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A Joint Row and Column Action Method for
Cone-Beam Computed Tomography

Yushan Gao and Thomas Blumensath

Abstract—The inversion of linear systems is fundamental in com-
puted tomography (CT) reconstruction. Computational challenges
arise when trying to invert large linear systems, as limited comput-
ing resources mean that only a part of the system can be kept in
computer memory at any one time. In linear tomographic inver-
sion problems, such as X-ray tomography, even a standard scan can
produce millions of individual measurements and the reconstruc-
tion of X-ray attenuation profiles typically requires the estimation
of a million attenuation coefficients. To deal with the large data sets
encountered in real applications and to efficiently utilize modern
graphics processing unit based computing architectures, combina-
tions of iterative reconstruction algorithms and parallel computing
schemes are increasingly applied. Whilst different parallel methods
have been proposed, individual computations currently need to ac-
cess either the entire set of observations or estimated X-ray absorp-
tions, which can be prohibitive in many realistic applications. We
present a fully parallelizable CT image reconstruction algorithm
where each computation node works on arbitrary partial subsets of
the data and the reconstructed volume. We further develop a non-
homogeneously randomized selection criterion which guarantees
that submatrices of the system matrix are selected more frequently
if they are dense, thus maximizing information flow through the
algorithm. We compare our algorithm with block alternating direc-
tion method of multipliers and show that our method is significantly
faster for CT reconstruction.

Index Terms—CT image reconstruction, parallel computing,
gradient descent, coordinate descent, linear inverse problems.

I. INTRODUCTION

IN TRANSMISSION computed tomography (CT), standard
scan trajectories, such as rotation based or helical trajecto-

ries, allow the use of efficient analytical reconstruction tech-
niques such as the filtered backprojection algorithm (FBP) [1],
[2] and the Feldkamp Davis Kress (FDK) [3], [4] method.
However, in low signal to noise settings, if scan angles are
under-sampled or if nonstandard trajectories are used, then less
efficient, algebraic reconstruction methods can provide signifi-
cantly better reconstructions [5]–[8]. These methods model the
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x-ray system as a linear system of equations [9]–[11]:
⎡
⎢⎣

y1
...

yr

⎤
⎥⎦ =

⎡
⎢⎣

a11 . . . a1c

...
...

...
ar1 . . . arc

⎤
⎥⎦

⎡
⎢⎣

x1
...

xc

⎤
⎥⎦ +

⎡
⎢⎣

e1
...
er

⎤
⎥⎦ , (1)

where y = [y1 , . . . , yr ]T ,x = [x1 , . . . , xc ]T and e = [e1 , . . . ,
er ]T are projection data, reconstructed image vector and mea-
surement noise respectively. The system matrix A ∈ Rr×c , with
non-negative elements acd (1 ≤ c ≤ r, 1 ≤ d ≤ c), can be com-
puted by Siddon’s method [12]. In reality, industrial CT is often
used in cases where y and x can have millions of entries each
[13] and where A, even though it is a sparse matrix, can have
billions of entries. In these situations, solving Eq. 1 directly by
calculating A−1 is infeasible. More feasible approaches use A
and AT directly (instead of their inverse) to iteratively find an
approximate solution of Eq. 1.

There are many mature and efficient algorithms to solve Eq. 1,
including the conjugate gradient (CG) method and LSQR. These
methods can be applied in small scale CT reconstructions when
the system matrix A can be stored in computer memory [14],
[15]. When A is too large to be kept in memory, it is often
more efficient to re-compute it on the fly during each iteration,
which can be done relatively efficiently using modern graphi-
cal processor unit (GPU). However, GPUs have limited internal
memory. A thus has to be broken into smaller subsets so that
the GPU only operates on a subset of the data at a time. Whilst
it is possible to sequentially process all data in this fashion, this
requires constant data transfer to the GPUs internal memory. An
alternative is the use of optimisation algorithms that only work
on subsets of the matrix A at any one time. The CG and LSQR
methods, whilst having their own block forms [16], [17], do not
work with a single subset of A per iteration. As a result, other al-
gorithms for CT reconstructions have been proposed. Currently,
most of these methods can be divided into two categories: row
action methods, which operate on subsets of the observations y
at a time and column action methods, which operate on subsets
of the voxels x at a time [18]–[22].

Row action methods divides the matrix A into several row
blocks and the system equation thus becomes

⎡
⎢⎣

yI1

...
yIM

⎤
⎥⎦ ≈

⎡
⎢⎣

AI1

...
AIM

⎤
⎥⎦x, (2)

where AIi
∈ Rmi ×c is the row block of system matrix A and

yIi
∈ Rmi ×1 is the block of projection y. The total block

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0003-4469-0720
https://orcid.org/0000-0002-7489-265X
mailto:yg3n15@global advance �reakcnt @ne penalty -@M soton.ac.uk
mailto:yg3n15@global advance �reakcnt @ne penalty -@M soton.ac.uk
mailto:Thomas.Blumensath@soton.ac.uk


600 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 4, NO. 4, DECEMBER 2018

number is M and
∑M

i=1 mi = r. The general iteration scheme
in row action method can be summarised as

xk = xk−1 + R(yI − AIx), (3)

where xk is the kth iteration result, R is a relaxation matrix
to control the iteration step length and I ∈ {Ii}M

i=1 . In CT re-
construction, most mature methods are row action methods.
These include the classical Kaczmarz family of algorithms (also
known as the Algebraic Reconstruction Technique (ART))[7],
[23]–[25], the Simultaneous Algebraic Reconstruction Tech-
nique (SART) [19], [26], [27], the Simultaneous Iterative Re-
construction Technique (SIRT), [28]–[31] and component aver-
aging (CAV) and its block form (BICAV) [32]–[34].

