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Abstract—This paper presents a new Bayesian spectral unmix-
ing algorithm to analyze remote scenes sensed via sparse multispec-
tral Lidar measurements. To a first approximation, in the presence
of a target, each Lidar waveform consists of a main peak, whose
position depends on the target distance and whose amplitude de-
pends on the wavelength of the laser source considered (i.e., on
the target reflectivity). Besides, these temporal responses are usu-
ally assumed to be corrupted by Poisson noise in the low photon
count regime. When considering multiple wavelengths, it becomes
possible to use spectral information in order to identify and quan-
tify the main materials in the scene, in addition to estimation of
the Lidar-based range profiles. Due to its anomaly detection ca-
pability, the proposed hierarchical Bayesian model, coupled with
an efficient Markov chain Monte Carlo algorithm, allows robust
estimation of depth images together with abundance and outlier
maps associated with the observed three-dimensional scene. The
proposed methodology is illustrated via experiments conducted
with real multispectral Lidar data acquired in a controlled envi-
ronment. The results demonstrate the possibility to unmix spectral
responses constructed from extremely sparse photon counts (less
than 10 photons per pixel and band).

Index Terms—Anomaly detection, depth imaging, Markov chain
Monte Carlo, multispectral Lidar, robust spectral unmixing.

I. INTRODUCTION

LASER altimetry (or Lidar) is an acknowledged tool for
extracting spatial structure from three-dimensional (3D)

scenes. Using time-of-flight to create a distance profile, signal
analysis can recover, for instance, tree and canopy heights, leaf
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area indices and ground slope by analyzing the reflected pho-
tons from a target. Conversely, passive multispectral (MSI) and
hyperspectral images (HSI) are widely used to extract spec-
tral information about the scene which can provide useful pa-
rameters about the composition and health condition of the
canopy. The most natural method to extract spatial and spec-
tral information from sensed scenes is to couple Lidar data
and multi/hyperspectral images [1], [2]. Although the fusion of
Lidar data and HSIs can improve scene characterization, data
synchronization issues in space (alignment, resolution) and time
(dynamic scene, change of observation conditions, etc.) make
this problematic and these are still open issues. For these rea-
sons, multispectral Lidar (MSL) has recently received attention
from the remote sensing community for its ability to extract
both spatial and spectral information from 3D scenes. The key
advantage of MSL is the ability to potentially provide infor-
mation on the full 3D distribution of materials, especially for
scenes including semi-transparent objects (e.g., vegetation or
fences). When the Lidar return signal is sufficiently strong the
received light field will exhibit easily separable spatial and spec-
tral peaks corresponding to the different surfaces and material
properties. In this case, classical methods for 3D reconstruction
can be applied [3]–[6]. For instance, in [4], for each waveform,
a series of peak positions and reflectivity parameters is esti-
mated iteratively by identifying and subtracting sequentially the
peak with the highest amplitude, until a pre-defined threshold is
reached. The pixels and spectral bands are processed indepen-
dently, leading to one point cloud per spectral band. In [3], [5],
a Bayesian approach is adopted to first estimate the number and
positions of the peaks (from a single band) and these parameters
are then used to estimate the reflectivity parameters associated
with the remaining spectral bands. Another motivation for MSL
is that HSIs, even when fully synchronized, can only integrate
the spectral response along the path of each optical ray, and
cannot measure the spectral response as a function of distance,
e.g., depth into a forest canopy.

In [5]–[7], spectral unmixing techniques were developed to
analyze 3D scenes composed of multi-layered objects, assum-
ing that the spectral signatures of the materials composing the
scenes were known and assuming linear mixing processes. In
contrast to [5], [7], the unmixing method proposed in [6], which
consists of a Metropolis-within-Gibbs sampler, assumes that
there is either a single peak (whose position is estimated) or
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multiple peaks whose positions are known. This method has
been extended in [8] to account for and identify possible devi-
ations from the classical linear mixing model (LMM) used to
estimate the amount/abundances of each endmember (assumed
known) present in the scene. In this work, we further improve
the robust unmixing method of [8] in order to enhance abun-
dance and range profile estimation when there are extremely
low photon counts per pixel, which is relevant to situations
where the acquisition time is very restricted, e.g., in extreme
low light imaging. Specifically, we propose a new abundance
prior model which promotes smooth abundance maps and we
propose a depth prior model that promotes piece-wise homo-
geneous depth profiles. As will be shown in Section VI of this
paper, by accounting for the intrinsic spatial organization of nat-
ural images, our algorithm provides significantly better ranging
and unmixing results when compared to pixel-wise estimation
algorithms, in particular when considering Lidar with extremely
low photon counts.

Single-photon Lidar MSL systems usually record, for each
pixel/region of the scene, a histogram of time delays between
emitted laser pulses and the detected photon arrivals. Due to the
low number of photon arrivals detected, Poisson noise models
are more appropriate for single-photon MSL data than Gaussian
noise models that are typically used for HSIs in the high pho-
ton density regime. Such models are particularly relevant for
challenging scenarios where the recorded waveforms consists
of very few photons, i.e., less than 10 on average across the
image pixels for each wavelength, which occurs when reducing
the overall acquisition time. In this paper, we demonstrate the
ability of robust Bayesian Poisson unmixing methods to simul-
taneously estimate endmember fractions, extract depth informa-
tion, and detect anomalous regions that are poorly represented
by the assumed nominal LMM. The performance is illustrated
on an experimental testbed with clay objects of different colours
and an MSL imaging system (33 wavelengths ranging from
500 nm to 820 nm), under favourable observation conditions.

The benefit of Bayesian approaches is that prior distributions
can be chosen for the unknown parameters of the model, effec-
tively smoothing the unmixing solution through regularization.
For example, a total-variation (TV) regularization is proposed
in [9], [10] to regularize the depth estimation problem and
gamma Markov random fields (MRFs) are used to model the
spatial dependencies affecting the unknown abundance maps.
As illustrated in [6], such Markovian models can be used to
promote local spatial smoothness of the estimated abundances
while providing enough flexibility to handle sharp transitions.
Gamma-MRFs have the nice property of leading to conjugate
prior models under Poisson noise assumption.

To allow for moderate deviations from the linear mixing
model we propose a sparse anomaly model within a hierarchical
Bayesian framework. Such anomalies can occur in the presence
of scarcely represented materials or when there are local vari-
ations in the main spectral signatures of the scene. To capture
these anomalies, we use a 3D Ising model for sparse devia-
tions from the standard LMM. Although the proposed method
is able to detect deviations from the LMM that are not necessar-
ily sparse (such as endmember variability or mis-specification

and nonlinear mixtures), such deviations are likely to yield lo-
cally biased abundance estimates. Nonetheless, the method that
we propose can potentially be used to identify pixels for which
more complex mixing models might be used.

