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Abstract—Numerous experiments have been conducted with
success in the field of compressive digital holography, but the theory
to determine optimal measurement conditions is lagging behind. In
contrast to a prior study that expects object wavefields to be sparse
in the spatial domain, we investigate how the configuration of
the interferometer influences the reconstruction of wavefields that
are sparse in a multiresolution orthogonal wavelet basis. In particu-
lar, we derive expressions for the coherence between the free-space
wave propagation operator and the basis functions of a Shannon
multiresolution representation as a function of the wavelength,
the propagation distance, the image sensor’s pixel pitch, and the
scale of the basis functions. These expressions reveal that the co-
herence as a function of the Fresnel number is subject to specific
scaling and translating rules as the scale of the basis functions
changes. For a multiresolution orthogonal wavelet representation
and digital holograms that are recorded in the near field, we de-
duce subsequently the optimal configuration of the interferometer
and we show by means of hypothesis testing that the associated
phase transition bound coincides with the weak threshold for block-
sparse compressive sensing with a block length of 2, which is an
optimal bound for the class of complex-valued compressive sensing
problems. By means of experiments with a USAF 1951 resolution
target and an angle grid, we validate our findings and demonstrate
that the reconstructed object wavefields are resilient to sparsity
defects and additive noise.

Index Terms—Compressive sensing, digital holography, fresnel
number, orthogonal wavelet transforms, coherence, phase transi-
tion diagrams.

I. INTRODUCTION

HOLOGRAPHY is a three-dimensional interference-based
imaging methodology for capturing simultaneously the

amplitude and phase of complex-valued wavefields. When a
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coherent light source illuminates an object, we can derive from
the phase of the resulting wavefield a depth map with submicron
accuracy. The shape (spatial phase variation) and deformation
(temporal phase variation) of small objects with limited depth
are measured this way. Applications include the visualization
of transparent cell cultures [1], the characterization of optical
components [2], and particle image velocimetry [3].

In digital holography, we capture wavefields indirectly with
a digital, lens-less camera. Planes that are positioned near the
object or intersect with it are of interest because the focal depth
is typically less than 1 mm [4]. We note there is always a gap
between the object and the camera so that the object wave can
interfere with a reference wave to form an interference pattern.
The captured interferogram is sampled and digitized by the
camera’s image sensor and a set of one or more interferograms
is processed computationally to obtain the digital hologram [5],
which is the complex amplitude of the object wave at the plane
that contains the image sensor. The relationship between the
digital hologram and the object wavefield in a parallel plane near
the object is modelled by an allpass filter as specified by scalar
diffraction theory [6]. Inverse filtering the digital hologram is
better known as numerical back propagation and is the standard
method for reconstructing the object wavefield in a plane of
interest [4].

A. Related Work

When no more than a subset of the hologram samples is ac-
quired or multiple wavefields are superposed to form a single
two-dimensional (2-D) hologram, the problem of reconstructing
the object wavefield(s) is ill-posed and cannot be accomplished
using inverse filtering. These inverse problems belong to the
field of compressive digital holography for which the works
that have been published are mainly experimental in nature.
In [7], for example, a proof-of-concept is provided in order
to demonstrate that a free-space wave propagation operator in
combination with Hadamard patterns yields a linear measure-
ment system with the right properties for compressive sensing
(CS): a generic theory in signal processing that deals with the
recovery of sparse data from an underdetermined set of linear
measurements [8]–[10]. Furthermore, several works report how
to infer from a single 2-D hologram the shapes and geometri-
cal positions of multiple objects in 3-D space. The authors of
[11] propose the digital tomographic compressed holography
method; by guiding the object wave twice through a sample of
bubbles they determine the sizes of the bubbles and track their
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positions. Compressive sensing is also the keystone to recover
multiple flat objects that lie in a set of equidistantly-spaced
planes [12], [13] and to determine the 3-D distribution of the re-
fractive index of transparent cells using a planar cross-sectional
representation [14]. We note that the aforementioned methods
expect that the objects are sparse in the spatial domain so that
none of the objects is severly occluded by other ones in front,
which would demand for more computationally intensive wave
propagation models as those in [15].

Regarding the random undersampling of wave fields, we find
applications of CDH in Single-shot phase imaging [16]–[18].
A coded aperture that occludes samples in a random fashion
is placed somewhere in between the object under study and
the camera. Using methods from coherent diffractive imaging,
the non-occluded samples are recovered. Subsequently, CDH is
applied to recover the object wave field, which can be sparse in
any appropriate domain.

For an exhaustive list of papers that have emerged in the field
of compressive digital holography we refer to [19].

B. Problem Statement

Insight into the proper arguments and conditions that explain
the many successful experiments in compressive digital holog-
raphy is missing. Only the authors of [20] describe by means
of an approximative coherence study how the configuration of
the interferometer influences the reconstruction of wavefields
that are sparse in the spatial domain. The required amount of
linear measurements to obtain perfect reconstructions with over-
whelming probability is predicted by the coherence up to an un-
known strictly positive constant. The bounds are thus not tight.
In other words, [20] does not specify exactly how sparse the
object wavefields have to be such that the reconstruction error
is zero with overwhelming probability.

C. Contributions

Wavefields whose unwrapped phase profiles contain the
information for inferring the shape and refractive index of
the illuminated object are rather sparse in a multiresolution
(orthogonal) wavelet representation than the spatial domain
[21]–[23]. We consider therefore 1-D and 2-D object wave-
fields that are sparse in a generic multiresolution orthogonal
wavelet basis. As a wave propagation model we use the propa-
gation of the angular spectrum and we solve the (quadratically
constrained) �1-minimization problem for reconstructing object
wavefields from undersampled holograms. Our particular con-
tributions are as follows:

1) For the coherence between the Shannon multiresolution
representation and the angular spectrum method, we de-
rive closed-form expressions that depend on the Fresnel
number. These expressions are representative for a generic
orthogonal wavelet transform.

2) We obtain scaling and shifting rules for the coherence as
the scale of the basis functions halves or doubles.

3) We determine phase transition bounds for different Fres-
nel numbers and we show that the weak threshold for
block-sparse compressive sensing with a block length of

Fig. 1. Geometry of the object wavefield and the corresponding hologram with
respect to a right-handed Cartesian coordinate system whose z-axis coincides
with the optical axis.

2 (see [24]), corresponds with the bound that is associated
with an optimally configured interferometer.

D. Outline

In Section II, we describe the measurement model for com-
pressive digital holography. In Section III, we analyse the coher-
ence for wavefields that are sparse in a Shannon multiresolution
representation with the emphasis on the relationships between
different resolutions or scales, and the physical interpretation.
The phase transition bounds in Section IV validate our coher-
ence analysis. And we conclude this work in Section VI.

II. BACKGROUND

A. Scalar Diffraction Theory

We consider planar wavefields over the xy-planes of a right-
handed Cartesian coordinate system whose z-axis coincides
with the optical axis, see Fig. 1. Let f(x, y, z = 0) : R2 → C
be the object wavefield and h(x, y, z = d) : R2 → C the corre-
sponding hologram (also called the image wavefield). The op-
tical axis intersects with both wavefields at their origins, which
are a distance d apart. To be specific, x and y are the arguments
in the spatial domain whereas d is a parameter.