Column action methods, as a counterpart of row action
method, divide the system matrix A into several column blocks.
Eq. 1 thus is divided as

y ≈ [
AJ1 · · · AJN

]
⎡
⎢⎣

xJ1

...
xJN

⎤
⎥⎦ , (4)

where AJj ∈ Rr×nj is the column block of system matrix A and
xJj

∈ Rnj ×1 is the block of reconstructed vector x. The total

block number is N and
∑N

j=1 nj = c. The general iteration
scheme in column action methods is of the form

xk
J = xk−1

J + Rr

r = r − A(xk
J − xk−1

J ), (5)

where J ∈ {Jj}N
j=1 and the initial r = y. The application of

column action methods in CT reconstruction can be traced back
to 1990s [35]–[37]. The preliminary column action method up-
dates one voxel each time and it is easy to extend the preliminary
method into group form [38]–[43]. Similar to row action meth-
ods, the selection criteria on which column blocks to update can
be randomised either uniformly [44], [45] or based on specific
probability [46], [47].

Row and column action methods also allow for parallel com-
putation. For parallel row action methods, each processor (or
node) needs to store the whole reconstructed image vector x
since each update is on the entire image, whilst for column ac-
tion methods, each node needs to store all of y. As a result,
the largest volume they can reconstruct is limited by the storage
capacity of the computation nodes. An important exception to
this is discussed in [48], where a row action method SIRT is
discussed in which each node only requires parts of the recon-
structed image vector x. However, this method only works for
circular scan trajectories and its scalability is limited due to the
requirement that overlap between projections of adjacent image
blocks should be small.

General sub-block methods are proposed in machine learn-
ing (ML). There has been interest in the development of meth-
ods that use more general updates, updating subsets of x with
only subsets of y at a time [49], [50]. In this paper, these al-
gorithms will be called “stochastic block coordinate descent”
(SBCD). In particular, [51] and [52] independently proposed
similar SBCD algorithms and both explored the application
of variance reduction technique [53] to further accelerate the

convergence rate. [54] proposed a semi-stochastic coordinate
descent method to combine the stochastic gradient method and
coordinate descent method to minimise a strongly convex prob-
lem. [55] mathematically proved the convergence rate of SBCD
when the step length is decreasing and when the update strat-
egy adopts a Gauss-Seidel type approach (updating the cur-
rent column block depends on the previously updated column
block), showing that the SBCD method has the same conver-
gence rate as stochastic gradient methods when the objective
function is convex. [50], [56] separately proposed the optimal
sampling method in the SBCD method by randomly selecting
column blocks and selecting row blocks based on a calculated
probability.

The partition of A in SBCD is the same as our method. To
define this, we partition A into M × N blocks. Let Ii(1 ≤ i ≤
M) be an index set that indexes mi (

∑M
i=1 mi = r) rows in A

and Jj (1 ≤ j ≤ N) be an index set that indexes nj (
∑N

j=1 nj =

c) columns in A . The matrix A
Jj

Ii
thus is a sub-matrix of A with

row indexes Ii and column indexes Jj . Thus we can divide the
linear system into M × N blocks:
⎡
⎢⎣

yI1

...
yIM

⎤
⎥⎦ ≈

⎡
⎢⎣

AJ1
I1

· · · AJN

I1
...

...
...

AJ1
IM

· · · AJN

IM

⎤
⎥⎦

⎡
⎢⎣

xJ1

...
xJN

⎤
⎥⎦ ≡

⎡
⎢⎣

AI1

...
AIM

⎤
⎥⎦x. (6)

Note that the index sets can be arbitrary partitions of the columns
and rows and do not necessarily have to be consecutive. To
facilitate the latter discussion, we also define residual r = y −
Ax and let block residual rI be the subset of r defined as
yI − AIx, where I ∈ {Ii}M

i=1 .
With this notation, the general update scheme is

xJ = xJ − μ · ∇J fI (x), (7)

where J ∈ {Jj}N
j=1 , μ is the step length and fI (x) = ‖yI −

AIx‖2
2 , where the ‖ · ‖ is the l2 norm of a vector. Thus the

gradient ∇J fI (x) = −2(AJ
I )T (yI − AIx).

There are two difficulties when applying SBCD in large scale
CT reconstructions. The first one is that the step length μ is
determined by calculating the Lipschitz constant of the gradient
∇J fI (x), which is computationally challenging. The second is-
sue is that the computation of the gradient in SBCD requires the
calculation of the block residue rI = yI − AIx, which needs
the whole of x. In other words, the system matrix A is not actu-
ally separable in column direction due to the need to calculate
rI . This drawback makes the SBCD algorithm difficult to apply
in a totally distributed network where each computation node
only has partial access to both x and y.