The proposed prior models are incorporated into a hierarchi-
cal Bayesian model and the joint posterior distribution of these
parameters is derived using Bayes’ theorem. A simulation-based
method is then developed to estimate the unknown parameters.
More precisely, we construct a stochastic gradient Markov chain
Monte Carlo (SG-MCMC) algorithm to jointly generate samples
according to the posterior of interest and adjust the MRF hy-
perparameters during the burn-in period of the sampler. This
strategy has several important advantages in the context of
estimating MRF hyperparameters whose conditional distribu-
tions are highly complex and have no closed-form expres-
sions. Firstly, it allows for the automatic adjustment of the
hyperparameters for each dataset and, secondly it has a compu-
tational cost that is several times lower than that of competing
approaches, such as those that include the hyperparameters in
the Bayesian model through hierarchical priors. The proposed
Bayesian approach produces a predictor of optimal estimator
performance (through the derivation of posterior measures of
uncertainty) while reducing potential convergence issues arising
from the non-concavity of the log-posterior (due to the presence
of anomaly terms). More sophisticated optimization techniques,
e.g., variational methods, are worth additional study but are out-
with the scope of this current paper.

The remainder of the paper is organized as follows.
Section II introduces the observation model associated with
MSL returns for a single-layered object to be analyzed.
Section III presents the hierarchical Bayesian model associated
with the robust spectral unmixing problem considered and the
associated posterior distribution. Section IV describes the SG-
MCMC method used to sample from the posterior of interest
and subsequently approximate appropriate Bayesian estimators.
The relation between the proposed model and the Poisson Fac-
tor Analysis is addressed in Section V. Results of experiments
conducted on real MSL data are shown and discussed in Section
VI and conclusions are reported in Section VII.

II. PROBLEM FORMULATION

This section introduces the statistical model associated with
MSL returns for a single-surface reflecting object which will
be used in Section III for robust spectral unmixing of MSL
data. We consider a 4-D array Y of Lidar waveforms of di-
mension Nrow × Ncol × L × T , where Nrow and Ncol stands for
the number of rows and columns of the regular spatial sam-
pling grid (in the transverse plane), L is the number of spec-
tral bands or wavelengths used to reconstruct the scene and T
is the number of temporal (corresponding to range) bins. Let
yi,j,� = [Y]i,j,�,t = [yi,j,�,1 , . . . , yi,j,�,T ]T be the Lidar wave-
form obtained in the pixel (i, j) using the �th wavelength. The
element yi,j,�,t is the photon count within the tth bin of the �th
spectral band considered. Due to the design of the proposed
experiments (performed indoors in this work), and to simplify
the estimation problem, we further assume that ambient noise
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counts (e.g., from additional illumination sources or dark counts
from the detector) can be neglected. Thus, for each pixel, the
detected photons (originally emitted by the laser sources) only
result from direct path reflections onto the surface of the object
of interest. Moreover, we assume that the laser beam (for each
pixel) encounters a single surface which is assumed to be lo-
cally orthogonal to the beam direction. This is typically the case
for short to mid-range (up to dozens of meters) depth imaging
where the divergence of the laser source(s) can be neglected. Let
di,j be the position of an object surface at a given range from
the sensor, whose mean spectral signature (observed at L wave-
lengths) is denoted as λi,j = [λi,j,1 , . . . , λi,j,L ]T . According to
[11], [12], each photon count yi,j,�,t is assumed to be drawn
from the following Poisson distribution

yi,j,�,t |λi,j,� , ti,j ∼ P (λi,j,�gi,j,�(t − ti,j )) (1)

where gi,j,�(·) is the photon impulse response, evaluated at dis-
crete time positions as discussed in Section III-B and whose
shape can differ between wavelength channels and pixel loca-
tions. In (1), ti,j is the characteristic time-of-flight of photons
emitted by a pulsed laser source and reaching the detector af-
ter being reflected by a target at range di,j (di,j and ti,j are
linearly related in free-space propagation). Moreover, the im-
pulse responses {gi,j,�(·)} are assumed to be known, as occurs
when they can be accurately estimated during imaging system
calibration. We further assume that the spectral signatures of
the scene surfaces can be decomposed as linear mixtures of R
known spectral signatures mr (also referred to as endmembers
and gathered in the L × R matrix M = [m1 , . . . ,mR ]) possi-
bly corrupted by sparse anomalies (or deviations from the linear
mixture), that is

λi,j = Mai,j + ri,j , ∀i, j, (2)

where ai,j = [ai,j,1 , . . . , ai,j,R ]T contains the abundances of
the R endmembers in the pixel (i, j) and ri,j ∈ RL

+ is a
sparse vector that captures anomalies that do not fit the LMM
λi,j = Mai,j . As explained in [13], [14], these anomalies in the
resulting robust LMM can be due to actual outliers/corrupted
data, nonlinear spectral mixtures or intrinsic endmember vari-
ability over the spectral bands. Note that due to physical con-
siderations the unknown abundance vectors {ai,j}i,j can be
assumed to have positive entries. It is important to recall that, in
this work, we consider applications where the observed objects
consist of a single visible surface per pixel. We do not consider
cases where the photons can penetrate through objects (e.g.,
semi-transparent materials for which we would like to infer the
internal composition) or be reflected from multiple surfaces.
This assumption allows the spectral unmixing problem to be
reduced to two spatial dimensions, which will be extended to
distributed targets in future work. Moreover, we consider a sin-
gle spectral signature per material, which does not depend on the
object orientation with respect to the imaging system. Should
the material signatures change significantly (due to the surface
orientation or its intrinsic spectral variability), the changes are
expected to be captured by the vectors ri,j . The problem ad-
dressed is to jointly estimate the range of the targets (for all
the image pixels) and to solve the robust spectral unmixing

problem (e.g., estimating the abundance vectors and identifying
the pixels corrupted by anomalies). The next section introduces
the Bayesian model for this problem.

III. BAYESIAN MODEL

A. Likelihood

Assuming that the MSL waveforms yi,j = {yi,j,�,t}�,t asso-
ciated with a given pixel (i, j) result from photon reflection from
a single surface associated with the spectrum λi,j and accord-
ing to (1), the likelihood associated with the pixel (i, j) can be
expressed as

f(yi,j |λi,j , ti,j ) =
∏

�,t

fP(yi,j,�,t ; λi,j,�gi,j,�(t − ti,j )), (3)

when it is assumed that the detected photon counts/noise realiza-
tions, conditioned on their mean in all channels/spectral bands,
are conditionally independent. Note that in (3), fP(·; λ) denotes
the probability mass function of the Poisson distribution with
mean λ. Considering that the noise realizations in the different
pixels are also conditionally independent, the joint likelihood
can be expressed as

f(Y|Λ,T) =
∏

i,j

f(yi,j |λi,j , ti,j ), (4)

where Λ = {λi,j}i,j and T is a matrix gathering the target
ranges.