Scalar diffraction theory states that the propagation of
monochromatic wavefields acts like a spatial all-pass filter [6].
In the paraxial approximation, the relationship between f and
h is namely described by the equality

h(x, y, d) = F−1 {Gλ,d(fx, fy ) F{f(x, y, 0)}} , (1)

where fx and fy are the arguments in the frequency domain,
F{.} and F−1{.} are respectively the 2-D unitary Fourier trans-
form and its inverse, and

Gλ,d(fx, fy ) = exp
[
jπλd

(
f 2
x + f 2

y

)]
(2)

is the wave propagation filter’s transfer function, which is de-
pendent on the propagation distance d and the wavelength λ.

We sample the wavefields around the optical axis on a regular
rectangular grid with Nx and Ny points in respectively the
x- and y-directions. The sample periods along the x-, y-, fx -
and fy -axes are respectively Δx, Δy, Δfx = (NxΔx)−1 and
Δfy = (NyΔy)−1 . Next, we place the samples of f and h in
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lexicographical order in the vectors f and h, which are both
elements of CNx N y , so that we can write the discretization of
(1) in matrix-vector notation as

h = F−1Gλ,dFf = Φλ,df , (3)

where the left matrix multiplications with F and F−1 are
equivalent to respectively the discrete Fourier transform and
its inverse, and Gλ,d is a diagonal matrix with the samples of
Gλ,d(kΔfx, �Δfy ) in lexicographical order on the main diag-
onal. As a result, the propagation of the angular spectrum is
simply represented by the linear transformation Φλ,d . Further-
more, we observe in (3) that Gλ,d holds the eigenvalues of Φλ,d .
Their moduli are all equal to 1 as a property of the complex ex-
ponential in (2). Hence, this problem is perfectly conditioned
and the numerical back propagation method retrieves f by left
multiplication of h with the inverse of Φλ,d .

If Δx = Δy and Nx = Ny = N , we find that

Gλ,d (kΔfx, �Δfy ) = exp
[
jπ

λd

Δx2

(
k2 + �2

N

)]
. (4)

For this case, we can group the parameters λ, d and Δx in a
single parameter called the Fresnel number, which is defined as

NF =
Δx2

λd
. (5)

We can thus parametrize the family of wave propagation filters in
terms of NF > 0. We use ΦNF

as an alias of Φλ,d accordingly.
Concerning the wave propagation filters, we note that (3) is

only valid if NF is within certain bounds. Based on the ex-
periments with paraboloidal reflectors in [25], we propose that
d > 100λ, and the condition N−1 < NF has to be satisfied in
order to avoid excessive aliasing as a consequence of undersam-
pling Gλ,d [26].

Hence, the Fresnel number is bounded from below and above
by the inequality

N−1 < NF <
100λ2

Δx2 . (6)

B. Compressive Sensing

Let us asssume that f is band-limited and sampled at a fre-
quency above the Nyquist rate. If the resulting sequence of
samples is sparse in a certain basis or dictionary, then the com-
pressive sensing theory states that f can be reconstructed from
fewer linear measurements than what is dictated by the Shannon-
Nyquist sampling theorem [27]. Let the vector of wavelet co-
efficients x0 = Ψf , where Ψ denotes an orthogonal wavelet
transform in contrast to the identity function in [20]. If x0 is
sufficiently sparse, then we can reconstruct f from M linear
measurements where M � Nr for r-D wavefields [9].

In compressive digital holography, (randomly selected) holo-
gram samples are the measurements. Let the vectors y and TM h
hold respectively the measured and computed hologram sam-
ples, where h is defined in (3) and TM is a boolean matrix that
encodes the selection of the samples. We obtain an estimate of

x0 by solving

minimize
x∈CN

‖x‖p
subject to

∥
∥y − TMΦNF

Ψ−1x
∥
∥

2 ≤ ε, (Pp,ε)

where ε ∈ R+ , ‖·‖p denotes the p-norm, and Ψ−1 denotes the
inverse orthogonal wavelet transform.

In the presence of additive noise and sparsity defects, a non-
zero ε bounds from above the maximum Euclidean distance
between the measured and computed hologram samples. The
sparsest vector of wavelet coefficients that satisfies this con-
straint is the solution of (P0,ε). However, this is a combinatorial
optimization problem and consequently intractable. The solu-
tion of (P1,ε) is advocated as a substitute because 1 is the smallest
value of p for which (Pp,ε) is a convex optimization problem.
Substituting the �1 norm for the �0 pseudo-norm yields the con-
vex relaxation of (P0,ε) [28]. Let x0 be S-sparse and ε = 0.
For sufficiently small S, the solutions of (P0,0) and (P1,0) coin-
cide; a property we refer to by the term ’(�0 , �1)-equivalence’
[8], [29].

Expressions of tight bounds on the conditions that guaran-
tee (�0 , �1)-equivalence with overwhelming probability exist for
compressive sensing [30]–[33] and compressive sensing with
(multiple) side information [34]–[37] for the specific case of
Gaussian linear measurements. Searching for similar expres-
sions in the case of deterministic linear transformations is in-
tractable nevertheless. We rely therefore on loose bounds that
are predicted by a performance measure that is easy to compute:
the coherence.

Let us define theNr byNr unitary measurement matrix U =
ΦNF

Ψ−1 for r-D wavefields. The mutual coherence between
ΦNF

and Ψ−1 , or simply the coherence of U, is defined as

μ (U) = max
k,�

|Uk,� | ∈ [1/
√
Nr , 1], (7)

where k, � ∈ {1, 2, · · · , Nr} and Uk,� denotes the element on
the kth row and �th column of U. The coherence is a good
indicator, but leads to loose bounds [38]. We complement there-
fore the coherence study with empirical phase transition bounds
in order to quantify the (�0 , �1)-equivalence bound both accu-
rately and precisely. Let the undersampling factor δ = M/Nr

and the oversampling factor ρ = S/M . A phase transition dia-
gram π(δ, ρ) : [0, 1]2 → [0, 1] maps the phase space pairs (δ, ρ)
to the probability that an arbitrary (δρNr )-sparse vector x0 is
the unique solution of (P1,0). In this context, the phase transition
bound ρ0.5(δ) is defined as the solution of π (δ, ρ0.5(δ)) = 1/2.
It divides the phase space in a part where the (�0 , �1)-equivalence
property is not satisfied (failure) and satisfied with overwhelm-
ing probability (success).

III. COHERENCE ANALYSIS

In (digital) holography, accustomed object wavefields are
characterized by spectral densities that are non-increasing as
the frequency increases. The Shannon wavelet transform is op-
timal for representing such signals [39], [40]. We formulate
therefore in this section the infinite-dimensional compressive
digital holography problem for object wavefields that are sparse
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in a Shannon multiresolution representation. The description
of these basis functions in the continuous frequency domain is
suitable for deriving closed-form expressions for the coherence
as a function of the Fresnel number and the scale of the basis
functions. For other orthogonal wavelet transforms (over a finite
domain), the specific shape of the coherence as a function of the
Fresnel number alters, but the overall trends are the same as for
the Shannon multiresolution representation because all of them
analyze signals the same way in the time-frequency domain.
We validate this statement with numerical experiments using
the Battle-Lemarié, Coiflet, Daubechies, and symmlet wavelet
families.

A. Infinite-Dimensional Compressive Digital Holography

Compressive sensing copes with finite-dimensional vectors
like f and h, whereas we consider the continuous functions
f and h in the infinite-dimensional vector spaces of bounded
functions:

Br (C) = {f : x ∈ Rr → C | |f(x)| ≤ B ∈ R+}
for r-D wavefields. We can focus on the analysis of the coher-
ence for 1-D wavefields because the definition of the coherence
in (7), the transfer function of the wave propagation filter in
(2), and the basis functions of the orthogonal wavelet transform
Ψ are all separable functions. For extending our results to 2-D
wavefields, we just raise our expressions for the coherence to
the second power [41].