Another method that can be used for linear systems is the
multisplitting (MS) method [57]. If MS method only partitions
the A into column blocks [58], it always converges as long as
A is of full column rank. However, If MS method partition the
A into both row and column blocks. it becomes only applicable
when A meets certain conditions. For example, when A is an
“H-matrix”[59] or is a positive definite matrix [60]. The system
matrix A in CT reconstruction does not meet these requirements
and MS dividing A in both dimensions did not work in initial
experiments we conducted for CT reconstruction.
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Our CT reconstruction setting leads to a convex optimiza-
tion problem. The alternating direction method of multipliers
(ADMM) is a popular tool in the parallelization of convex op-
timization probelms as it allows the decomposition into several
smaller sub-problems [61]. Several versions of ADMM were
designed to work on small subsets of either x or y [62]. In [63],
a block ADMM method was proposed that works by breaking
the problems into small subsets of x and y. This version of block
ADMM introduces three sets of additional nuisance variables
and each sub problem requires the solution to a smaller linear
inverse problem, that can often be solved approximately using
a small number of CG iterations. The new nuisance variables
increase the overall storage requirements and the requirement
for each node to solve a linear inverse problem in each iteration
leads to relatively slow convergence and a high computation bur-
den in large scale CT reconstruction, which will be illustrated
in our paper.

II. INTRODUCTION OF CSGD

In this paper, we consider large scale CT reconstruction prob-
lems in a distributed networks, where each computation node
only has limited access to both y and x. Inspired by SBCD
and block ADMM, our goal here is to develop a parallelisable
algorithm that works with generic x-ray tomographic scanning
trajectories and that is faster and more memory efficient than
block ADMM. Our novel algorithm, called coordinate-wise
stochastic gradient descent (CSGD), also introduces nuisance
variables, but we use fewer variables than block ADMM. Fur-
thermore, CSGD simplifies the step length calculation as well
as the residue update scheme of SBCD type algorithms and thus
enables a full column decomposition for A. The algorithm is
scalable so that it can be run on a range of computing platforms,
including low memory GPU clusters and high performance CPU
based clusters.

A. Derivation of the Algorithm

The proposed CSGD is similar to SBCD. The main goals of
CSGD are to find a simpler strategy to compute the step length
μ and to efficiently approximate the residue rI without having
to compute the product AIx in each iteration.

Similar to SBCD, after selecting a row block I ∈ {Ii}M
i=1 ,

CSGD operates on the object function

fI (x) = ‖yI − AIx‖2 , (8)

with gradient

g = ∇fI (x) = −2(AI )T (yI − AIx) = −2(AI )T rI . (9)

A coordinate descend update scheme is adopted and only those
elements whose indices are in the set J ∈ {Jj}N

j=1 are updated,
so that the descent operator is

g̃ =

[
gJ

0

]
=

[
(AJ

I )T rI

0

]
. (10)

Along with this new modified direction, the update on voxels
becomes

xk = xk−1 + μg̃ →
{

xk
J = xk−1

J + μgJ

xk
Ĵ

= xk−1
Ĵ

,
(11)

where μ is the gradient step length, Ĵ is the complement to the
set J and gJ is a sub set of − 1

2 g. The steepest descent idea is
to make the direction of ∇fI (xk ) perpendicular to the direction
of g̃, i.e.

((AI )
T (yI − AIxk ))T g̃ = 0. (12)

Use the fact that xk = xk−1 + μg̃ and AI g̃ = AJ
I gJ , the μ

leading to the maximum descent is

μ =
gJ

T (AJ
I )T rI

gJ
T (AJ

I )T AJ
I gJ

=
gJ

T gJ

gJ
T (AJ

I )T AJ
I gJ

. (13)

This calculation does not require the corresponding computa-
tion node to have access to the whole row or column block of
matrix A and does not have to calculate the Lipshitz constant to
determine the step length. When the matrix A cannot be stored
and need to be generated on the fly, CSGD iteration only re-
quires to use a sub matrix AJ

I and its transpose. Furthermore,
GPUs can calculate the forward projection AJ

I gJ and backward
projection (AJ

I )T rI very efficiently to achieve GPU-accelerated
projection operations [64], [65].

The step size derived from Eq. 13 is chosen to reduce ‖rI ‖
instead of ‖r‖. We observed experimentally that our choice of μ
can lead to instability in the algorithm. One method to avoid this
is to introduce an additional relaxation parameter β < 1, which
led CSGD to converge to a precision level similar to that of SIRT
and CAV. The alternative of using a constant step length μ also
led to convergence, but required a careful choice of step length
(thus making parameter tuning difficult) and led to relatively
slow convergence.

rI plays an important role in CSGD since it determines the
update direction of x. If we had access to all xj , then we could
simply compute rI = yI −

∑
j xj . In our setting, the node only

has access to one xj , thus the above computation is not possible.