B. Prior distributions

1) Range parameters: Each target position is a discrete vari-
able defined on T = {tmin , . . . , tmax}, such that 1 ≤ tmin ≤
tmax ≤ T . In this paper we set (tmin , tmax) = (301, T − 300)
and the temporal resolution of the grid is set to the resolu-
tion of the single-photon detection (i.e., 2 picoseconds (ps) in
Section VI). As in [12], to account for the spatial correla-
tions between the neighbouring pixels, we propose to use a
Markov random field as a prior distribution for ti,j given its
neighbours TV(i,j ) , i.e., f(ti,j |T\(i,j )) = f(ti,j |TV(i,j )) where
V(i, j) is the depth neighbourhood of the pixel (i, j), TV(i,j ) =
{ti ′,j ′ }(i′,j ′)∈V(i,j ) and T\(i,j ) = {ti ′,j ′ }(i′,j ′) �=(i,j ) . More pre-
cisely, we propose the following discrete MRF

f(T|ε) =
1

G(ε)
exp [−εφ(T)] (5)

where ε ≥ 0 is a parameter tuning the amount of correlation
between pixels, G(ε) is a normalization (or partition) constant
and where φ(·) is an arbitrary cost function modeling correla-
tion between neighbours. In this work we propose to use the
following cost function

φ(T) =
∑

i,j

∑

(i′,j ′)∈V(i,j )

|ti,j − ti ′,j ′ |, (6)

which corresponds to a total-variation regularization [9], [10]
promoting piecewise constant depth image. Moreover, the
higher the value of ε, the more correlated the neighboring pix-
els. Several neighborhood structures can be employed to define
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V(i, j); here, a four pixel structure (1-order neighbourhood) will
be considered in the rest of the paper for the depth parameters.

To illustrate the effect of this spatial regularization of the
depth profile, we also consider an alternative depth prior model
constructed from independent uniform priors

p(ti,j = t) =
1
T ′ , t ∈ T , (7)

where T ′ = card(T ).
2) Material Abundances: It follows from (3) that gamma

distributions are conjugate priors for the unknown abundances
ai,j,r (the resulting conditional distributions are mixtures of
gamma distributions, see [12] for details). Consequently, we
propose such gamma priors for these parameters. Note that such
priors also ensure the positivity of the proposed estimator of
abundances. In a similar manner to [12], we assign ai,j,r the
following gamma prior

ai,j,r ∼ G
(

cr ,
āi,j,r

cr

)
(8)

where āi,j,r > 0 is a local parameter related to the prior mean
of ai,j,r and cr > 0 is a global parameter (i.e, one per endmem-
ber) which controls the shape of the distribution tails and thus
the prior deviation of ai,j,r from āi,j,r . Hierarchical Bayesian
models generally allow the construction of elaborate prior mod-
els in which parameters can be related through the introduction
of additional parameters which generally belong to higher lev-
els in the Bayesian hierarchical model. For instance, setting
āi,j,r = ār in (8) reduces to choosing the same prior, charac-
terized by (cr , ār ), for all abundances associated with the rth
endmember. Conversely, here we specify (8) to reflect the prior
belief that abundances exhibit spatial correlations. In particular,
due to the spatial organization of images, we expect the values
of ai,j,r to vary smoothly from one pixel to another. In order
to model this behaviour, we specify āi,j,r such that the result-
ing prior for the abundances associated with each endmember
Ar = {ai,j,r}i,j is a hidden gamma-MRF [15].

More precisely, we introduce R auxiliary matrices Γr of size
(Nrow + 1) × (Ncol + 1), with elements γi,j,r ∈ R+ and define
bipartite conditional independence graphs between Ar and Γr

such that each ai,j,r is connected to four neighbour elements
of Γr and vice-versa. This 1st order neighbourhood structure is
depicted in Fig. 1, where we point out that any given ai,j,r and
ai+1,j,r are 2nd order neighbours via γi+1,j,r and γi+1,j+1,r .
Following the general gamma-MRF model proposed in [15],
and specified here by the neighbourhood structure depicted in
Fig. 1, we assign a gamma-MRF prior for each (Ar ,Γr ), and
obtain the following joint priors for (Ar ,Γr )

f(Ar ,Γr |cr ) =
1

G(cr )

∏

(i,j )∈VA r

a
(cr −1)
i,j,r

×
∏

(i′,j ′)∈VΓ r

(γi ′,j ′,r )
−(cr +1)

×
∏

((i,j ),(i′,j ′))∈E
exp

(−crai,j,r

4γi ′,j ′,r

)
, (9)

Fig. 1. Proposed 1st order gamma-MRF neighborhood structure for the
abundances {ai,j,r }, ∀(i, j) ∈ VA r and ∀r ∈ {1, . . . , R}. We set ai,j,r =
0.01, ∀(i, j) /∈ VA r .

where VA r
= {1, . . . , Nrow} × {1, . . . , Ncol}, VΓr

= {1, . . . ,
Nrow + 1} × {1, . . . , Ncol + 1}, and the edge set E consists of
pairs ((i, j), (i′, j′)) representing the connection between ai,j,r

and γi ′,j ′,r . It can be seen from (9) that

ai,j,r |Γr , cr ∼ G
(

cr ,
āi,j,r (Γr )

cr

)
(10a)

γi,j,r |Ar , cr ∼ IG (cr , crβi,j,r (R)) (10b)

where

āi,j,r (Γ) = 4
(
γ−1

i,j,r + γ−1
i−1,j,r + γ−1

i,j−1,r + γ−1
i−1,j−1,r

)−1

βi,j,r (R) = (ai,j,r + ai+1,j,r + ai,j+1,r ai+1,j+1,r ) /4.

Notice that we denote explicitly the dependence of the
gamma-MRFs on the value of {cr}r > 0, which act as regu-
larization parameters that control the amount of abundance spa-
tial smoothness enforced by each gamma-MRF (and which can
differ among endmembers). Following an empirical Bayesian
approach, the value of each cr will remain unspecified and will
be adjusted automatically during the inference procedure using
maximum marginal likelihood estimation (see [12] for details).

