
CGXC followed by 256 SIRT iterations, (b) as in (a) including regularisation
asserting image-space sparsity, and (c) 256 iterations of the direct approach.

(N = {3000, 4000}) is due to the direct algorithm converging
more slowly; high-frequency terms are still converging after
256 iterations. Each step of the direct algorithm must satisfy
L× more constraints and thus resulting step sizes are smaller
and convergence is slower. An ordered-subset form of direct
tomography should converge more quickly since it has exactly
the opposite effect.

Improved results could also be achieved in fewer tomographic
reconstruction iterations by performing multiple IXC iterations
before estimating the residual to be back-projected. However,
it is IXC that dominates the computational complexity and not
tomographic reconstruction. IXC requires O(N 5) operations
since it involves correlating N = O(N 2) bucket values withN 2

pixel illumination images over L = O(N ) angles. The (back-)
projection operations involved in tomographic reconstruction
require only O(N 4) operations with each of N 3 voxels being
(back-)projected over L angles. Thus there is little difference in
computational cost between 256 iterations of the direct method
and the two-step method with 256 IXC iterations (e.g., with
regularisation) with FBP.

B. Dose Fractionation

Let us revisit the dose fractionation question as in
Section IV. We limit the total number of bucket measurements to
J = 30, 000 with L = 90, 30, 15, 10, and 7 (and corresponding
measurements per view-angle N = 333, 1000, 2000, 3000, and
4000). We have included 90 viewing angles (with N = 333) to
explore the limits of dose fractionation since a minimum amount
of information per view-angle is no longer required (and ideally
L = πN/2 ≈ 100). We see in Fig. 11a, b that the N = 333 case
is dominated by artefacts using the two-step approach. (Note
that here IXC and CGXC could not improve on the results of
XC). The corresponding normalised RMSE residuals after 256
direct tomography iterations were 2.65, 2.38, 3.29, 5.10, and
7.17 (×10−3). The results for N = 333, 1000, and 4000 are
presented in Fig. 11c, d, e.

Comparing the quality of these results with the two-step re-
sults in Fig. 11b and Fig. 8c, f as well as for regularised SIRT in
Fig. 9, the power of direct ghost-tomography, which utilises all
measured data simultaneously, is again evident since superior
results are produced with no a posteriori assertions.

With regard to dose fractionation, we again observed that us-
ing too few bucket-values per view-angle resulted in noise-like
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Fig. 11. Tomogram slice r2 = 18 generated from J = LN ≈ 30, 000 mea-
sured bucket values. Reconstruction performed from N bucket values per view-
angle using (a) two-step tomography: XC GI with FBP, (b) two-step tomography:
XC GI with 256 SIRT iterations, and (c)–(e) 256 direct tomography iterations.

artefacts, and conversely, too few view-angles results in streak-
ing artefacts. The best results in this study, limiting the to-
tal number of bucket measurements to 30,000, correspond to
L ≥ 30 equally-spaced azimuthal views, each of which have
N ≤ 1000 bucket measurements. However, we recall that these
are noise-free simulations; when performing actual experiments,
a trade-off would be recommended of N = 2000 with L = 15.
The regularisation techniques explored in Section IV would also
help in the case of noise.

A virtue of the direct ghost-tomography approach developed
here is its simultaneous use of the whole dataset, rather than first
analysing separate subsets of the data for each object orientation
as in the two-step approach. We expect such whole-of-dataset
algorithms to be more effective when dealing with real experi-
mental data and in future XGT developments.

VI. MASK TYPE AND MASK SCANNING CONSIDERATIONS

Thus far we have utilised spatially random masks in all simu-
lations. In certain contexts, such as when using x-ray shot noise
from individual charged-particle bunches to generate speckle
fields in a GI setting [25], randomness is assured. However, in
many experimental circumstances one will have the choice be-
tween random and coded masks and they will be varied with
a scanning procedure. We suspect that, in analogy with what
is done with spatial light modulators [8], [9], appropriately de-
signed coded apertures will typically perform better than ran-
dom masks, on account of the fact that the corresponding coded-
aperture illumination patterns can be designed to form a strictly
orthogonal basis [11], [41].

The random masks used thus far correspond to illuminat-
ing intensity distributions given by an ensemble of J = LN
random N ×N matrices, each element being an independent
deviate drawn from the same uniform probability distribution.
Generalisations include different probability distributions such
as normal or Poisson processes, and/or introducing coupling
between adjacent pixels via convolution with a suitable discrete
convolution kernel [41].

Fig. 12. Examples of types of binary mask explored here. (a) Random mask.
(b) Quadratic residue (QR) mask. (c) Finite Radon transform (FRT) based mask.