Let gλ,d(x) be the impulse response of the wave propaga-
tion filter, which is denoted by ΦNF

. We define the translated
impulse responses φk (x) = gλ,d(kΔx− x) and the wavelets
ψ�(x) for k, � ∈ Z. The rows of Φλ,d hold translated impulse
responses because Φλ,d represents a linear space-invariant filter,
and the columns of Ψ−1 hold the wavelets. We deduce from the
equality U = ΦNF

Ψ−1 that element Uk,� is the inner product
of the kth row of Φλ,d and the �th column of Ψ−1 . As the di-
mensions of the square measurement matrix U go to infinity, U
converges to

� = −1 � = 0 � = 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

. . .
...

...
... ···

· · · 〈φ−1 , ψ−1〉 〈φ−1 , ψ0〉 〈φ−1 , ψ1〉 · · ·
· · · 〈φ0 , ψ−1〉 〈φ0 , ψ0〉 〈φ0 , ψ1〉 · · ·
· · · 〈φ1 , ψ−1〉 〈φ1 , ψ0〉 〈φ1 , ψ1〉 · · ·
··· ...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

k = −1

k = 0

k = 1

in the weak operator topology [42], where 〈·, ·〉 denotes the
standard inner product for square-integrable functions. Hence,

Uk,� =
∫ +∞

−∞
ψ�(x)gλ,d(kΔx− x)dx, (8)

and we discern that the �th column of U holds samples of
the wave propagation filter’s response to the �th wavelet. As
a consequence, the maximum modulus among all continuous

wavelet responses is equal to the quantity of interest; namely,
the coherence μ(U).

B. Shannon Approximations at the Finest Scale

We divide the set of basis functions that make up the Shannon
multiresolution representation into subsets that are invariant to
translations by a multiple of Δx. At first, we consider the set

Ψ0 = {ψ0,t(x) = sinc((x− tΔx)/Δx)}t∈Z ,

which is composed of the Shannon approximation functions
at scale (Δx)1 . This set is characterized by translations
of ψ0,0(x), whose unitary Fourier transform is Ψ0,0(fx) =
Δx rect(Δxfx). The rectangular function is defined as

rect(fx) :=

⎧
⎪⎨

⎪⎩

0 if |fx | > 1/2

1 if |fx | < 1/2,

1/2 if |fx | = 1/2

and 〈ψ0,0(x), ψ0,0(x)〉 = 〈Ψ0,0(fx),Ψ0,0(fx)〉 = 1 so the ba-
sis functions in Ψ0 are normalized. Since the wave propagation
filter is space-invariant, it is sufficient to calculate the response
to ψ0,0(x) for determining the coherence between the wave
propagation filter and the set Ψ0 . We obtain an expression for
that response by drawing on Theorem 1.

Theorem 1 (based on the Corrolary in Appendix A.13 of [4]).
Let β, W ∈ R+

0 , where W is the half-width of a rectangular
function. The inverse unitary Fourier transform of

exp
(
jπβf 2

x

)
rect

(
fx
2W

)
(9)

is

exp
(
−jπ x2

β

)

√
2β

(Fr (a(x)) − Fr (b(x))) , (10)

where a(x) =
√

2β(W + x/β), b(x) =
√

2β(−W + x/β),
and

Fr (x) =
∫ x

0

(
cos
(
πt2

2

)
+ j sin

(
πt2

2

))
dt (11)

is the Fresnel integral.
The response of the wave propagation filter to ψ0,0(x) is

y0,0(x) = F−1 {Ψ0,0(fx)Gλ,d(fx)} . (12)

We compare Ψ0,0(fx)Gλ,d(fx) with (9) and find that β = λd
and W = (2Δx)−1 . The wavelet response y0,0(x) is thus a
specific instantiation of (10), but we prefer to express all wavelet
responses in this paper as a function of x = x̄ · Δx because
then the expressions for the coherence become also a function
of the Fresnel number. As such, we find that the expression for
y0,0(x̄, NF ) is

exp
(−jπNF x̄

2
)

√
2N−1

F

(Fr (a0(x̄, NF )) − Fr (b0(x̄, NF ))) , (13)

where

a0(x̄, NF ) =
√

2
(
x̄
√
NF +

1
2
√
NF

)
, (14)
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Fig. 2. Coherence between the wave propagation filter and the Shannon ap-
proximations at scale Δx as a function of NF . The non-shaded area visualizes
for which Fresnel numbers (6) is satisfied when N = 512, λ = 633 nm and
Δx = 10μm.

and

b0(x̄, NF ) =
√

2
(
x̄
√
NF − 1

2
√
NF

)
. (15)

We denote by μΨ0 the coherence between the wave propagation
filter and the set Ψ0 . Since the sampling period along the x̄-axis
is 1, we find starting from (8), that

μψ0 (NF ) = max
n∈Z

|y0,0(n,NF )| = ‖y0,0(n,NF )‖∞ , (16)

where |.| and ‖.‖∞ denote respectively the modulus of a complex
number and the infinity norm of a sequence. The infinity norm
returns the global maximum of the modulus of a function and
is invariant to scaling of the x-axis, which justifies our choice
to express the wavelet responses as a function of x̄ instead of x.
Lastly, we obtain that

μψ0 (NF ) =

√
NF

2
‖Fr (a0(n,NF )) − Fr (b0(n,NF ))‖∞

(17)
as a result of combining (13) and (16). A graphical representa-
tion of (17) is given in Fig. 2.

Validity of the wave propagation method: The validity of nu-
merically propagating the angular spectrum is restricted to the
Fresnel numbers that satisfy (6). Let us consider an interfer-
ometer with a HeNe-laser (λ = 633 nm), and an image sensor
with N = 512 pixels and a pixel pitch Δx = 10μm. The non-
shaded area in Fig. 2 represents the range of Fresnel numbers
for which the numerical propagation of the angular spectrum is
an accurate wave propagation model. We observe that μΨ0 (NF )
tends to its lower bound μmin(N) as the Fresnel number goes to
0. However, the validity of numerically propagating the angu-
lar spectrum is bounded from below by NF > 1/N . Thus, the
range of valid Fresnel numbers and associated interferometer
configurations increases as the number of pixels increases.