3) Anomaly model: As in [13], [14], the outliers are assumed
to be spatially and spectrally sparse, i.e., for most of the pix-
els and spectral bands there are no outliers. To model outlier
sparsity, we factor each outlier vector as

ri,j = zi,j 	 xi,j , (11)

where zi,j = [zi,j,1 , . . . , zi,j,L ]T ∈ {0, 1}L is a binary label
vector, xi,j ∈ RL and 	 denotes the Hadamard (term-wise)
product. This decomposition allows one to decouple the loca-
tion of the sparse components from their values. More precisely,
zi,j,n = 1 if an outlier is present in the �th spectral band of the
pixel (i, j) with value equal to ri,j,� = xi,j,� .



662 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 3, NO. 4, DECEMBER 2017

Assuming that the potential anomalies a priori share the same
statistical properties, we consider the following independent
conjugate gamma priors

xi,j,� |α, ν ∼ G(xi,j,� ;α, ν), ∀i, j, �, (12)

where (α, ν) are arbitrarily fixed parameters. In general it is
difficult to empirically estimate outlier hyperparameters due
to the fact that in most applications, outliers are by definition
rare events, ocurring in only a few pixels, and the observed
waveforms are have unknown sparsity levels. Setting (α, ν) so
that E [xi,j |(α, ν)] = αν is too high might lead to poor detection
performance (outliers not detected), in particular in the presence
of low amplitude outliers. Conversely, setting (α, ν) so that
E [xi,j |(α, ν)] = αν is too small might lead to high probabilities
of false alarm. However, in our experiments (See Section VI),
we did not observe significant performance degradation when
varying (α, ν) over the range considered in Section VI.

For many applications, the locations of outliers are likely
to be spectrally correlated (e.g., water absorption bands) and/or
spatially correlated (weakly represented components, local non-
linear mixtures,...). An effective way to take correlated out-
liers/nonlinear effects into account is to use a Markov random
field (MRF) as a joint prior for the anomaly labels in Z =
{zi,j,�}i,j,� . In this paper, we use the Ising model proposed
in [14] for robust linear unmixing of HSIs to define the prior
model for Z. MRFs have the property that the conditional distri-
bution of a label zi,j,� given the other labels of the image equals
the conditional distribution of this label vector given only its
neighbors, i.e., P(zi,j,� |Z\zi , j , �

) = P(zi,j,� |ZVi , j , �
), where Vi,j,�

is the index set of the neighbors of zi,j,� , Z\zi , j , �
denotes the

matrix Z whose element zi,j,� has been removed and ZVi , j , �
is

the subset of Z composed of the elements whose indexes be-
long to Vi,j,� . In this study, we consider that the spatial and
spectral correlations can be different and thus consider two dif-
ferent neighborhoods. We decompose the neighborhood Vi,j,�

as Vi,j,� = VL
i,j,� ∪ VN

i,j,�,n where VN
i,j,� (resp. VL

i,j,�) denotes the
spatial (resp. spectral) neighborhood of zi,j,� . Specifically, we
consider an Ising model that can be expressed as

P(Z|β′) =
1

B(β′)
exp

[
βT φ(Z) + φ0 (Z, β0)

]
(13)

where β = [βN , βL ]T , β′ = [βT , β0 ]T and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φL (Z) =
∑

i,j,�

∑
zi , j , � ′ ∈VL

i , j , �
δ(zi,j,� − zi,j,� ′),

φN (Z) =
∑

i,j,�

∑
zi ′ , j ′ , � ∈VN

i , j , �
δ(zi,j,� − zi,j,�),

φ(Z) = [φL (Z) , φN (Z)]T ,

φ0 (Z, β0) = β0
∑

i,j,�(1 − zi,j,�) + (1 − β0)
∑

i,j,� zi,j,� ,

and δ(·) denotes the Kronecker delta function. Moreover,
βN > 0 and βL > 0 are hyperparameters that control the spatial
and spectral granularity of the MRF and 0 ≤ β0 ≤ 1 is an addi-
tional parameter that models the probability of having outliers
in the image. Specifically, the higher the value of β0 , the lower is
the probability of outliers in the data. In a similar fashion to the
gamma-MRFs parameters {cr} in (10), the Ising model hyper-
parameters will be adjusted with a reduced computational cost

Fig. 2. Directed acyclic graph representing the proposed hierarchical Bayesian
model. Fixed quantities appear in solid line boxes and quantities adjusted via
maximum marginal likelihood estimation appear in dashed line boxes.

via maximum marginal likelihood estimation. Different spectral
and spatial neighbourhoods can be used in (13). In this paper,
we consider a 4-neighbour 2D structure to account for the spa-
tial correlation and a 2-neighbour 1D structure for the spectral
dimension.

C. Joint Posterior Distribution

From the joint likelihood and prior model specified in
Sections III-A and III-B, we can now derive the joint posterior
distribution for T,A = {Ar} ,Γ = {Γr} ,Z, and X = {xi,j},
given the observed waveforms Y, and the value of the two sets of
hyperparameters Φ = (α, ν) and θ = (β′, ε, c1 , . . . , cR ). Note
that the hyperparameters are organized into two groups: Φ are
the fixed variables and θ are those that will be adjusted. Using
Bayes’ theorem, and assuming prior independence between T,
(A,Γ), X and Z, the joint posterior distribution associated with
the proposed Bayesian model is given by

f(T,A,Γ,Z,X,θ|Y,Φ,θ)

∝ f(Y|T,A,Z,X)f(A,Γ|c)f(T|ε)f(X|α, ν)f(Z|β′)

(14)

with c = [c1 , . . . , cR ]T . The directed acyclic graph (DAG) sum-
marizing the structure of the proposed Bayesian model is de-
picted in Fig. 2.

IV. ESTIMATION STRATEGY

The posterior distribution (14) captures all of the information
about the unknowns given the observed data and the priors on
the unknown parameters. To perform joint depth estimation and
spectral unmixing of the MSL data, we use the following four
different Bayesian estimators: 1) the minimum mean square
error estimator (MMSE) of the abundances, 2) the marginal
maximum a posteriori (MMAP) estimator of the anomaly labels,
3) conditioned on the estimated outliers location, the MMSE
estimator of the anomaly values (in a similar fashion to [16])
and 4) conditioned on the estimated outliers and abundances,
the MMAP estimator of the target ranges. Note that we use
the MMAP estimators for the target ranges and labels, as this
Bayesian estimator is particularly well adapted for estimation
of discrete parameters.

In order to approximate these estimators, we propose a
Markov chain Monte Carlo method to generate samples
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according to the joint posterior

f(T,A,Γ,Z,X|Y,Φ, θ̂), (15)

where θ̂ denotes the maximum marginal likelihood estimator
of the Ising and gamma-MRFs regularisation hyperparameter
vector θ given the observed data Y, i.e.,

θ̂ = argmax
θ∈Θ

f(Y|Φ,θ), (16)

where Θ is the admissible set for θ. This can be viewed as
an empirical Bayes approach for specifying θ where hyperpa-
rameters with unknown values are replaced by point estimates
computed from observed data (as opposed to being fixed a pri-
ori or integrated out of the model by marginalisation) [17]. This
strategy has several important advantages for variables such as
θ whose conditional distributions are intractable. In particu-
lar, it has significantly lower computational cost compared to
that of competing approaches, such as ones that marginalize the
posterior (15) over θ during the inference procedure [18].