Instead, each node computes a quantity zj
I = AJj

I xJj
. However,

as discussed later, we might not compute all zj
I in each iteration.

In this case, we use an older versions of zj
I to approximate rI =

yI −
∑N

j=1 zj
I . For smoothly varying cost functions, using old

residual information when calculating gradients is similar to the
use of old gradients in parallel methods that can often be shown
to converge [66], [67].

The pseudo-code of the basic computation blocks is shown
in the Fig. 1.

To parallelize the algorithm, we do not have to update all
sub-blocks before updating r. We define percentages α and γ
to specify the faction of row and column blocks to be updated.
The algorithm is shown in Algo.2. In the following discussion,
when operations from line 4 to line 16 are performed for one
time, the algorithm is said to perform for “one epoch”.
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Fig. 1. One parallel implementation of block ADMM. Computation nodes
(ovals) compute Π projection and master nodes (square boxes) compute “avg”
and “exch”.

Algorithm 1: The Algorithm for the Computation Per-
formed at Each Node.

Initialization: select system matrix’s row index
I ∈ {Ii}M

i=1 and column index J ∈ {Jj}N
j=1

gJ = (AJ
I )T rI

μ = β (gJ )T gJ

(gJ )T (AJ
I )T AJ

I gJ

xk
J = xk−1

J + μgJ

zj
I = AJ

I xk
J

Algorithm 2: CSGD Algorithm which Parallelize Both Row
and Column Blocks.

1: Input: y, α, β, γ, {Ii}M
i=1 and {Jj}N

j=1 .
2: Initialisation: x = 0, (i.e., {xJj

}N
j=1 = 0),

{x̂i}M
i=1 = x, {zj}N

j=1 = 0 and r = y.
3: while stopping criterion is not met do
4: for j̃ = 1,2, . . . , γN in parallel (J loop) do
5: randomly draw J from {Jj}N

j=1
with replacement

6: x̂i(1 ≤ i ≤ M) = 0
7: for ĩ = 1,2, . . . , αM in parallel (I loop) do
8: randomly draw I from {Ii}M

i=1 with
replacement

9: gJ = (AJ
I )T rI

10: μi
j = β (gJ )T gJ

(gJ )T (AJ
I )T AJ

I gJ

11: x̂i
J = xJ + μi

jgJ

12: zj
I = AJ

I x̂i
J

13: end for
14: end for
15: r = y − ∑

j zj

16: for all updated J , xJ =
∑

i(x̂
i
J )/(αM)

17: end while
18: xsolution = [xJ1 , . . . ; ,xJN

]T

B. Comparison CSGD With Block ADMM

Block ADMM has the same parallel computing architecture
as CSGD. To facilitate the comparison, we briefly present the
basic operation of block ADMM algorithm [63], as shown in
Algo.3. Here avg is the element-wise averaging operator. The

Algorithm 3: Block ADMM Iteration.

1: Input: y, ρ, {Ii}M
i=1 and {Jj}N

j=1 .
2: Initialisation: x = x̃ = 0, z = z̃ = 0, {xi}M

i=1 = 0,
{zj}N

j=1 = 0
3: for k = 1,2, . . . , kmax do
4: xk+ 1

2 = xk − x̃k

5: zk+ 1
2 = 1

1+ ρ
2
y + 1

2
ρ +1 (zk − z̃k )

6: for j̃ = 1,2, . . . , N in parallel (J loop) do
7: randomly draw J from {Jj}N

j=1 with replacement
8: for ĩ = 1,2, . . . ,M in parallel (I loop) do
9: randomly draw I from {Ii}M

i=1 with
replacement

10: (xi
J

k+ 1
2 , zj

I

k+ 1
2 ) = ΠAJ

I
(xk

J

−(x̃i
J )k , zj

I

k
+ z̃k

I )
11: end for
12: end for
13: xk+1 = avg(xk+ 1

2 , {xi k+ 1
2 }M

i=1)
14: (zk+1 , {zj k+1}N

j=1) = exch(zk+ 1
2 , {zj k+ 1

2 }N
j=1)

15: x̃k+1 = x̃k + xk+ 1
2 − xk+1

16: x̃i)k+1 = x̃i)k + xik+ 1
2 − xk+1

17: z̃k+1 = z̃k + zk+ 1
2 − zk+1

18: end for
19: xsolution = xkm a x + 1

2

Π projection is a linear operator

ΠAJ
I
(c, d) =

[
Id (AJ

I )T

AJ
I −Id

]−1 [
Id (AJ

I )T

0 0

] [
c
d

]
(14)

where Id is an identity matrix whose size is determined by the
size of AJ

I . To solve this equation, the CG method can be used.
Standard techniques to speed up block ADMM include the early
termination of the CG iteration and a variable ρ-update scheme
[61]. The exchange operator exch(c, {cj}N

j=1) is given by

zj
Ii

= cj +

(
c − ∑N

j=1 cj

)

N + 1

zIi
= c −

(
c − ∑N

j=1 cj

)

N + 1
(15)

When applying block ADMM and CSGD in a distributed
network, they share the same architecture. For M = N = 2,
parallel block ADMM is shown diagrammatically in Fig. 1.
Here, each computation node (ovals) stores one image block xJ