Limiting cases: If λ and Δx are fixed, then the propagation
distance d is the only free parameter we can use to modify
the Fresnel number. As d goes to 0, NF goes to +∞ and the
wave propagation filter becomes an all-pass filter that leaves the
phase unchanged. The sinc function ψ0,0(x), whose maximum

modulus is equal to 1, is thus also the response. Hence, the co-
herence reaches its upper bound μmax(N) = 1 and the (�0 , �1)-
equivalence is very weak, just as for classical photography where
the image is a copy of the scene. The physical interpretation for
d going to +∞ is less obvious. We draw therefore on the right
hand side of (17), whose numerator converges whenNF goes to
0. First, a0(n,NF ) becomes the additive inverse of b0(n,NF )
and both become independent of n. Secondly,

Fr (a0(n,NF )) − Fr (−a0(n,NF )) = 2Fr (a0(n,NF ))

because the Fresnel integral is an odd function. And thirdly, the
Fresnel integral converges to (1 + j)/2 as its argument goes to
+∞ [43]. As a result of these three properties and the observa-
tion that the bound in (17) is tight, we find that

lim
NF →0

μΨ0 (NF ) =
√
NF , (18)

which matches the expression for the lower bound of the co-
herence when NF = N−1 . Hence, the (�0 , �1)-equivalence is
strong when NF and N approach 0 and +∞ respectively. The
expression in (18) is also the main result of [20], where approxi-
mations were used in the derivation. (We note that the definition
of the coherence in [20] is slightly different from the one we use
in (7), squaring the expression in (18) and multiplying by N is
necessary for proper comparison). We have thus clarified that
the results in [20] are only valid in the limit when NF goes to
0. In practice, however, we have only a finite amount of pixels
so the lower bound on the coherence is never reached. Resort-
ing to the expression in (17) is therefore needful. In Fig. 2,
for example, μΨ0 (NF = 1/512) is approximately 18% greater
than μmin(N = 512) = 1/

√
512. In spite of this observation,

the (�0 , �1)-equivalence can still be very strong [44].

C. Shannon Approximations at Coarser Scales

The framework we introduced in the previous subsection
shows that impulses and Shannon approximations at the finest
scale yield similar results for the coherence. However, the scal-
ing functions are more likely composing a basis at a coarser
scale in a multiresolution signal representation. The set

Ψk =
{
ψk,t(x) =

1√
2k

sinc
(

(x− t2kΔx)
2kΔx

)}

t∈Z

is an orthonormal basis for the Shannon approximations of
square integrable functions at scale 2kΔx, where k ∈ N0 . For
determining the coherence between the wave propagation filter
and the Shannon approximations at each scale, it is sufficient to
calculate yk,0(x), which is the response of the wave propagation
filter to ψk,0(x).

The unitary Fourier transform of ψk,0(x) is

Ψk,0(fx) =
√

2kΔx rect
(
Δx2k fx

)
,

and the expression for Gλ,d(fx) Ψk,0(fx) can be written as

√
2kΔx exp

[
jπ

λd

22k

(
2kfx

)2
]

rect

[
2k fx

2
( 1

2Δx

)

]

.
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We compare the latter expression with (9) and find that W =
(2Δx)−1 , β = λd/4k , and fx is replaced by 2kfx . With the
help of Theorem 1 and the time scaling property of the unitary
Fourier transform, we obtain that yk,0(x̄, NF ) is equal to

(Fr (ak (x̄, NF )) − Fr (bk (x̄, NF )))
√

21−kN−1
F exp (+jπNF x̄2)

, (19)

where

ak (x̄, NF ) =
√

2

(
x̄

2k
√

4kNF +
1

2
√

4kNF

)

, (20)

and

bk (x̄, NF ) =
√

2

(
x̄

2k
√

4kNF − 1

2
√

4kNF

)

. (21)

In (20), we have organized the factors in such a way that it is
clear that

ak (x̄, NF ) = a0

( x̄
2k
, 4kNF

)
, (22)

where a0 is defined in (14). A similar equality exists between
(15) and (21). We can rewrite (19), consequently, as

Fr
(
a0
(
n
2k , 4

kNF

))− Fr
(
b0
(
n
2k , 4

kNF

))

√
2k+1(4kNF )−1 exp(+jπNF x̄2)

, (23)

where we denote by μΨk
the coherence between the wave prop-

agation filter and the set Ψk . Starting from (23) and by analogy
with (16), we find the expression for μΨk

(NF ) is
∥
∥Fr

(
a0
(
n
2k , 4

kNF

))− Fr
(
b0
(
n
2k , 4

kNF

))∥∥
∞√

2k+1(4kNF )−1
. (24)

The arguments of the Fresnel integrals in (13) and (23) are scaled
with respect to each other, but the result of the infinity norm is
quasi not affected by this operation because the sampling is
dense enough for k = 0 and densifies by a factor 2 each time
the scale of the approximation functions doubles. As a result,
we obtain the approximation

μψk
(NF ) ≈ 1√

2k
μψ0 (4

kNF ). (25)

The coherence between the wave propagation filter and the
Shannon approximations is thus scaled and shifted when the
scale gets coarser. In the limiting case where NF = N−1 and
N goes to +∞, the coherence as a function of NF becomes
a straight line in double logarithmic axes, which is obvious in
Fig. 2. The numerator in (24) converges to (1 + j)/2 when NF

goes to 0 for the same reason as in the previous subsection. In
this limiting case, (25) becomes

lim
NF →0

μψk
(NF ) ≈ lim

NF →0

1√
2k
μψ0 (4

kNF ) (26)

≈ 1√
2k

√
4kNF , (27)

where (27) is the result of substituting (18) in (26). Finally, we
substitute NF = N−1 in (27) and find that

lim
NF →0

μΨk
(NF ) =

1√
2k

√
4k

N
=

√
2kμmin(N). (28)

Coarser approximation functions yield thus higher values for
the coherence. Finally, if NF = N−1 , then we can rewrite (28)
as

lim
NF →0

μΦk
(NF ) = lim

NF →0
μΦ0 (2

kNF ). (29)

AsNF approaches 0, doubling the scale of the Shannon approx-
imations has thus the same effect on the coherence as halving
the wave length, halving the free-space propagation distance, or
doubling the area of a pixel.

D. Shannon Wavelets

Wavelets capture the details that are lost when approximating
a square integrable function at a certain scale. In particular, the
spectrum of the mother Shannon wavelet is [45]
{

exp (−jπΔxfx) if fx ∈ [−1,−1/2] ∪ [1/2, 1]

0 otherwise.
(30)

When we ignore the phase information in (30), it becomes clear
that the amplitude spectrum of a Shannon wavelet is a linear
combination of the spectra of the Shannon approximation func-
tions at neighbouring scales. Let ψk+1

k,t (x)|t∈Z be the set of
wavelets that carry the details for complementing the approxi-
mation at scale 2k+1Δx in order to get an approximation at scale
2kΔx, which is finer. The wavelet ψkk,0(x) is a representative
for all its translations at the same scale and its unitary Fourier
transform is given by

Ψk+1
k,0 (fx) =

√
2Ψk,0(fx) − Ψk+1,0(fx)

since we do not take into account the phase information for
now. As a result of the superposition principle we find that the
response of the propagation filter to ψk+1

k,0 (x) is

yk+1
k,0 (x̄, NF ) =

√
2yk,0(x̄, NF ) − yk+1,0(x̄, NF ).

The complex exponential in (30) causes a shift of the samples
by Δx/2 on the x-axis or 1/2 on the x̄-axis. Consequently,
the coherence between the wave propagation filter and the set
ψk+1
k (x)|z∈Z is

μψk + 1
k

(NF ) =
∥
∥
∥
√

2yk,0(n− 1/2, NF )

− yk+1,0(n− 1/2, NF )
∥
∥
∥
∞
. (31)

Shannon wavelets inherit the scaling and shifting rules from
Shannon approximation functions, so

μΨk + 1
k

(NF ) ≈ 1√
2k
μΨ1

0
(4kNF ).