To sample from the posterior (15), we use a Metropolis-
within-Gibbs sampler that includes Hamiltonian Monte Carlo
(HMC) updates [19]. This sampling procedure generates
sequentially the unknown parameters from their estimated
conditional distributions. The corresponding update steps are
specified in the remainder of this section.

A. Sampling the Depth Parameters

Sampling the target ranges can be achieved by sampling se-
quentially each depth from its conditional distribution

f(ti,j |yi,j ,λi,j ,TV(i,j )θ) (17)

i.e., by drawing randomly from discrete (with finite support T )
distributions. In a similar fashion to [12], we use a Gibbs sampler
implemented using a colouring scheme such that many depths
can be updated in parallel (2 steps required when considering a
1-order neighborhood structure). Note that if the prior model in
(7) is used instead of (5), it can be seen for (14) that

f(T|Y,A,Γ,Z,X,Φ,θ) =
∏

i,j

f(ti,j |yi,j ,λi,j ) (18)

with f(ti,j |yi,j ,λi,j ) ∝ f(yi,j |ti,j ,λi,j )/T ′. Thus, all the depth
parameters can be updated independently and simultaneously.

B. Sampling the Anomaly Labels

From (14), we obtain

f(zi,j,� = k|Y,A,X,Z\zi , j , �
,β′) ∝ π̃

(k)
i,j,� , ∀(i, j, �), (19)

where k ∈ {0, 1},

log
(
π̃

(k)
i,j,�

)
=

T∑

t=1

log
(
f(yi,j,�,t |λ(k)

i,j,� , ti,j )
)

−βT φ(Z) − φ0 (Z, β0) , (20)

and λ
(k)
i,j,� = m�,:ai,j + kxi,j,� with m�,: the �th row of M.

Consequently, the label zi,j,� can be drawn from its conditional

distribution by drawing randomly from {0, 1} with probabilities
given by

f(zi,j,� = k|Y,A,X,Z\zi , j , �
,β′) =

π̃
(k)
n,�

π̃
(0)
i,j,� + π̃

(1)
i,j,�

. (21)

In our experiments we incorporated a Gibbs sampler imple-
mented using a colouring scheme such that labels which are not
direct neighbours can be updated in parallel. It is important to
mention here that the main computation cost associated with the
label updates arises from the computation of the sum over T in
(20), especially from large values of T (e.g., T = 3000 in the
experiments presented in Section VI). Fortunately, this sum can
be written (up to an addition constant that does not depend on
zi,j,�) as

ỹi,j,� log (m�,:ai,j + kxi,j,�) − (m�,:ai,j + kxi,j,�) g̃i,j,� ,

where ỹi,j,� =
∑T

t=1 yi,j,�,t and g̃i,j,� =
∑T

t=1 gi,j,�(t − ti,j )
are quantities that only need to be computed once (before run-
ning the sampler) and stored in a look-up table, as they do not
depend on the unknown model parameters (g̃i,j,� can be evalu-
ated in advance for any value of ti,j ∈ T ).

C. Sampling the Abundances

It is easy to show that
f(A|Y,T,Γ,Z,X,Φ,θ)

=
∏

i,j

f(ai,j |yi,j , ti,j ,Γ,X,Z, c), (22)

i.e., the abundances of the NrowNcol pixels can be updated
independently. Here we update the elements of each vector
ai,j simultaneously using a constrained Hamiltonian Monte
Carlo update [16], [19] for several reasons. First, the intrin-
sic correlation between the spectral signatures in M (espe-
cially when considering materials spectrally similar) imposes
strong correlations between the elements of ai,j , which slows
down the convergence of algorithms updating the abundances
sequentially. Second, by accounting for the local curvature of
f(ai,j |yi,j , ti,j ,Γ,X,Z, c), such an approach usually yields
better convergence and mixing properties than standard ran-
dom walks. Note that it can be shown that when cr > 1,∀r, the
conditional distribution f(ai,j |yi,j , ti,j ,Γ,X,Z, c) is strictly
log-concave, which makes the use of gradient-based updating
schemes particularly well adapted. These constraints on the reg-
ularization parameters cr can easily be incorporated within the
estimation process by specifying Θ in (16) accordingly and pro-
jecting the updated parameters onto Θ at the end of the update
step (this step is not detailed here but the interested reader is
invited to consult [12], [14], [17] for further details).

D. Sampling the Anomaly Values X

As the spatial/spectral organization of the anomalies is
only encoded via the Potts model (13), it can be shown that
f(X|Y,A,T,Γ,Z,Φ,θ)

=
∏

i,j,�

f(xi,j,� |yi,j , ti,j ,ai,j , α, ν, zi,j,�). (23)
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Algorithm 1: RSU-MSL algorithm.

1: Fixed input parameters: Endmember matrix M, (α, ν)
number of burn-in iterations Nbi, total number of
iterations NMC

2: Initialization (u = 0)
• Set T(0) ,A(0) ,Γ(0) ,X(0) ,Z(0) ,θ(0)

3: Iterations (1 ≤ u ≤ NMC)
4: Sample A(u) from (22)
5: Sample Γ(u) from (10)
6: for i = 1 : Nrow do
7: for j = 1 : Ncol do
8: Sample t

(u)
i,j from (17) or (18)

9: for � = 1 : L do
10: Sample z

(u)
i,j,� from (21)

11: end for
12: end for
13: end for
14: Sample X(u) from (23)
15: if u < Nbi then
16: Update θ(u) using [17]
17: else
18: Set θ(u) = θ(u−1)

19: end if
20: Set u = u + 1.

when zi,j,� = 1, the conditional distribution f(xi,j,� |yi,j ,
ti,j ,ai,j , α, ν, zi,j,�) is a non-standard distribution (although
log-concave when α ≥ 1, similarly to the conditional distri-
bution of the abundances), while it reduces to (12) when zi,j,� .
Here, to avoid additional algorithmic complexity associated with
rejection sampling and random walk update schemes, we use
a standard Metropolis-Hastings update for which the proposal
distribution is the prior distribution (12). When zi,j,� = 0, which
is satisfied for most of the elements of X when the anomalies
are indeed sparse, this update allows the candidates to be auto-
matically accepted. In practice, we observed that this updating
approach leads to reasonable acceptance rates when zi,j,� = 1.