(J ∈ {Jj}N
j=1) and one data block yI (I ∈ {Ii}M

i=1). There are
two types of master node (square boxes). One type performs the
“avg” procedure for column blocks and the other type performs
the “exch” procedure for row blocks. One set of master nodes

stores xk+ 1
2

J , xk
J and x̃k

J and the other set of master nodes stores

yk+ 1
2

I , yk
I and ỹk

I . The same distributed architecture of Fig. 1
is also suitable for CSGD with α = γ = 1. For each J , CSGD
requires the exchange and summation of zj

I (i.e. over columns
in Fig. 1) and for each I , CSGD requires the exchange and
summation of x̂i

J (i.e. over rows in Fig. 1). These operations
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Fig. 2. (a) Shows the partition that along with one dimension for a 16-pixel
image. (b) Shows a partition that along both image dimensions.

Fig. 3. A standard 2D scanning geometry with a Shepp-Logan phantom, where
the P is the x-ray source, O is the centre of the object and the rotation centre. D is
the centre of the detector. Source and detector rotate around the centre and take
measurements at different angles. The linear detector is evenly divided into to
sub-areas DE and DF , which will be used in importance sampling discussed
later.

are similar to the “avg” and “exch” procedure of ADMM
respectively. Note that these operations can be implemented
efficiently using a message passing approach.

The storage demand is different between block ADMM and
CSGD. Overall, CSGD requires storage of vectors y ∈ Rr×1 ,
r ∈ Rr×1 and x ∈ Rc×1 and of the set of N vectors {zj}N

j=1 ∈
Rr×1 , so the total memory requirement for CSGD is (N +
2)r + c. Block ADMM requires more storage, as it requires
storage of x, x̃, z, z̃, y and the M vectors {xi}M

i=1 and {x̃i}M
i=1

and the N vectors {zj}N
j=1 , leading to a total storage demand of

(N + 3)r + (2M + 2)c.

C. Partition Methods in CT Case

In our CT reconstruction problem, the partition of A along
columns is equivalent to the partition of the image. Two ex-
amples of column partition are 1) to cut the image along one
dimension and 2) to cut the image along all dimensions. Two
2D examples are shown in Fig. 2.

To understand how partitioning row blocks of A relates to the
tomographic imaging setting, we take the 2D scanning model
shown in Fig. 3 as an example. When detector and source are
at a given location, we obtain projections along a range of

Fig. 4. (a) Shows a 3D model of the cone beam setup with one block of the
volume being projected on a detector plane. (b) Shows the projection area of
the volume block.

paths from the source to the different detector elements. For one
source/detector location, these measurements will be called one
“projection”. We could form the row blocks of A with random
projections, but then keep them fixed during different epochs. A
non-random version of this will be called “deterministic parti-
tioning” in which one row block contains sequential projections
from successive projection angles. We can further divide the
detector into several sub-areas and treat projections from each
sub-area as a “sub-projection”. An illusion of this in 3D is shown
in Fig. 4, where one projection is divided into 4 sub-projections.
When forming the row blocks, different sub-projections from
different projection angles can be grouped together. This will
be seen to be advantageous in the importance sampling strategy
discussed next.

D. Importance Sampling

When slicing the detector into several sub-areas, we can also
form row blocks dynamically. It means that the sub-areas form-
ing row blocks are changing for different epochs. Based on the
proposed algorithm, it is straightforward to develop a random
sampling strategy that goes through all projection views and all
detector sub-areas arbitrarily. Looking at Algo.2, for one image
block xJj

(1 ≤ j ≤ N), we could randomly select sub-areas to
form one row block Ii(1 ≤ i ≤ M), with each sub-areas being
chosen with equal probability as long as the sub-area receives
x-rays passing through xJj

. This sample method will be called
“uniform sampling”. Considering the sparsity of A, we further
develop an importance sampling strategy. Fig. 4 illustrates that
the projection of a sub-image block only intersects a small part of
the detector. When sampling sub-projections for each sub-image
block xJj

(1 ≤ j ≤ N), a vector Pj representing the probability
of choosing each detector sub-area is calculated. The calcula-
tion is based on projection areas of xJj

on each sub-detector
area at different projection angles. Then α ∗ 100% of the sub-
areas are sampled with probability Pj and are grouped into αM
row blocks. These row blocks are assigned to different nodes to
perform line 9–12 in Algo.2. In this case, the detector sub-areas
receiving more projections from the current sub-image block
xJj

are more likely to be chosen.

E. Computational Complexity

There are several important aspects when comparing compu-
tational efficiency of the methods. The methods are designed to
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allow parallel computation. We envisage this to be performed
in a distributed network of computation nodes1. Computation
nodes produce two outputs, as displayed in line 11 and line 12
in Algo.2. These are then either sent to larger, but slow storage
or directly to other nodes, where they are eventually used to
compute line 15 and line 16 in Algo.2, which can be performed
efficiently using message passing interface reduction methods.

Three aspects affect performance:
1) Computational complexity in terms of multiply-adds.
2) Data transfer requirements between data storage and a

processing unit as well as between different processing
units.