Furthermore, the triangle inequality states that
∥
∥
∥
√

2yk,0 − yk+1,0

∥
∥
∥
∞

≤
√

2 ‖yk,0‖∞ + ‖yk+1,0‖∞ , (32)
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Fig. 3. Coherence between the wave propagation filter and the Shannon mul-
tiresolution representation, as well as the finite-interval Battle-Lemarié, Coiflet,
Daubechies, and symmlet multiresolution representations for K ∈ {1, 9}.

where ‖yk,0(n− 1/2, NF )‖∞ = μΨk
(NF ). By taking the limit

of (31) asNF goes to 0, then applying inequality (32) and taking
(28) into account, we find that

lim
NF →0

μΨk + 1
k

(NF ) ≤
√

2k+3μmin(N) (33)

whenNF = N−1 . Wavelets that complement the approximation
at scale 2k+1Δx yield thus a coherence that is maximum 2 times
greater than the coherence for the approximation functions.

E. Shannon Multiresolution Representation

Wavefields are sparse in a multiresolution representation
rather than at a single scale. Therefore, we still have to combine
the results in (24) and (31). Let μK be the coherence between
the wave propagation filter and the Shannon multiresolution
representation at the (K + 1) finest scales. By analogy with the
definition of the coherence in (7), we find that

μK (NF ) = max
(
μΨK

(NF ), μΨK
K −1

(NF ), · · · , μΨ2
1
(NF )

)
,

which is visualized in Fig. 3 forK = 1 andK = 9. We observe
that the coherence follows a bumpy, but overall decreasing trend
as NF decreases. We will discuss this behaviour on the basis
of physical arguments in Section IV-B. Here, we consider the
limiting case where NF = N−1 and N goes to +∞ from a
mathematical perspective. μK (NF ) is the maximum of (28) and
(33) for respectively k = K and k = K − 1,K − 2, · · · , 0. As
a result, we find that

lim
NF →0

μK (NF ) ≤
√

2K+2μmin(N), (34)

which is a valid inequality as long as N is sufficiently large.
Furthermore, we compute the coherence for a discrete

512-dimensional vector space and all Battle-Lemarié, coiflet,
Daubechies and symmlet multiresolution representations in the
Wavelab package [46]. We see in Fig. 3 that the coherence curves

for all these representations lie in a region that gets tighter as
NF decreases. The blue and red regions are narrow because the
coherence is not very sensitive to the specific type of wavelet.
The common formulation of the time-frequency analysis can
be an explanation for this observation. Furthermore, the overall
trend is predicted well by μK (NF ), although our analysis is
targeted at integrable functions in the continuous domain. The
coherence is thus more sensitive to NF and K than the specific
type of wavelet.

IV. PHASE TRANSITION BOUNDS

The coherence explains global trends, which are similar for
all aforementioned wavelet transforms, but for accurate and
precise bounds on the (�0 , �1)-equivalence we have to resort to
phase transition bounds. Generating them is very computation-
ally intensive. We select therefore the Daubechies 4 wavelet
transform as a representative. Adhering to the previous section,
all experiments are executed with ΦNF as sensing operator, the
Daubechies 4 wavelet transform on a finite interval as sparsi-
fying operator, and 1-D wavefields in an N -dimensional vector
space, where N = 512.

A. Generation of Phase Transition Diagrams

We generate a phase transition diagram for each of the 8 Fres-
nel numbers that are identified by the abscissae of the disks (•)
and diamonds (�) in Fig. 3. On a logarithmic NF -axis, they
are evenly distributed over the interval where (6) is satisfied,
NF = N−1 included. Furthermore, we consider the Daubechies
4 wavelet transform at a minimum (K = 1), as well as a maxi-
mum [K = log2(512) = 9] number of scales.

For the generation of a phase transition diagram, the phase-
space is sampled in all doubles of the set {(δ(d), ρ(r))}50

d,r=1 ,
where δ(d) = 0.02d and ρ(r) = 0.02r. In each of these samples
we consider the associated set of sparse signals with sparsity
S(d, r) = Nδ(d)ρ(r)�. For the generation of sparse signals
we select S(d, r) out of N indices uniformly at random with-
out replacement. These indices are labelled as the positions of
significant wavelet coefficients, which are drawn from a zero-
mean circularly-symmetric complex normal distribution with a
variance of 2. Thereafter, we normalize all sparse signals so that
they have unit Euclidean norms.

By means of (3), we transform an S(d, r)-sparse signal x into
the corresponding hologramh. Then, we selectNδ(d) hologram
samples pseudo-uniformly at random and store them in vector
y, which we refer to as the linear measurements or observations
in optimization problem (Pp,ε). For the reconstruction of x from
y, we solve the �1-minimization problem (P1,0) by making use
of the SDPT3 solver.1

If the mean squared error between the original and recon-
structed signals is smaller than 1 × 10−12 , we deem the recon-
struction is correct. For each phase-space sample (δ(d), ρ(r)),
we execute 50 reconstructions and E(d, r) of them are deemed

1The SDPT3 solver [47] is included in the CVX distribution [48]. We used
the default settings for complex-valued problems as described in CVX’s docu-
mentation [49].
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Fig. 4. Phase transition bounds as a function of the Fresnel number for compressed holography with the Daubechies 4 wavelet transform as sparsifying operator.
The (�0 , �1 )-equivalence region under the optimal phase transition bound is shaded dark-grey, and the black and white dots represent samples of the phase transition
bounds for K = 1 and K = 9 respectively.

exact. The sampled phase transition diagram is then estimated
by π̂(δ(d), ρ(r)) = E(d, r)/50. By using a logistic regression
model and following the procedure in [33], [50], we obtain an
estimate for the phase transition bound ρ̂0.5(δ).

B. Analysis of the (�0 , �1)-Equivalence

The phase transition bounds that correspond with the disks
and diamonds in Fig. 3 are depicted with respectively black and
white dots in Fig. 4. We observe that the decreasing trend in the
coherence, as the Fresnel number decreases, yields a stronger
(�0 , �1)-equivalence. Furthermore, the analysis of the coherence
predicts that the geometrical position of the phase transition
bound is dependent on K. For large Fresnel numbers, the co-
herence for K = 9 is slightly smaller than for K = 1. The gap
between the corresponding phase transition bounds is signif-
icant nevertheless. A possible explanation for this behaviour
might be hidden in the wave propagation phenomenon. We can
namely state that the Fresnel number, which is a measure for
the amount of diffraction, is roughly inversely proportional to
the radius of a circle of confusion in the hologram plane due
to a source with a small support in the object plane. Imaging
modalities that are characterized by a large Fresnel number are
less prone to blurring and the image is accordingly an (exact)
copy of the object, which is the case in classical photography. As
a consequence, the wavelets are projected onto themselves and
the peaks in the finest approximation functions and wavelets
pull the coherence upwards. Our coherence study and phase
transition diagrams confirm the weak (�0 , �1)-equivalence for a
measurement matrix U that is simply an inverse discrete wavelet
transform by itself [51]. Since the rather flat, wide wavelets at

coarser scales are less coherent with the identity matrix than
the narrow, peaked wavelets at the finest scale, there is locally
a drop in the coherence, which can be an explanation for the
stronger (�0 , �1)-equivalence as K increases.

When the Fresnel number decreases, the energy of a source
with a small support is spread out over an extending circle of
confusion. The same happens with the wavelets at the finest
scale. They are smeared over an extending support size due to
diffraction, which reduces their peakedness and decreases the
coherence as depicted in Fig. 2. The wavelets at the second
finest scale are not yet affected by diffraction so the coher-
ence between them and the wave propagation filter remains
quasi unchanged. As a result, the overall coherence drops until
the wavelets at the second scale become most coherent with
the wave propagation filter. Dividing the Fresnel number by 4
[cfr. the factor 4k in (23)] at this point causes the wavelet re-
sponses at the second finest scale to spread out on their turn
while the coherence between the wavelets at the finest scale and
the wave propagation filter continues to decrease at a rate of
10 dB per decade on the NF -axis [see (24) and (25)]. Since this
pattern is repeated at the coarser scales each time the Fresnel
number is divided by 4, we can explain the bumpy decay of the
coherence when K = 9, as well as the decay when K = 1 as
NF goes to 0, see Fig. 2.