It is important, in the context of an investigation of the
functional form adopted for the illuminating masks, to note
that the standard XC ghost formula in Eq. (6) considers the
set of linearly independent illumination patterns to form a
complete or near-complete (indeed, over-complete if J > N 2)
mathematical basis for N 2-pixel images. Moreover, there is an
implicit assumption, in this formula, that the set of background-
subtracted illumination patterns {Ij (x) − I} approximate an
orthogonal basis [28], [41]; here, I denotes the spatial average
of the intensity for each illuminating pattern, with this spatial
average assumed to be approximately the same for all illuminat-
ing patterns. This observation leads one to consider non-random
orthogonal (or near-orthogonal) masks [11]. This is the topic of
the present section. We consider only orthogonality per view-
angle; global orthogonality (over the set of all viewing angles)
is a topic for future research.

An infinite multiplicity of orthogonal masks could be devised
for reconstructing pixelated arrays of a specified size [11]. Since
such masks are deterministic, if their associated transmission
functions Ij (x) are sufficiently well known then the detector D
in Fig. 1 may be eliminated altogether. In the simulations pre-
sented below, we compare the previously considered random
masks, with two classes of non-random mask (coded aperture)
that have near-perfect autocorrelation modified using a scan-
ning procedure. We then examine their relative performance in
(2D) X-ray GI and (3D) XGT. We examine an issue that arises,
pertaining to ring artefacts, and consider a means to avoid such
artefacts in practice.

A. Coded-Aperture Generation

Existing practical applications of X-ray GI do not use a ran-
dom set of masks, each of which is independently generated
for each bucket reading. Rather, a single mask is scanned over
the sample [26]–[28]. This single mask, be it random or de-
terministic, is transversely displaced between bucket readings.
Here we assume the masks are periodic in y1 /y2 , with respec-
tive periods of NΔy1 and NΔy2 , hence for an N ×N mask
there are N 2 possible unique bucket measurements. A mask
with perfect auto-correlation [43], i.e., zero at all values except
the origin, produces an orthogonal basis in this case. There are
many ways to produce such masks. We investigate two meth-
ods: (i) modified uniformly redundant array constructed using
quadratic residues [51] (Fig. 12b); (ii) a method based on the
finite Radon transform (FRT) [43] (Fig. 12c). We compare their
performance against a random mask (Fig. 12a), in both GI and
XGT, in the following subsections.
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Fig. 13. Ghost image recovery using all 3481 mask positions for (a) random
mask by XC, (b) random mask by 32 CGXC iterations, (c) quadratic residue
mask by XC, and (d) finite Radon transform based mask by XC.

These masks are constructed for N = 59, giving 3481 ele-
ments. This number is odd, so we cannot have {−1, 1} can-
celling to precisely give zeros in the auto-correlation, hence we
will have near-perfect auto-correlations equal to ±1 away from
the origin. In fact, since intensity maps must be non-negative
and intensity transmission masks are restricted to values be-
tween zero and unity, we will not have zero cross-correlations
at all, but rather μσ2N 2 where μ is the mean, σ2 is the variance,
and N 2 is the mask size. They can be made orthogonal if the
mean is subtracted, an important requirement in the context of
GI [11], [25], [28], [41].

Auto-correlations generated by the masks in Fig. 12 appear
similar with a peak value of 1741. The principal difference is
that the random mask off-origin correlations have a range of
100 while the coded-apertures only have a range of 1. These
auto-correlations are proportional to the point-spread function
of each mask set [11], [28], [52]. They are not perfect since they
are not precisely proportional to a spatial Kronecker delta at the
origin, however deviation is mild.

B. Performance of Coded and Random Masks in Ghost
Imaging

1) Ghost Imaging Performance: Given masks with an or-
thogonal basis (after average-subtraction is applied), XC should
give the exact inverse from the full complement ofN 2 noise-free
bucket values. The results of XC GI are presented in Fig. 13 for
the random mask, quadratic-residue mask and FRT-based coded
mask. Being nearly orthogonal, coded masks perform signifi-
cantly better than random masks which exhibit artefacts with
long range correlation. The result of applying 32 CGXC iter-
ations to the random mask data is also presented in Fig. 13b;
image quality approaches that using XC with coded apertures,
at significant computational cost, however the MAD is still 5×
larger. Since the coded aperture masks are nearly orthogonal,
IXC achieves little over XC alone.

A similar trend is observed for reduced input data, i.e., N <
N 2 . We investigated performance of each mask type given N =

Fig. 14. Tomogram slice r2 = 16 measured with scanning mask of type
(a) and (d) random, or (b) and (e) FRT-based, and translated to the same random
set of N = 870 positions per view-angle. (a) and (b) Generated by the two-step
method using XC and FBP. (d) and (e) Generated directly from bucket values
using 100 iterations of Eq. 14. (c) and (f) are the same as (b) and (d) but with a
different set of random positions per view-angle.