E. Sampling the Auxiliary Variables Γ

Simply, as Γ does not appear in (4), sampling the elements of
Γ reduces to sampling from inverse-gamma distributions (10).
Note that due to the structure of the gamma-MRFs considered
(the elements of each matrix Γr are not directly connected),
these updates can be performed in a parallel manner.

The resulting sampler is summarized in Algorithm 1. Its out-
put is a set of NMC samples which are then used to approximate
the Bayesian estimators of interest after sampler burn-in period
which discards the Nbi first samples. Here, the length of the
burn-in period is determined from preliminary runs by visual
inspection of the chains. Although there appear to be nested
loops in Algorithm 1, the labels and target ranges can usually
be grouped such that, within a group of labels or range param-
eters, the variables are conditionally independent and can thus
be updated independently and in a parallel manner. With the

neighbourhood structure used in (6) and (13), only 2 sequential
steps are required to update the binary labels, and the same ap-
plies for the range parameters, thus improving the convergence
speed of the sampler and reducing computation. Moreover, the
Hamiltonian Monte Carlo updates used to sample the abun-
dances further improve the convergence speed of the sampler,
when compared to standard Metropolis-Hastings updates.

V. RELATION TO POISSON FACTOR ANALYSIS

It is interesting to note from (1) that

ỹi,j,� |λi,j,� , ti,j ∼ P (λi,j,� g̃i,j,�) . (24)

In other words, each integrated waveform (summed over the
time bins) for each pixel and wavelength, follows a Poisson dis-
tribution whose mean depends only on the spectral parameters
λi,j,� = m�,:ai,j + ri,j,� , scaled by g̃i,j,� which contains only
information about the range of the target. If we assume that
g̃i,j,� =

∑T
t=1 gi,j,�(t − ti,j ) is constant for all possible values

of ti,j ∈ T (which occurs in practice when there are no trunca-
tions of the impulse responses at the boundaries of (tmin, tmax)),
the problem can be reduced to a more standard spectral
unmixing problem. This unmixing problem is over two spa-
tial and one spectral dimension. If the spatial distortion of the
instrument responses can be neglected, the observation model
can be rewritten

Ỹ ∼ P
(
M̃Ã + R̃

)
(25)

where Ỹ is an L × NrowNcol matrix with elements ỹi,j,� , M̃ cor-
responds to the endmember matrix whose columns have been
scaled by g̃i,j,� , Ã is the reshaped abundance matrix and R̃
is a sparse matrix representing the anomalies. Equation (25) is
closely related to the Poisson Factor analysis (PFA) model [20]
and to the robust non-negative matrix factorization model un-
der a Poisson noise assumption [21]. Unlike in factor analysis,
we assume the endmember matrix M is known. In addition to
the temporal aspect of the problem considered, the proposed
model extends the PFA model from [20] to account for spatial
correlation and the presence of outliers/anomalies. In contrast
to the simulation based method developed in [20] to sample the
posterior and which introduces discrete latent variables to sim-
plify the sampling procedure (most updates are standard Gibbs
steps), we used accept-reject procedures based on constrained
HMC moves. In contrast to [20], where the columns of M̃ were
assumed to be uncorrelated, these columns can be correlated in
the spectral unmixing problem considered in this paper.

VI. EXPERIMENTS

We evaluate the performance of the proposed method applied
to estimation of the depth and the spectral profiles of a 5 × 5 cm
scene (see Fig. 3(a)) composed of different objects made of
opaque polymer clay and mounted on a dark-grey backboard at
a distance of approximately 1.8 m from a time-of-flight scan-
ning sensor. The sensor detects photons using a time-correlated
single photon counting (TCSPC) technique. The transceiver sys-
tem and data acquisition hardware used for this work are similar
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Fig. 3. (a): Standard RGB image of the first scene, composed of different
coloured clays fixed on a dark-grey backboard. (b) Reference depth/range image
in millimeter obtained using the algorithm proposed in [22].

to that described in [23]–[28], developed at Heriot-Watt Uni-
versity. The scanning system used was a monostatic transceiver
that utilises a galvonometer mirror pair to define the field posi-
tion and to direct the return signal to an individual silicon-based
single-photon detector with picoseconds timing resolution. The
measurements have been acquired indoors, under dark condi-
tions to limit the influence of ambient illumination. The scene
has been scanned using a regular spatial grid of 190 × 190 pixels
and L = 33 regularly spaced wavelengths ranging from 500 nm
to 820 nm. Given the spatial structure of the scene considered
in Fig. 3(a) and the short distance between the detector and
the target (constrained by indoor measurements), most of the
pixels can be associated with a single material. In the sequel
we use an R = 15 endmember library/dictionary formed from
the spectral response of each material and hence, for this experi-
ment, almost all pixels in the image represent pure pixels without
mixing. However, when the laser spot size on the target is broad-
ened due to beam divergence then the assumption of a single
material in each pixel is unlikely to hold. Such a situation would
apply to longer range targets and close range targets whose ma-
terial properties vary significantly over the spot size. Although
classification methods such as [29] can effectively be used to
classify pixels in this particular scene, our aim is to demon-
strate the ability of our method to discriminate the materials and
estimate depth even in the very low photon count regime. The
histograms consisted of T = 3000 bins of 2 ps, which represents
a depth resolution of 300 μm per bin. The optical power of the
supercontinuum laser system was adjusted using data from pre-
liminary runs, with a per-pixel acquisition time of 10 ms for each
wavelength, in order to obtain accurate reference depth profiles
(of approximately 1000 photons per pixel at each spectral band
on average). This corresponds to an overall acquisition time of
approximately 3 hours and 20 minutes using L = 33 sequential
scans. The data format of timed events allows us to construct
photon timing histograms associated with shorter acquisition
times, as the system records the time of arrival of each detected
photon (with respect to the previous synchronisation signal).
Here, we evaluate our method for average photon counts of 1, 3
and 10 photons per pixel for each wavelength. Examples of dis-
tributions of detected photon counts, for the shortest acquisition
time, are depicted in Fig. 4. The top sub-figures in Fig. 4 show
that the number of detected photons varies depending both on

Fig. 4. Distributions of the number of detected photons (integrated over the
T = 3000 bins) for the highest data sparsity level (on average 1 photon per
pixel for each band). Top: Spatial distribution of the detected photons at 500 nm
(left), 700 nm (middle) and total photon counts after integration over the L =
33 wavelengths (right). Bottom: Observed photon count distribution over all the
pixels and bands. This figure shows that 45% of the pixels do not contain any
detection.