3) Data storage requirements, both in terms of fast access
RAM and in slower access (e.g. disk based) data storage.

Each of these costs are dominated by different properties:
1) Computational complexity is dominated by the computa-

tion of matrix vector products involving AJ
I and its trans-

pose, especially as A is not generally stored but might
have to be re-computed every time it is needed. The com-
putational complexity is thus O(|I| ∗ |J |), though com-
putations performed on highly parallel architectures, such
as modern GPUs, are able to perform millions of these
computations in parallel.

2) Data transfer requirements are dominated by the need for
each of the parallel computation nodes to receive rI and
xJ and transmit x̂i

J and zj
I . Note that the size of the

required input and output vectors are the same, the data
transfer requirement is thus O(|I| + |J |).

3) Central data storage requirements are dominated by the
need to store the original data and the current estimate of
x. We also need to compute and store averages over x̂i

J and
zj

I . These computations can be performed efficiently using
parallel data reduction techniques. Our approach would
mean that each node would thus require O(|I| + |J |) local
memory.

III. SIMULATIONS

The simulations are divided into two parts, the first part ex-
plores the performance of CSGD in CT reconstruction. The
second part compares CSGD with block ADMM.

A. CSGD in CT Reconstruction

We used two criteria to evaluate the performance. 1) sig-
nal to noise ratio (SNR): 20log10(‖xtrue‖/‖xtrue − xest‖), 2)
relative distance (RD): 20 log10(‖xlsq‖/‖xlsq − xest‖) . The
xtrue , xest and xlsq are the true phantom image vector, the
reconstructed image vector and the least square solution respec-
tively.

In the following simulations, we used the Shepp-Logan phan-
tom and, unless stated otherwise, K in Fig. 3 is 16 and the side
length of each pixel is 1mm, the length of OP and OD are always
100 mm. The rotation interval for source and detector is 10◦.

1A serial version running on a single computation node where each compu-
tation is done independently, but one after the other, is also possible and this is
how many of the simulations reported here were computed.

Fig. 5. Comparison of CSGD with other methods. The performance of CSGD,
including the final SNR and RD level, is similar to the SIRT and CAV methods.

The detector contains 30 pixels of size 1mm. The e in Eq. 1 is
Gaussian white noise with variance σ of 0.1 to the simulated ob-
servations. The SNR of projection data y (20log10(‖y‖/‖e‖)) is
25.8 dB. The default partition method of projection data y uses
the static type “deterministic partitioning”. The default partition
in the image domain uses the method shown in Fig. 2a.

B. Comparison to Other Methods

We start by comparing our method to a range of other al-
gorithms popular in CT reconstruction. For CSGD we used
M = 8, N = 4, β = 0.23 and α = γ = 1. We compared our
method to CG, steepest gradient descent (GD), SIRT, ART and
CAV. The results are shown in Fig. 5. It can be seen that for noisy
observations, the CSGD and the other method (except for ART
method) all obtains nearly the same SNR. However, whilst CG
and steepest GD converge to the least square solution, CSGD,
SIRT, ART and CAV do not. This indicates that similar to SIRT,
ART and CAV, CSGD also iterates the x towards to a weighted
least square solution rather than the least square solution itself
(see our fixed point analysis in the Appendix).

C. Influence of Algorithm Parameters

Our algorithm has three parameters that have to be set, α, β
and γ. Due to space constraints we only discuss α and β and set
the γ ≡ 1. Smaller γ lead to similar results to those observed
with smaller α. We start by an empirical evaluation of β. To
determine the range of suitable parameters β, we explored the
performance by varying M , N and β. To show the largest value
of β that can be used for different values of N and M , we run the
algorithm for 800 epochs for different values of β. The results
are shown in Fig. 6 where we see that the largest β value leading
to highly accurate solutions is approximately 1

N . Increasing N
reduces the β range, and there is also a relationship on M which
is less clear. We next turn to the influence of the α. Reducing
α reduces the computation of CSGD within one epoch as only
some of the updates are computed. We set M = 12 and N = 2
and generated the data as before. Simulation results show that
reducing α increase the acceptable β range, as shown in Fig. 7.

Convergence speed is influenced by α, β, M and N . In gen-
eral, convergence is slower for larger values of N and M and
for smaller β and α. The comparisons of β and M are shown in
Fig. 8. It can be seen that in general, increasing β was found to
lead to faster convergence, up to a point where the algorithms



GAO AND BLUMENSATH: JOINT ROW AND COLUMN ACTION METHOD FOR CONE-BEAM COMPUTED TOMOGRAPHY 605

Fig. 6. SNR value after 800 epochs for different values of β and for different
N and M . Increasing the M or N reduces the acceptable β range and the range
is influenced more by N value instead of M . In this simulation, the α ≡ 1.

Fig. 7. When M = 12, N = 2, the β value range for different α. Unless that
α is too small ( 1

12 ), decreasing α generally enlarges the range of acceptable β .