870, 1740, and 2610 bucket measurements. After 32 CGXC
iterations applied to the random mask data, both the residual
and MAD is reduced, however, the errors are still larger than
that for XC, given either of the coded-aperture data, and has
more low spatial-frequency components.

We have observed that greater efficiency is achieved when the
background-subtracted illuminating intensity maps are strictly
orthogonal rather than merely orthogonal in expectation value
[11] (as is the case for random masks [41]). These noise-free
simulations indicate a slight advantage in using specific coded-
apertures over randomly generated apertures; artefacts contain
no long-range correlations, and XC is sufficient for image re-
covery. This is consistent with the previously cited theoretical
studies [11], [41]. We expect this advantage to be more sig-
nificant given noisy data from experiment, since data collected
with an orthogonal coded-aperture is more well-conditioned and
ghost recovery is more stable.

2) Ghost Tomography Performance: Recall that we have
generated a set of masks that are orthogonal per view-angle,
i.e., orthogonal for radiography, not tomography. The advan-
tages discovered in Section VI-B1 for ghost radiography will
not necessarily apply to XGT in general; we explore that in
this section. Tomographic reconstructions were performed in
two ways: (i) FBP from XC recovered projections, and (ii)
100 iterations of the direct tomography algorithm developed in
Section V. Reconstructions were performed on simulated data
with L = 90 viewing angles and N = 870, 1740, 2610, and
3481 bucket measurements. The results for N = 870 are in
Fig. 14. Note that here we have only presented results for the
FRT-based mask (the quadratic residue mask gave similar re-
sults) and we have included results from a random mask for
comparison.

The tomogram slices in Fig. 14a, b are dominated by ring
artefacts. Tomogram quality degradation due to these rings in-
creases with reduced number of measurements, N . Apart from
these artefacts we see that, as for ghost imaging in Section VI-
B1, errors from the random mask have a lower spatial-frequency
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component in Fig. 14a (cf. tomograms obtained using the perfect
coded arrays, in which such low-frequency artefacts are absent,
Fig. 14b). Moreover, Fig. 14c, d shows that the direct tomog-
raphy algorithm, regularised using 100 iterations, can reduce
these errors and the ring artefacts.

C. Ring Artefacts

Ring artefacts arise since the simulated data has utilised the
same set of mask positions for each projection angle. In com-
pressive tomography, this would equate to using the same mask
at each viewing-angle, and is an immediately obvious cause of
ring-artefacts, since the same set of pixels record no informa-
tion about the sample at all angles [36]. In XGT however, we
use many masks per viewing-angle and every pixel of the ghost
projection-image, that is to be recovered, has been measured for
a large fraction of those masks (although it is integrated with the
contribution from many other pixels). Instead of having pixels
with no information, we have pixels with varying degrees of
statistical certainty. It is not intuitive that ring artefacts would
ensue from this, but clearly they can (particularly using XC for
projection GI).

To demonstrate this cause of the ring artefacts, we gener-
ated datasets with the same number of bucket measurements
per view-angle (as for the above demonstration), but with the
mask positions selected randomly per viewing-angle. Results
are presented in Fig. 14 c,f for the FRT-based mask using both
the XC+FBP two-step, and the XC-SIRT direct reconstruction
methods given the same number of measurements as for Fig. 14
b,e, i.e., L = 90 and N = 870.

The superiority of these simulations suggest that, experimen-
tally, a different set of masks should be used per viewing-angle
if possible; it is an effective means for suppressing ring artefacts
in XGT. If a regular scanning grid pattern per view-angle is used
in the experiment protocol, a randomised start position per view-
angle is recommended. In the longer-term progress of the new
field of ghost-tomography, development of more sophisticated
ring-artefact-removal algorithms may alter this recommenda-
tion, particularly in contexts where a priori knowledge about
the class of imaged samples may be employed. A (near) orthog-
onal coded aperture causes GI to be more robust since XC is the
(well-conditioned) inverse.

VII. DISCUSSION AND FUTURE RESEARCH

One clear, albeit unsurprising, message of the current study
is the fact that considerable improvements may be obtained in
X-ray GI, by going beyond the conventional XC reconstruction
formula given in Eq. (6). The XC method is conceptually ap-
pealing, since it can be trivially derived from first principles by
considering the ensemble of background-subtracted illuminat-
ing fields to form an (approximately) orthogonal set [28]. For
cases where orthogonal coded-aperture masks are used, XC is
sufficient. However, in all other cases XC is incomplete and re-
quires iterative refinement methods such as IXC, CGXC, RXC,
etc. We suspect that, in the future, refinement methods based
on machine learning and artificial intelligence [53], [54] will
become of progressively greater importance for X-ray GI, to-

gether with the strides being made in the burgeoning field of
compressive sensing [48]. This will likely be a key avenue for
future research, driven primarily by the quest for improved re-
constructions using a minimal number of probe photons.