Fig. 5. Depth RMSEs (in mm) obtained via maximum likelihood estima-
tion when considering a single wavelength and using data constructed from
10 photons per pixel (on average) for each wavelength. Target ranges of empty
pixels are obtained via nearest-neighbour interpolation. These results illustrate
how the depth estimation highly rely on the wavelength considered, especially
when considering sparse data. Averaging the L = 33 depth estimates generally
reduces the RMSE and here, we obtained RMSE = 2.08 mm.

the object and wavelength. Consequently, the depth estimation
performance, which is highly dependent on the number of de-
tected photons, can be significantly affected by the considered
wavelength(s). This observation is confirmed by the results in
Fig. 5 which depicts the root mean squared error (RMSE) of the
depth estimate, obtained using data constructed from 10 pho-
tons per pixel (on average) for each wavelength and using a
single wavelength to estimate the target ranges via maximum
likelihood (ML) estimation. In this work the RMSE is defined by

RMSE =

√∑
i,j (ti,j − t̂i,j )2

NrowNcol
, (26)

where t̂i,j is the estimated target range in the pixel (i, j) and ti,j
is the reference target range. The reference depth profile shown
in Fig. 3(b) has been obtained using the algorithm proposed in
[22]. The algorithm provided for depth estimation and clustering
the spectra in the MSL data. In a similar fashion to the method
proposed in the paper, the algorithm considered in [22] uses all
the wavelengths to estimate the target ranges. However, it does
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Fig. 6. Examples of instrumental impulse responses measured with an ac-
quisition of 100 s at different wavelengths (500, 550, 600, 650, 700, 750 and
800 nm).

not rely on a particular mixing model and is thus less sensitive
to the presence of complex spectral mixtures. It was applied
to the data with the longest acquisition time (10 ms) to reduce
estimation errors and the resulting reference range profile is in
very good agreement with the structure of the scene in Fig. 3(a)
(the reference range being set to the range of the backboard).

The instrument impulse responses gi,j,�(·) (partly depicted in
Fig. 6 for an arbitrary central pixel of the field of view) were
estimated from preliminary experiments by analyzing the distri-
bution of photons reflected onto a Lambertian scatterer placed
at a known distance with long acquisition time (100 s). Fig. 6
illustrates the fact that the response of the imaging system can
change in amplitude and shape depending on the wavelength
(full width at half maximum around 60 ps). This variability is
due to the wavelength-dependent characteristics of the differ-
ent elements in the imaging system, e.g., supercontinuum laser
source, detector, lenses. Notice also the delays between the dif-
ferent peaks. These are mainly due to the wavelength-dependent
response of the laser source and the different path lengths of the
light in the imaging system. These delays can be compensated
during the instrument calibration phase of the experiment and
do not have a significant influence of the imaging performance.
The spatial distortion of the responses gi,j,�(·) due to potential
limitations of the imaging system are taken into account during
system calibration. If only a single wavelength was to be used
to estimate the depth profile (e.g., as in Fig. 5), the variations of
the peak shape could also make the choice of the most relevant
wavelength difficult as the depth estimation accuracy mainly
depends on the amplitude (reflectivity estimation) and width
(depth estimation) of the peak.

Fig. 7 shows the spectral signatures of the backboard and the
14 kinds of clay used to create the objects. The R = 15 end-
members were obtained using the algorithm proposed in [22]
for depth estimation and clustering on the spectra in the MSL
data. To ensure high accuracy of the endmembers they were
extracted from much cleaner data, i.e., images of the sample ac-
quired with much longer acquisition time resulting in more
than 1000 photons per pixel and per band on average. To be
more explicit, the endmembers were obtained by averaging
the estimated spectral responses over sub-regions (400 pixels
per endmember) identified by the method proposed in [22].

For all results presented here, the proposed Bayesian Poisson
unmixing algorithm has been applied with NMC = 5000 sam-
pler iterations, including Nbi = 2000 burn-in iterations. These

Fig. 7. Spectral signatures of the backboard and the 14 polymer clays used to
create the objects in the scene shown in Fig. 3.

parameters were determined from preliminary runs by visual
analysis of the chains and the variation of the results over in-
dependent runs. Moreover, we set (α, ν) = (1, 0.05) for all the
simulation results presented in this section. These parameters
were selected based on the expectation that anomalies present
low reflectivities. The results were not appreciably affected by
small variation of (α, ν) about these values.

The depth profiles estimated by the proposed algorithm, re-
ferred to as R-PSU (for Robust Poisson Spectral Unmixing) are
depicted in the second and third top rows of Fig. 8. R-PSU-TV
denotes the algorithm with the TV-based depth regularization
(and R-PSU without TV-based regularization). For complete-
ness, the top row of Fig. 8, depicts the results obtained by the
unmixing method proposed in [8], relying on the lineariarity of
the mixtures. In contrast to the proposed method, the method in
[8] unmixes the pixels independently using weakly informative
abundance and depth prior models. Consequently, this method is
denoted by ML in Fig. 8. As expected, the estimated depth pro-
file becomes noisier as the average number of detected photons
decreases. However, the TV-based depth prior model visually
improves the estimated profiles, in particular for the highest
data sparsity (1 photon on average per pixel and per band). The
bottom rows of Fig. 8 depict the marginal posterior probabili-
ties, for each pixel, of the actual object range to be within the
estimated range bin (i.e., within a 0.3 mm interval centred around
the estimated depth value). These images show that these prob-
abilities increase with the number of detected photons, i.e., the
joint posterior distribution becomes more concentrated around
its modes and that the TV-based prior further concentrates this
posterior distribution, thus reducing the a posteriori uncertainty.
This observation is also illustrated in Fig. 9, which depicts the
marginal posterior distributions of an arbitrary depth parame-
ter (namely of the pixel (41, 61) chosen randomly), obtained
using R-PSU and R-PSU-TV. Note that in the bottom rows of
Fig. 8, the lowest probabilities are generally found at the object
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Fig. 8. Top rows: Depth profiles estimated via pixel-wise ML estimation
[8] and the proposed method, with and without spatial regularization of the
depth profile. Bottom rows: Confidence map, which is the marginal posterior
probability, for each pixel, that the actual object range is within the estimated
range bin. The higher this probability, the more reliable the estimated depth.

Fig. 9. Marginal posterior distributions of the object range estimated using
R-PSU (blue lines) and R-PSU-TV (red lines), for the pixel (41, 61) (central
region of the object #2). The black dashed lines represent the reference range
estimated using the algorithm proposed in [22]. Total-variation (R-PSU-TV)
provides a higher posterior confidence on the estimated depth.

