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A Bayesian Approach to Denoising of Single-Photon
Binary Images
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Abstract—This paper discusses new methods for processing im-
ages in the photon-limited regime where the number of photons
per pixel is binary. We present a new Bayesian denoising method
for binary, single-photon images. Each pixel measurement is as-
sumed to follow a Bernoulli distribution whose mean is related by
a nonlinear function to the underlying intensity value to be recov-
ered. Adopting a Bayesian approach, we assign the unknown inten-
sity field a smoothness promoting spatial and potentially temporal
prior while enforcing the positivity of the intensity. A stochastic
simulation method is then used to sample the resulting joint poste-
rior distribution and estimate the unknown intensity, as well as the
regularization parameters. We show that this new unsupervised
denoising method can also be used to analyze images corrupted by
Poisson noise. The proposed algorithm is compared to state-of-the
art denoising techniques dedicated to photon-limited images using
synthetic and real single-photon measurements. The results pre-
sented illustrate the potential benefits of the proposed methodology
for photon-limited imaging, in particular with non photon-number
resolving detectors.

Index Terms—Bayesian estimation, image denoising, Markov
chain Monte Carlo methods, Photon-limited imaging, single-
photon detection.

I. INTRODUCTION

INGLE-PHOTON detectors (SPDs) are ubiquitous for ap-
S plications where the light flux to be analysed is quantified
at photonic levels. In particular, SPDs are particularly attractive
for imaging applications where the light flux changes rapidly
(of the order of picoseconds) or is extremely limited. For in-
stance, the range resolution of SPD-based Lidar systems and
their capability to resolve close objects depends on the abil-
ity of the detectors to accurately capture the time-of-arrival of
photons emitted by fast laser sources [1]-[6].
Recent advances in fast SPDs and SPD arrays, coupled with
efficient signal/image processing techniques have allowed the
development of extreme imaging systems, including first photon
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[7] and single pixel [8], [9], and ghost [10]-[12] imaging sys-
tems, among others. Improving and investigating new systems
however requires the development of statistical methods adapted
to the discrete of sparse nature of the recorded data (photon
counts or time of arrival). SPDs can be classified into two groups
depending on their ability to quantify a number of detected pho-
tons within an elementary time period. Although some detectors
are photon-number resolving, in this paper we consider SPDs
that can generally only distinguish no detection from at least
one detection, such as single-photon avalanche diodes (SPADs),
photomultiplier tubes and superconducting nanowire SPDs [13].
Although potentially not too restrictive, such limitations need to
be considered when developing/applying statistical methods to
analyse data recorded by non photon-number resolving SPDs.
Indeed, although the number of photons reaching an SPD within
a time period is widely assumed to be Poisson distributed (say
of mean x), the SPD saturation can have a significant influence
on the distribution of the actual photon detections.

In many imaging applications involving such non photon-
revolving SPDs, images are formed by summing binary
detection images over several independent realizations and
assuming the observed phenomenon is stationary (images
identically distributed). By ensuring that the probabilities of de-
tection per acquisition for each pixel (i.e., 1 — exp™" assuming
the detector has unitary efficiency) are small enough (as a rule-
of-thumb generally lower than 5%), the actual distribution of
the total number of detected photons in each pixel using 7" repe-
titions (e.g. the binomial distribution Bin (T, 1 — exp ")), can
be approximated by a Poisson distribution with mean 7T'x. This
approximation becomes generally less accurate as x increases
(the approximation accuracy depends on x and the number of
repetitions 7" considered). This approximation can also become
less accurate when the ratio between the detection interval and
the dead-time duration of the detector decreases, where the dead-
time period corresponds to a period following a photon detection
during which the detector cannot detect additional photons.

If this approach is well adapted to analyze fast low-intensity
phenomena for which we naturally have x << 1, it requires 1)
the intensity field to be constant across the 7" observations or
additional assumptions about its temporal variation (e.g., inten-
sity decay model for fluorescence microscopy [14], [15]) and
2) that x << 1 is valid for all the image pixels, which can
be problematic when analysing scenes with a high intensity
dynamic. Indeed, if the scene includes high intensity regions
(i.e., where x > 5%), the illumination source has to be reduced
(if possible) or attenuation mechanisms (e.g. filters) used to
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ensure the Poisson noise approximation remains valid across
all of the pixels. This automatically and artificially reduces the
(already low) probability of detection in the darker regions of
the image, potentially unnecessarily, to preserve a tractable ob-
servation model. This approach is counterproductive as this de-
crease is usually compensated for by increasing 7', the number
of repetitions.

In this work, and in contrast with most denoising methods
developed for photon-limited data, we focus on applications for
which the phenomenon can only be observed once and for which
we need to infer the intensity field for each individual image.
Consequently, the observation model considered assumes the
observed images are binary (i.e., either no photon or at least one
photon detected). We also consider the case where the detectors
are photon-number resolving (i.e., data corrupted by Poisson
noise). Here, we focus primarily on binary images even if the
proposed methodology can be applied to Poisson data denois-
ing, i.e., for data recorded by photon-number resolving systems.
As will be seen in Section VI, we show that when using non
photon-number resolving systems with relatively high detec-
tion probabilities (z ~ 1,1 — exp™® ~ 63%), it is possible to
obtain similar results to photon-number resolving systems. In
other words, adopting the appropriate observation model and as-
sociated estimation strategy allows for much more efficient data
acquisition as it becomes possible to improve the data quality
without numerous repetitions (we consider a single detection in
this work). However, when saturation is significant, e.g when
x >> 1, it becomes extremely challenging to accurately esti-
mate the intensity field, in particular using a single frame. In
this work, we limit ourselves to E [z] < 1.