This leads to the question of whether or not X-ray GI may
enable reduced dose relative to competing protocols [27]. The
answer at this stage is maybe, with inequalities having been de-
veloped which, if violated, imply GI can achieve reduced dose
relative to its direct-imaging counterpart [11], [41]. The logi-
cal possibility that GI may reduce dose is demonstrated by the
following example: Suppose one performs an X-ray GI exper-
iment of a sample whose transmission function is a greyscale
map of Leonardo da Vinci’s Mona Lisa, using a single weak
illuminating intensity field that is also a greyscale map of the
Mona Lisa. The resulting reconstruction (proportional to the
illuminating intensity multiplied by the single bucket measure-
ment) is generated with minimal dose. This contrived example
is indicative of the more general result that X-ray GI may re-
duce dose, e.g., in cases where “the class of imaged objects
is strongly correlated with a small number of illumination pat-
terns” [11]. It remains unclear whether, in the longer term, X-ray
GI can reduce dose in scenarios where sufficiently low doses
are important (e.g., radiation damage to living tissues or other
biological/radiation-sensitive materials, efficiently small acqui-
sition time in an industrial-testing context, etc.). Relevant to this
context is the ability of a low-resolution low-dose ghost recon-
struction to locate a region of interest (ROI) in a sample, so that
subsequent illumination patterns can be adapted by confining
them to this ROI [55].

The extent to which one can use polychromatic radiation
(allowing higher flux) for X-ray GI, forms another avenue for
future research. Nowhere in our development did we explicitly
refer to the coherence of the beam. For example, computational
X-ray GI with a laboratory source has already been reported
experimentally with a fully polychromatic beam [26], [27]. For
3D XGT in this context, one could first perform 2D X-ray GI
for each orientation of the object, and then correct for the beam
hardening [56] (naive two-step tomography approach). Beam-
hardening effects can also be modelled in the forward process
of the direct tomographic reconstruction approach, with an esti-
mate of the polychromatic attenuation refined during iteration,
e.g., [57], [58].

Another avenue for future work is prompted by the ad-
vances made in X-ray imaging in recent decades, due to X-
ray phase contrast [59]. Through various incarnations including
propagation-based X-ray phase contrast, analyzer-crystal phase
contrast, grating-based phase contrast, speckle-tracking X-ray
phase contrast, etc. [60], the harnessing of phase contrast in an
X-ray imaging setting has led to significant increases in im-
age contrast and resolution, as well as protocols for the (often
rather substantial) reduction of sample dose [61]. The method
devised by Paganin et al. [62] has been particularly successful
in this regard, with acquisition-time-reductions in the tens of
thousands being typical [61], [63]–[66]. While phase contrast
has been incorporated into visible-light GI protocols through
the use of interferometers [18], [67]–[69], these are difficult
to translate to an X-ray setting. Indeed, the standard X-ray
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GI setup is totally insensitive to any refractive effects (phase
shifts) imparted by the sample since such effects have no influ-
ence on the total number of photons registered in each bucket
measurement. A protocol has recently been proposed for X-ray
phase contrast ghost imaging [41], which belongs to the class
of signal-to-noise-ratio (SNR)-boosting X-ray phase retrieval
algorithms [61], [70] epitomised by the Paganin method. Such
phase-contrast X-ray GI protocols, particularly in light of the
SNR-boosting property, may form an interesting avenue for fu-
ture developments of phase-contrast XGT. Such developments
would also be relevant to the preceding discussion regarding
dose reduction.

VIII. CONCLUSION

Some key considerations regarding experimental realisation
of X-ray ghost-tomography have been presented. Experimen-
tal protocols and data reconstruction techniques have been ex-
plored by numerical simulation using a very simple case study
(as would be considered for a first experiment). Results sug-
gest that coded-aperture masks that form an orthogonal basis
are preferable to random masks for generating patterned il-
lumination. The set of masks used per view-angle should be
different if possible to avoid ring artefacts. The conventional
cross-correlation method for ghost-imaging can be insufficient
for ghost projection imaging (given a set of random masks);
iterative refinement may be required for effective image recov-
ery; regularisation, or a posteriori assertions, are essential for
highly under-constrained situations. Optimal dose fractionation
seems similar to that for tomography by conventional imaging.
A tomographic reconstruction scheme that applies directly to the
bucket measurements was designed and shown to make more
effective use of the data, than the naive two-step method, due
to its holistic approach. This method combined with regulari-
sation, although more computationally costly, is recommended
for experimental realisation of XGT. Possibilities regarding dose
reduction were also discussed.
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