Fig. 8. (a) Shows that within the acceptable β range, increasing the β is found
to lead to faster convergence, up to a point where the algorithms is about to
diverge. (b) Shows that when N is fixed, increasing M slows down the total
convergence rate.

started to diverge. When the β is constant, increasing the M
(or N , which is not provided here) slows down the convergence
speed. We here also provide the steepest GD results as a refer-
ence to show that CSGD can obtain the same precision level as
steepest GD does.

Before discussing the influence on convergence speed caused
by α, we introduce a new concept “effective epoch”. The num-
ber of sub-matrices A

Jj

Ii
(in Eq. 6) that CSGD used per epoch

is proportional to the parameter α. As the computational speed
is dominated by matrix vector products, when we compare the
difference in convergence speed for methods using different αs
(for example, α = 1 and α = 0.5), we took account of the reduc-
tion in computational effort when using smaller α. The epoch
count is multiplied by α and is called as the effective epoch.
As a result, for different α, the computation amount after one
“effective epoch” is the same with each other. We need to point
out that the “effective epoch” does not consider the data transfer
influence. When α is small, one “effective epoch” includes more

Fig. 9. (a) Shows that when β is fixed, reducing the α to around 0.5 increases
the convergence speed. However, when the α is reduced too small as 2

12 , the
convergence speed is slowed down. (b) Shows that from “effective epoch” point
of view, reducing the α is always helpful to increase the convergence speed
and the increased convergence speed can be similar to the steepest GD when
α ≤ 0.5.

Fig. 10. Comparisons of different sample methods. The M = 24, N =
2, σ = 1.“DP” is deterministic partitioning (defined in II-C), “US” is uniform
sampling method (defined in II-D) and “IS” is importance sampling method
(defined in II-D). The uniform sample or importance sampling both show faster
convergence speed and wider acceptable β range than previous deterministic
partitioning. Importance sampling methods outperform the others when α is
6
24 .

epochs, which means more data transfer between nodes. Here
we mainly focus on cases when the data transfer is much more
efficient than calculating matrix-vector multiplications and thus
is negligible. The comparison of convergence speed with differ-
ent α is shown in Fig. 9. Interestingly, by looking at effective
epochs, we see that CSGD can converge faster than gradient
descent for smaller α.

D. Partitioning the Image and the Detector

In this section, larger simulations are conducted. The CT
scanning geometry still uses the form shown in Fig. 3, but with
K = 64. The length of OP and OD is set to 115 mm. The
rotation interval for the point source and the detector is 3◦.
The detector contains 130 pixels. The e in Eq. 1 is Gaussian
white noise with variance σ of 1 to the simulated observations.
The SNR of projection data y (20log10(‖y‖/‖e‖)) is 33.8 dB. In
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Fig. 11. Under noise free assumption, CSGD uses much fewer matrix-vector
multiplications to achieve predefined SNR. The β used in CSGD is 1

2N .

Fig. 12. (a) Comparison of reconstruction results using CSGD and (b) block
ADMM. Although the SNR of both images is the same, (b) shows much clearer
inner artefacts than (a).

the following section, the partition of the image follows Fig. 2b.
We here compare the partition of the linear detector into one or
two areas, as shown in Fig. 3. We also compare uniform sam-
pling and importance sampling. The algorithm is performed for
20 epochs and the SNR value for different β values at this point
is shown in Fig. 10 (a)-(b) and two typical SNR trend in Fig. 10
(c)-(d). Under different α, the uniform sampling strategy al-
ways obtains higher SNR after the same epochs than determin-
istic partitioning. Besides, the uniform sampling method has
an even wider β range than deterministic partitioning, which
is easier for parameter tuning. The uniform sampling method
can be further improved when the detector is sliced into two
sub-areas. This method avoids choosing the sub-detector areas
which do not receive any projections from the currently selected
sub-image block. However, when α = 1, the two sub-detector
situation does not increase the convergence rate. This is because
that those sub-detectors which do not receive projections from
the current sub-block still have to be selected since the α is
too large. When the α decrease to a value (e.g. 6

24 ) that guaran-
tees all selected sub-detectors are those who receive projections,
slicing the detector area into two sub-areas obtains higher SNR
than not slicing situation. Furthermore, when α is small, the im-
portance sampling strategy can obtain higher SNR than uniform
sampling method at the initial iterations.

E. Comparison of CSGD and Block ADMM

As discussed previously, block ADMM allows for the same
partitioning of A. To compare CSGD and block ADMM, a
random system matrix A256×128 and a random vector x128×1 are

used to reduce the computation requirements in our simulations.
The linear system is a noise free model here.

As each CSGD iteration and each block ADMM iteration re-
quire different amounts of computational effort, we here do not
compare SNR after each epoch. Instead, we plot SNR against
the number of times the algorithm has computed a matrix-vector
product involving the sub-matrices of A, as this is the dominat-
ing computational cost here. Both CSGD and block ADMM
use all subsets of the matrix A and are stopped when their solu-
tions reach 80 dB SNR. For block ADMM, we determined the
best parameter values for variable ρ and also stopped the CG
method after as few iterations as possible to allow algorithm
convergence to the required level.