So far, the coherence and physical arguments have been
helpful for explaining the global trends in the phase transition
bounds, but they cannot accurately quantify them. In particular,
we observe that both phase transition bounds tend to the weak
threshold for block-sparse compressive sensing [24], [52] with a
block length of 2. This bound is derived for real-valued measure-
ment matrices with normally distributed elements, but several
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Fig. 5. Minimum undersampling factor to recover S-sparse wave fields per-
fectly, as a function of the free-space propagation. Three values of S are distin-
guished and N = 512.

complex-valued, deterministic matrices are associated with the
same phase transition bound for large N [53]. We denote this
phase transition bound by ρ∗0.5(δ) and it coincides in Fig. 4 with
the edge between the light- and darkgrey regions. The fact that
the phase transition bounds for compressive digital holography
can lie very close to ρ∗0.5(δ) cannot be predicted by means of
the coherence and justifies the computational effort required to
generate phase transition diagrams.

Let us, to complete this Subsection, compare the trends in
our results (using the Daubechies 4 wavelet transform) with
those in [54], where the Haar, Coiflet 1, and symmlet 2 wavelet
transforms are considered. Therefore, we consider the points on
the phase transition bounds for K = 9 that correspond with S-
sparse wavefields, for S ∈ {N/2, N/4, N/8}, whereN = 512.
The undersampling factors of these points are plotted versus
the free-space propagation distance z, which can be derived
from the Fresnel number using the formula z = (Δx)2/(λNF ),
where λ = 633 nm and Δx = 10μm. The result is depicted
in Fig. 5, and they show the same trends as in [54, Fig. 2 ].
The undersampling factor δ has M in the nominator and repre-
sents thus the amount of required measurements to reconstruct
the wave fields perfectly; an amount that tends to decrease as
the free-space propagation distance is increased. The minimum
in the near field is reached for the maximum propagation dis-
tance that we have included in Fig. 5, but the sensitivity of δ
around that propagation distance is low, indicating that precise
positioning of the camera with respect to the object is not neces-
sary. Finally, the amount of required measurements decreases as
S decreases.

C. Optimal (�0 , �1)-Equivalence

Naturally, the question arises whether ρ∗0.5(δ) is actually the
isoline that is associated with π̂ = 0.5 in compressive digital

TABLE I
THE P-VALUES FOR 8 (N,NF ,K )-TUPLES*

N = 512 N = 1024

NF = 1/256 NF = 1/512 NF = 1/512 NF = 1/1024

δ K = 1 K = 9 K = 1 K = 9 K = 1 K = 9 K = 1 K = 9

0.1 0.60 0.00 61.8 0.60 0.33 0.00 13.5 0.02
0.2 1.76 0.18 95.6 4.43 46.0 1.76 75.8 9.67
0.3 1.76 0.18 4.43 2.84 75.8 0.04 54.0 18.4
0.4 0.33 0.02 30.9 30.9 30.9 0.01 4.43 13.5
0.5 69.1 4.43 30.9 9.67 18.4 4.43 24.2 18.4
0.6 0.04 1.05 38.2 13.6 24.2 18.4 4.43 54.0
0.7 6.66 1.76 46.0 1.05 4.43 0.09 46.0 1.05
0.8 46.0 0.04 93.3 13.6 13.6 4.43 81.6 46.0
0.9 13.6 0.18 61.8 0.04 2.84 0.60 46.0 18.4

*All p-values are expressed as percentages. The p-values that are smaller than 5% are
printed in bold type. And those that are smaller than 1% are in addition printed on a grey
background.

holography with an orthogonal wavelet transform as sparsi-
fying operator when NF = N−1 and N goes to +∞. Even
though N has to go to +∞ from a statistical perspective, the
universality of ρ∗0.5(δ) has been demonstrated for multiple deter-
ministic, complex-valued compressive sensing problems where
N is smaller than 1024 [44], [55]. We adopt this strategy for
compressive digital holography and advocate the following null
hypothesis: ρ∗0.5(δ) is the isoline that is associated with π̂ = 0.5.
By means of a single-tailed proportion test on a Bernouilli dis-
tribution, evidence is collected for the alternative hypothesis:
the isoline that is associated with π̂ = 0.5 is strictly bounded
from above by ρ∗0.5(δ).

We execute 100 independent reconstructions in the phase-
space doubles (d/10, ρ∗0.5(d/10)) for d = 1, 2, · · · , 9 and eval-
uate the hypothesis test in each point with regard to the 5%
and 1% significance levels. The results are shown in Table I,
where the p-values are summarized for 8 configurations of the
interferometer.

We refute the null hypothesis when NF = (N/2)−1 and
K = 9 because the evidence against the null-hypothesis is sig-
nificant. We base this thesis on a majority of p-values that are
smaller than the significance levels. For (N,NF ,K)-triples that
match the templates (N, (N/2)−1 , 1) or (N,N−1 , 9), the p-
values in Table I indicate that the phase transition bound is
below ρ∗0.5(δ) for a substantial amount of undersampling rates,
but no majority. However, we behave as if ρ∗0.5(δ) is the phase
transition bound for the triples that match (N,N−1 ,1) because
there is insufficient evidence against the null-hypothesis [i.e., the
p-values are in general much greater than 5% and the alternative
hypothesis is more likely in merely a few samples of ρ∗0.5(δ)].
Since ρ∗0.5(δ) is also associated with acquiring measurements
in the frequency domain of objects that are sparse in the spatial
domain [55], we conclude that in this case the hologram sam-
ples in y are as informative as compressive measurements in the
frequency domain, thereby making the link with Fourier-based
imaging systems like magnetic resonance imaging and synthetic
aperture radar.
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Although the optimal (�0 , �1)-equivalence is only feasible in
specific circumstances, we notice that the phase transition bound
is in the near proximity of ρ∗0.5(δ) for all configurations where
NF goes to N−1 . Since other wavelet transforms yield similar
results for the coherence as the Daubechies 4 wavelet trans-
form, we can assume that the trends for the phase transition
bounds are similar too. The choice for a specific wavelet trans-
form has therefore a larger impact on the sparsity of the object
wavefield (i.e., smaller values for S) than the phase transition
bound.

D. Extension to 2-D Wavefields

Eventually, we are interested in the reconstruction of 2-D
sparse wavefields, but the SDPT3 solver is not appropriate for
large-scale optimization problems. We employ therefore the
SPGL1 solver [56], [57], which converges much faster and has
been used before in complex-valued compressive sensing prob-
lems [58], though admittedly it is slightly less performant than
the SDPT3 solver.

Since the wave propagation filter and all orthogonal wavelet
transforms are separable, the coherence for the 2-D case is the
square of the coherence for the 1-D case, which means the de-
creasing trend in the coherence is preserved as NF decreases.
Consequently, we expect the strongest (�0 , �1)-equivalence for
NF = N−1 , where N is the number of samples along each
side of the wavefield. We demonstrate the dependence of the
reconstruction error on NF by means of visual features. The
2-D wavefield of a USAF resolution test chart is reconstructed
from randomly-undersampled holograms (δ = 0.2) that were
captured with a Ximea MD120MU-SY camera. The reconstruc-
tions for 3 different Fresnel numbers are shown in Fig. 6 and
the reconstruction error clearly decreases as the Fresnel number
decreases.