TABLE I
DEPTH RMSES (IN MM) OBTAINED VIA PIXEL-WISE ML ESTIMATION [8] AND

BY THE PROPOSED METHOD, WITH AND WITHOUT SPATIAL REGULARIZATION

OF THE DEPTH PROFILES

Average no. of photons per pixel

1 3 10

ML 3.66 1.09 0.65
R-PSU 1.91 1.05 0.65
R-PSU-TV 0.92 0.64 0.50

boundaries, where significant range changes occur and where
the number of detected photons decreases due to the local ori-
entation of the objects. These two effects generally increase
the estimation uncertainty. Moreover, the RMSEs gathered in
Table I confirm the performance degradation as the number of
detected photons decreases and that the TV-based prior model
for the depth parameters mitigates this degradation (the RMSE
remains below 1 mm, even for the highest data sparsity). These
results also illustrate the benefits of the proposed Bayesian ap-
proach for depth estimation since the RMSE obtained with the
highest data sparsity (1 photons per pixel and per band) and
R-PSU-TV (RMSE = 0.92 mm) is much lower than the RMSE
obtained by the joint ML depth estimates proposed in [8], which
processes the pixels independently (RMSE = 3.66 mm).

Fig. 10(a)–(c) compares the abundances estimated by the
proposed method for the three photon sparsity levels considered
(10, 3 and 1 photons per pixel for each band). The estimated
abundances are generally in good agreement with the colour im-
age in Fig. 3(a) as it is possible to identify the regions where the
different clays are present. However, some unmixing errors are
also visible, even when considering the lowest photon sparsity
in Fig. 10(a). For instance, objects presenting different shades
of green in Fig. 3(a) might not be perfectly unmixed due to their
spectral similarity and their intrinsic spectral variability mainly
caused by local orientation changes. When considering higher
data sparsity levels (see Fig. 10(b) and (c)), the spectral vari-
ability of each object becomes negligible compared to the actual
Poisson noise level and the proposed method identifies more ac-
curately the different homogeneous regions thanks to the use of
the gamma-MRFs in (9). To illustrate the benefits of the gamma-
MRFs, we unmixed the data using the algorithm proposed in [8]
and which does not promote spatially correlated abundances. For
illustration, Fig. 10(d) presents the estimated abundance maps
obtained using the highest data sparsity (1 photon per pixel on
average). Without consideration of spatial correlation between
abundance vectors, the estimated abundances maps become ex-
tremely noisy and it become impossible to clearly identify most
of the homogeneous regions. In particular, the objects #8 and
#14 are barely visible in Fig. 10(d) while more distinguishable
in Fig. 10(c). Note that due to the spectral similarity between
these objects and the board (#5), which is present in several
regions on the scene, the objects #8 and #14 are also visi-
ble in the abundance map of the board in Fig. 10(c). Although
the unmixing results in Fig. 10(a)–(c) present some errors, the
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Fig. 10. (a)–(c): Abundance maps associated with the R = 15 main materials composing the scene and estimated by the proposed R-PSU-TV method. These
results are obtained from data constructed from 10 (a), 3 (b) and 1 (c) photons per pixel (on average across the pixels) and for each spectral band. (d): Abundance
maps estimated by the algorithm proposed in [8] based on the shortest acquisition time (1 photon per pixel). All images have the same dynamic, i.e., between 0
and 1.3.

Fig. 11. Anomaly maps (log(‖ri ,j ‖2 /L)) associated with the region of in-
terest for averages of 1, 3 and 10 detected photons per pixel and per band. The
bottom row presents inset zooms of the squared red regions identified in the
top row figures. The detected anomalies correspond to high reflectivity between
750 nm and 820 nm, and are due to the presence of residual glue used to fix the
clay objects on the backboard.

estimates abundances maps are more accurate than those ob-
tained without the abundance gamma-MRFs.

Fig. 11 shows the estimated anomaly maps obtained using the
R = 15 endmembers of Fig. 7 for the three acquisition times.
This figure illustrates significant local differences from the clas-
sical LMM, in particular for the longest exposures. In the central
region of the scene, below and above the object #11, the two
red strips correspond to high reflectivity between 750 nm and
820 nm, and are due to the presence of residual glue used to fix
the clay objects on the backboard. When the exposure decreases,

the quality of the data decreases due to the statistical properties
of the Poisson noise and it becomes more challenging to detect
subtle spectral variations. In such a case, the proposed method,
which promotes sparse deviations from the LMM, is no longer
able to detect weak anomaly levels and only detects one glue
strip (left sub-plots). It can be seen from Fig. 11 that deviations
from the standard LMM are clustered spatially and only affect a
reduced number of pixels. Thus, the abundance maps estimated
while considering the LMM (i.e., by enforcing ‖ri,j‖2 = 0) are
very similar, for most pixels, to those depicted in Fig. 10 and
are not presented here for brevity.

VII. CONCLUSION

We have proposed a new Bayesian model and a joint depth
estimation and robust spectral unmixing algorithm for 3D scene
analysis from MSL data. Assuming the ambient illumination
can be neglected, the spectra of the scene surfaces visible
by the imaging system were decomposed into linear mixtures
of known endmembers, potentially corrupted by sparse devi-
ations/anomalies. Adopting a Bayesian approach, prior distri-
butions were assigned to the unknown model parameters; in
particular, a 3D Ising model was used to model the spatial or-
ganization of the anomalies and gamma Markov random fields
were consider to promote spatially smooth abundances. Includ-
ing ambient illumination and dark count levels in the observation
model (as in [12], [28], [30], [31]) is the obvious next step from
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a more general application (especially for long-range imaging
applications) of the proposed method.

In this work, the experiments were performed indoor and
the surface visible in each pixel was small (≈0.01 mm2) com-
pared to the size of the objects. Applying the proposed method
to large-standoff outdoor applications is under investigation.
In such cases, the divergence of the laser sources can lead to
changes in the shape of the returned pulses due to the local
orientation of the observed objects with respect to the imag-
ing system. Note that such distortion might also occurs when
there are semi-transparent objects. The divergence of the laser
sources, which increases with the target range, results in re-
duced spatial resolution leading to increased mixing within a
single pixel.

In analogy to passive hyperspectral image analysis, endmem-
ber and mixture characterization will become more challenging
for large target ranges. Unsupervised or blind spectral unmix-
ing approaches will need to be developed that can deal with
unknown endmember spectral signatures. As explained in the
introduction of this paper, our proposed anomaly model identi-
fies “anomalous” pixels for which the linear mixing model is a
poor fit. Such pixels identified by our model can be subsequently
processed by more sophisticated, and yet to be developed, non-
linear mixing models. The development of such models is a
worthy topic for future study.

Finally, for remote sensing applications, it will be crucial to
account for the presence of distributed (multi-layered or semi-
transparent) targets, which would require more complex models
for the multiple returns in the MSL data. This could potentially
lead to full 3D abundance profile estimation.
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