The convergence comparison for CSGD and block ADMM
are shown in Fig. 11. The results demonstrate the significant
speed advantage offered by CSGD, which requires significantly
fewer matrix-vector multiplications compared to block ADMM.
Furthermore, the fully distributed form of CSGD used here, i.e.
α = 1, is not the optimal use of CSGD. According to the previ-
ous simulations, setting α < 1 can further increase convergence
speed.

We have also compared CSGD and block ADMM on the CT
simulation of the previous simulation data with K = 64 and a
detector with 130 pixels. The image was partitioned again as in
Fig. 2b. Both methods were stopped once the SNR of the recon-
structed image had reached 20 dB. The reconstructed images
under noise free situation are shown in Fig. 12. Although the
SNR of both images is the same, the ADMM reconstruction in
Fig. 12 b shows much clearer artefacts along with the bound-
aries of adjacent sub-image blocks whilst the CSGD results in
Fig. 12 a do not show these effects.

IV. CONCLUSION

CSGD was designed for a distributed reconstruction of cone
beam CT data under arbitrary scan trajectories. In the distributed
network, each node is assumed to have limited storage capacity
and thus all nodes operate with limited access to the projec-
tion data and reconstructed volume. Whilst the method does
not converge to the least squares solution, the solution is found
empirically to be comparable in quality to those found with
other common tomographic reconstruction algorithms, such as
SIRT and CAV, but at a significant computational advantage.
The parallel architecture is the same as that of block ADMM,
which is a general algorithm for separable convex optimization.
However, for large scale CT reconstruction, block ADMM is
less attractive compared to CSGD. One advantage of CSGD is
that it requires less storage compared to block ADMM. An-
other significant advantage of CSGD is that it converges with
significantly fewer matrix vector products as it avoids the cal-
culation of matrix inverses. This means that CSGD converges
much faster compared to block ADMM.

We have furthermore developed an importance sampling
strategy, that has been shown to further increase initial con-
vergence. A theoretical analysis of the algorithm’s convergence
properties is ongoing and so is the inclusion of regularisation
terms in the method.
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APPENDIX

Whilst we do not have a formal convergence proof of CSGD
yet, it is instructive to analyse the fixed points of the algorithm.
We here look at the deterministic version of the algorithm with
α = 1.

The algorithm updates two quantities, x and z. Let
(xk+1 , zk+1) = T (xk , zk ) define one iteration of the algorithm.
Let x� and z� be fixed points of the operator T (x, z) defined by
(x� , z�) = T (x� , z�). Similar results to the once derived here
for the deterministic algorithm can also be obtained for the ran-
domised versions and for α < 1 if we look at points for which
(x� , z�) = E{Tr (x� , z�)}, where E{·} is the expectation with
respect to the random iteration operator Tr (x, z), given the cur-
rent state. In the following demonstration, I and J are arbitrarily
selected from {Ii}M

i=1 and {Jj}N
j=1 .

The deterministic version of the algorithm computes updates
of the form

xk+1
J =

1
M

M∑
i=1

xi
J

k+1

=
1
M

M∑
i=1

(
xk

J + μi
jg

i
J

)

= xk
J +

1
M

M∑
i=1

μi
j

(
AJ

Ii

)T (
yIi

− zk
Ii

)
, (16)

and

zk+1
I =

N∑
j=1

zj
I

k
=

N∑
j=1

A
Jj

I

(
xk

Jj
+ μi

jg
i
Jj

)

=
N∑

j=1

A
Jj

I

(
xk

Jj
+ μi

j (A
Jj

I )T rk
I

)

= AIxk +
N∑

j=1

μi
jA

Jj

I

(
A

Jj

I

)T (
yk

I − zk
I

)

= AIxk + SI

(
yk

I − zk
I

)
, (17)

where SI =
∑N

j=1 μi
jA

Jj

I (AJj

I )T .
This implies that, at the fixed point x� and z� , we have

z�
I = (I + SI )−1AIx� + (I + SI )−1SIyI (18)

and
M∑
i=1

μi
j (A

J
Ii

)T (yIi
− z�

Ii
) = 0. (19)

Eq. 18 can be expanded into the whole z

z� = (I + ST )−1Ax� + (I + ST )−1ST y, (20)

where ST is a block diagonal matrix:

ST =

⎡
⎢⎢⎢⎣

SI1 0 · · · 0
0 SI2 · · · 0
...

...
...

...
0 0 · · · SIM

⎤
⎥⎥⎥⎦ (21)

Note that (I + ST ) is a positive semi-definite matrix if the μi
j

are positive. Define a diagonal matrix Dj with diagonal entries
μi

j where Dj (h, h) = μi
j if h ∈ Ii . Eq. 19 can thus be written

as

(DjA
J )T (y − z�) = 0 (22)

Combine Eq. 20 and Eq. 22 gives

0 =
(
DjA

J
)T

(y − (I + ST )−1Ax� − (I + ST )−1ST y)

= (DjA
J )T (I + ST )−1(y − Ax�). (23)

This equation has to hold for all J . As Dj is a diagonal matrix,
this implies that

0 = AT (I + ST )−1(y − Ax�), (24)

which shows

x� =
(
AT (I + ST )−1A

)−1
AT (I + ST )−1y (25)

is a weighted least squares solution.
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