E. Implications for Compressive Digital Holography

We learn from our analysis that the wave propagation phe-
nomenon (diffraction) can be incorporated as a sensing oper-
ator in compressive sensing. In combination with an arbitrary
orthogonal wavelet transform as sparsifying operator, the mea-
surement matrix is associated with the same phase transition
bound as for Gaussian random matrices in combination with
block-sparse real-valued signals with a block length of 2. The
numerical back propagation method requiresNr hologram sam-
ples to reconstruct an r-D object wavefield. However, for com-
pressive digital holography we find the following rule of thumb:
if we can sparsify the object wavefield such that S = Nr/k2 for
k ∈ [3, 10], thenNr/k measurements are sufficient. Sparse pri-
ors allow thus for measurement reductions. To accomplish this,
the interferometer has to be configured such that the condition
NF = N−1 is (approximately) satisfied. Practical applications
as those in the introduction do not undersample the hologram
uniformly at random, but the interferometer should still be con-
figured such thatNF is as close toN−1 as possible. This way, the
phase transition bound has the largest margin to become weaker

Fig. 6. Reconstructions of a USAF resolution test chart’s wavefield in a holo-
graphic recording setup for δ = 0.2 and different Fresnel numbers. Smaller
Fresnel numbers correspond with smaller reconstruction errors.

without the need to constrain the set of object wavefields to just
the extreme sparse ones.

V. LABORATORY EXPERIMENTS

We conducted a real-life experiment to demonstrate that the
reconstructed object wavefields are robust to sparsity defects,
vibrations in the interferometer, energy that misses the image
sensor, and additive noise. The diameter of the HeNe-laser’s
beam (JDSU Uniphase 1135P) was expanded to 1.5 cm for illu-
minating the transmissive angle grid (on the multi-grid standard
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stage micrometer of Edmund Optics). We recorded in a Mach-
Zehnder interferometer 3 phase-shifted interferograms I1 , I2 ,
and I3 , where

Ik (x, y) =
∣
∣
∣h(x, y) +R(x, y) exp

(
jk
π

2

)∣∣
∣
2

+ ek (x, y),

R(x, y) is the amplitude profile of the reference wave, and
ek (x, y) is an error term. With the pointwise three-step linear
combination [5]

1 − j

4R(x, y)
{I0(x, y) − I1(x, y) + j [I1(x, y) − I2(x, y)]} ,

we retrieved a distorted hologram. The phase of the reference
wave was modified with a piezo-electrically driven mirror, and
the interferograms were captured with a Ximea MD120MU-SY
camera (4244 × 2832 image sensor resolution). The pixel pitch
of this camera is 3.1μm, but we generated superpixels consisting
of 3 by 3 pixels, which yields a 9.3μm pixel pitch. We also
reduced the camera size artificially to 640 × 448 superpixels,
which is slightly smaller than the support of the 768 × 544
angle grid’s hologram so that the number of hologram samples
is not excessive. The distance between the angle grid and the
camera was 7.6 cm. The interferometer is thus characterized
by NF = 0.0018, which is slightly smaller than 1/448, thereby
producing a little aliasing, which is sufficiently small to be
invisible in the reconstruction.

We observe in Fig. 7(a) that zero-padding the hologram, fol-
lowed by numerical back propagation results in a distorted re-
construction near the edge of the image sensor. Zero-padding
imposes namely that the hologram should have a finite support,
which is not a realistic assumption. We tested several border
extension methods and came to the conclusion that the border
should be repeated for specimen that are transparent near the
edge of the image sensor. Even the engraving “15 ◦”, which
overlaps partially with the edge of the image sensor, is accu-
rately reconstructed, as illustrated in Fig. 7(b). We consider this
reconstruction therefore as a reference.

The angle grid’s object wavefield is clearly not sparse in the
spatial domain. Selecting the identity transformation for Ψ re-
sults accordingly in very poor reconstructions [see Fig. 7(c) and
(d)]. These experiments should make the need for (orthogonal)
wavelet transforms and corresponding bounds on the (�0 , �1)-
equivalence clear.

On the other hand, the angle grid is sparse in a symmlet 6 mul-
tiresolution representation for K = 5 [ρ = S/(640 ∗ 440) =
0.032]. When we discard 75 or even 90% of the hologram
samples, the characters of the string “15 ◦” are still engraved
near the top edge of the detector in Fig. 7(e) and (f), just as for
the reference using border repetition and numerical back propa-
gation. In contrast, the degrees symbol protrudes from the back-
ground for the numerical back propagation method following
zero-padding [see Fig. 7(a)]. Finally, we observe for compres-
sive digital holography with the symmlet 6 wavelet transform
that the main structures of the angle grid are preserved, even
near the edges of the image sensor. The reconstruction is thus
robust to additive noise, vibrations, and a part of the hologram
that misses the image sensor.

Fig. 7. Reconstructions of the object wavefield of an angle grid using the
Numerical Back Propagation (NBP) method with different border extensions
[(a), (b)], and Compressive Digital Holography (CDH) with the canonical basis
[(c), (d)] and symmlet 6 wavelets [(e), (f)] as sparsifying operator, for δ = 0.25
and 0.10. Magnified views of the engraving “15 ◦” near the top of the angle grid
are shown in the upper right corners and the edge of the detector is marked with
a white rectangle.

VI. CONCLUSION

Our coherence analysis has linked the physical aspects of the
wave propagation phenomenon to the reconstruction error in
compressive digital holography for wavefields that are sparse in
a generic multiresolution orthogonal wavelet representation and
randomly undersampled holograms. Unlike ray-based imaging,
a sufficient amount of diffraction yields appropriate sensing
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operators for compressive sensing. In particular, we have shown
that the interferometer should be configured such that the Fresnel
number is equal to the inverse of the number of pixels along
1 dimension of the sensor. In this context, we confirmed the
following thesis: the phase transition bound coincides with the
weak threshold for block-sparse compressive sensing with a
block length of 2.

ACKNOWLEDGMENT

The authors are grateful to the Brussels Photonics team for
the optical equipment and in particular to Prof. Heidi Ottevaere
for the instructions on how to align the interferometer.

REFERENCES

[1] F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers,
“Applications of digital holographic microscopes with partially spatial
coherence sources,” Proc. J. Phys., Conf. Ser., vol. 139, no. 1, 2008, Art.
no. 012027.

[2] F. Charrière et al., “Characterization of microlenses by digital holographic
microscopy,” Appl. Opt., vol. 45, no. 5, pp. 829–835, 2006.

[3] K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Tech-
nol., vol. 13, no. 7, pp. R61–R72, 2002.

[4] T. Kreis, Handbook of Holographic Interferometry: Optical and Digital
Methods. Hoboken, NJ, USA: Wiley-VCH, 2005.

[5] T.-C. Poon, Ed., Digital Holography and Three-Dimensional Display, 1st
ed. New York, NY, USA: Springer, 2006.

[6] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. New York, NY,
USA: McGraw-Hill, 1996.

[7] P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis,
“Compressive holography with a single-pixel detector,” Opt. Lett., vol. 38,
no. 14, pp. 2524–2527, 2013.

[8] D. L. Donoho, “For most large underdetermined systems of linear equa-
tions the minimal l1-norm solution is also the sparsest solution,” Commun.
Pure Appl. Math., vol. 59, no. 6, pp. 797–829, 2006.

[9] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[10] S. Foucart and H. Rauhut, A Mathematical Introduction to Compres-
sive Sensing (Applied and Numerical Harmonic Analysis), 1st ed. Basel,
Switzerland: Birkhäuser, 2013.

[11] L. Williams, G. Nehmettallah, and P. P. Banerjee, “Digital tomographic
compressive holographic reconstruction of three-dimensional objects in
transmissive and reflective geometries,” Appl. Opt., vol. 52, no. 8,
pp. 1702–1710, 2013.

[12] D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive
holography,” Opt. Express, vol. 17, no. 15, pp. 13040–13049, 2009.

[13] K. Choi et al., “Compressive holography of diffuse objects,” Appl. Opt.,
vol. 49, no. 34, pp. H1–H10, 2010.

[14] J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate
compressive holographic microscopic tomography,” Opt. Express, vol. 19,
no. 8, pp. 7289–7298, 2011.

[15] A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-
generated holograms by multiple wavefront recording plane method with
occlusion culling,” Opt. Express, vol. 23, no. 17, pp. 22149–22161,
2015.

[16] R. Horisaki, Y. Ogura, M. Aino, and J. Tanida, “Single-shot phase imag-
ing with a coded aperture,” Opt. Lett., vol. 39, no. 22, pp. 6466–6469,
2014.

[17] R. Horisaki, R. Egami, and J. Tanida, “Experimental demonstration of
single-shot phase imaging with a coded aperture,” Opt. Express, vol. 23,
no. 22, pp. 28691–28697, 2014.

[18] T. Egami, R. Horisaki, L. Tian, and J. Tanida, “Relaxation of mask design
for single-shot phase imaging with a coded aperture,” Appl. Opt., vol. 55,
no. 8, pp. 1830–1837, 2016.

[19] C. Schretter et al., “Compressed digital holography: From micro towards
macro,” Proc. SPIE, vol. 9971, 2016, Art. no. 99710V.

[20] Y. Rivenson and A. Stern, “Conditions for practicing compressive fresnel
holography,” Opt. Lett., vol. 36, no. 17, pp. 3365–3367, 2011.

[21] M. Liebling, T. Blu, and M. Unser, “Fresnelets: New multiresolution
wavelet bases for digital holography,” IEEE Trans. Image Process., vol. 12,
no. 1, pp. 29–42, Jan. 2003.

[22] S. Bettens, H. Yan, S. Bundervoet, C. Schretter, A. Dooms, and
P. Schelkens, “Reconstruction resilience to subsampling in compressive
Fresnel holography,” in Proc. Digit. Holography 3-D Imag. Meeting, 2015,
Paper DT1A.3.

[23] S. Bettens, H. Yan, D. Blinder, H. Ottevaere, C. Schretter, and P.
Schelkens, “Studies on the sparsifying operator in compressive dig-
ital holography,” Opt. Express, vol. 25, no. 16, pp. 18656–18676,
2017.

[24] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of block-
sparse signals with an optimal number of measurements,” IEEE Trans.
Signal Process., vol. 57, no. 8, pp. 3075–3085, Aug. 2009.

[25] S. Silver, “Microwave aperture antennas and diffraction theory,” J. Opt.
Soc. Amer., vol. 52, no. 2, pp. 131–139, 1962.

[26] D. Voelz, Computational Fourier Optics: A MATLAB Tutorial. Belling-
ham, WA, USA: SPIE Press, 2011.

[27] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[28] J. A. Tropp, “Just relax: Convex programming methods for identify-
ing sparse signals in noise,” IEEE Trans. Inf. Theory, vol. 52, no. 3,
pp. 1030–1051, Mar. 2006.

[29] G. M. Fung and O. L. Mangasarian, “Equivalence of minimal �0 - and
�p -norm solutions of linear equalities, inequalities and linear programs
for sufficiently small p,” J. Optim. Theory Appl., vol. 151, no. 1, pp. 1–10,
2011.

[30] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The convex
geometry of linear inverse problems,” Found. Comput. Math., vol. 12,
no. 6, pp. 805–849, 2012.

[31] D. L. Donoho, “High-dimensional centrally symmetric polytopes with
neighborliness proportional to dimension,” Discrete Comput. Geometry,
vol. 35, no. 4, pp. 617–652, 2006.

[32] D. L. Donoho and J. Tanner, “Precise undersampling theorems,” Proc.
IEEE, vol. 98, no. 6, pp. 913–924, Jun. 2010.

[33] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms
for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106, no. 45,
pp. 18914–18919, 2009.

[34] J. F. C. Mota, N. Deligiannis, and M. Rodrigues, “Compressed sens-
ing with side information: Geometrical interpretation and performance
bounds,” in Proc. IEEE Global Conf. Signal Inf. Process., Symp. Inf.
Process. Big Data, 2014, pp. 512–516.

[35] J. F. C. Mota, L. Weizman, N. Deligiannis, Y. Eldar, and M. Rodrigues,
“Reference-based compressed sensing: A sample complexity approach,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2016, pp. 4687–
4691.

[36] J. F. C. Mota, N. Deligiannis, and M. R. D. Rodrigues, “Compressed
sensing with prior information: Strategies, geometry, and bounds,” IEEE
Trans. Inf. Theory, vol. 63, no. 7, pp. 4472–4496, Jul. 2017.

[37] H. Van Luong, J. Seiler, A. Kaup, S. Forchhammer, and N. Deligiannis,
“Measurement bounds for sparse signal reconstruction with multiple side
information,” arXiv:1605.03234.v2, 2016.

[38] E. J. Candès and Y. Plan, “A probabilistic and RIPless theory of com-
pressed sensing,” IEEE Trans. Inf. Theory, vol. 57, no. 11, pp. 7235–7254,
Nov. 2011.

[39] M. Unser, “On the optimality of ideal filters for pyramid and wavelet
signal approximation,” IEEE Trans. Signal Process., vol. 41, no. 12,
pp. 3591–3596, Dec. 1993.

[40] M. Unser, “Ten good reasons for using spline wavelets,” Proc. SPIE,
vol. 3169, pp. 422–431, 1997.

[41] Y. Rivenson and A. Stern, “Compressed imaging with a separable sens-
ing operator,” IEEE Signal Process. Lett., vol. 16, no. 6, pp. 449–452,
Jun. 2009.

[42] B. Adcock, A. C. Hansen, C. Poon, and B. Roman, “Breaking the coher-
ence barrier: A new theory for compressed sensing,” Forum of Mathemat-
ics, Sigma, vol. 5, no. e4, 84 pp., 2017.

[43] A. Papoulis, Signal Analysis. New York, NY, USA: McGraw-Hill, 1977.
[44] H. Monajemi, J. Sina, M. Gavish, Stat 330/CME 362 Collaboration, and

D. L. Donoho, “Deterministic matrices matching the compressed sensing
phase transitions of gaussian random matrices,” Proc. Nat. Acad. Sci.
USA, vol. 110, no. 4, pp. 1181–1186, 2013.

[45] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.
New York, NY, USA: Academic, 2009.

[46] J. B. Buckheit and D. L. Donoho, “WaveLab and reproducible research,”
in Wavelets and Statistics (Lecture Notes in Statistics), vol. 103. New
York, NY, USA: Springer, 1995, pp. 55–81.



604 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 3, NO. 4, DECEMBER 2017
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