Adopting a classical Bayesian approach, we propose a flexible
intensity prior model (see Section III) able to capture different
sources of intensity fluctuations such as object movement and
changes of the illumination conditions. Starting from the obser-
vation model of ideal detectors (Poisson likelihood), we present
an alternative observation model accounting for detector limita-
tions (Bernoulli likelihood). Both likelihoods are combined with
the prior models and a stochastic simulation method (Markov
chain Monte Carlo) method is investigated to exploit the result-
ing posteriors. An important advantage of the proposed method
is that it is fully unsupervised and does not require parameter
tuning, as the parameters controlling the spatial and temporal
regularizations are automatically adjusted during the sampling
process.

The main contributions of this paper can be summarized as
follows:

1) We propose a novel, fully automated method to denoise bi-
nary, single-photon images. To the best of our knowledge,
this work is the first to consider observed pixels follow-
ing Bernoulli distributions, whose means are related by a
nonlinear function to the underlying weak intensity values
to be recovered.

2) We generalise the two-dimensional gamma-Markov ran-
dom field proposed in [6] to capture the temporal cor-
relation affecting the dynamic intensity profiles using a
three-dimensional gamma-Markov random field.

3) We develop a new efficient Markov chain Monte Carlo
method adapted to the Bayesian models considered, in
particular to account for the binary nature of the observed
images. Although the Bayesian model considered does
not allow for Gibbs updates when sampling the intensity
field, we propose an accept-reject procedure which allows
the intensities to be updated simultaneously, with a high
acceptance rate, which in turn improves the algorithm
convergence and reduces its computational complexity.

4) Although dedicated to binary images, we show that the
proposed method can also be applied to images corrupted
by Poisson noise. In that case, the intensity updates reduce
to standard Gibbs updates. Moreover, we demonstrate that
for intensities close to 1, the estimation performance using
binary images is similar to that obtained using images
corrupted by Poisson noise.

The remained of the paper is organized as follow. Section II
presents the two observation models considered. The Bayesian
models are detailed in Section III and the sampling strategy pro-
posed to exploit the resulting posterior distributions is described
in Section I'V. Simulation results conducted using synthetic and
real single-photon data are discussed in Sections VI and VIIL.
Conclusions and future work are finally reported in Section
VIIL

II. OBSERVATION MODELS

Consider a set of 7" intensity images X; of size Now X Niow
whose elements z; ; ; = [X,,L-’ j are the unknown average num-
bers of photons reaching the detector array (composed of
Niow X Niow detectors regularly spaced) over a given time pe-
riod. The two observation models are detailed below.

A. Poisson Likelihood

In the general case where each detector can potentially detect
an infinite number of photons (within a given time period At),
it is widely acknowledged that the distribution of the photon
counts ; ; + in the pixel (4, j) of the ¢th image can be accurately
modelled by a Poisson distribution, i.e.,

Yijitl i Tige) ~ P Mijxije) (1)

where 7, ; > 0 is an attenuation factor that stands for the detec-
tor sensitivity/efficiency and P (n; jx; ;) denotes the Poisson
distribution with mean 7; ;x; ; ;. In this work we assume that the
coefficients {n; ; }; ; are known (they can usually be estimated
during the system calibration) and do not change with time (in
the case of video acquisition). Assuming independence between
the detectors and the different noise realizations corrupting the
images (in particular, we consider non-overlapping acquisition
periods) yields the joint likelihood

fo(YIN,X) = H fo (Wi jelnijwije) 2
it

where [Y]; ;; =y j¢, [N]; ; =mn;; and fo(:|ni ;@i ;) is the
Poisson distribution defined in (1).
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B. Bernoulli Likelihood

Although the Poisson noise assumption is relevant for many
imaging applications, here we consider non photon-number re-
solving SPDs that can only detect at most one photon per pixel
within a clock period and need to be reset to potentially de-
tect the next photons reaching the sensor. In the remainder of
this paper, we assume that At corresponds to this clock pe-
riod (i.e., the smallest temporal sampling period), which also
defines the temporal resolution of the imaging system when
recording image sequences. In such cases, the detected photon
counts, which become binary measurements within a period At,

satisfy
0
Yijt = 1

where ; j+ ~ P(n; j2i ;) is the photon count that would be
detected by an ideal detector (able to detect an infinite number of
photons). Consequently, in this case the detected photon counts
are distributed according to the following Bernoulli distribution

if 9550 =0

3
if g 50 >1 )

Yl (Mijxija) ~ Ber (1 —exp "%it) 4

whose mean is given by 1 — exp~"7%.i.* . In a similar fashion
to the observation model described in Section II-A, assuming
independence between the detectors and between noise realiza-
tions yields

AYNX) =[] A @il jzig), )

it

where fi (-|n; jz; ;) denotes the Bernoulli distribution in (4).

It is important to mention here that although Poisson and
Bernoulli distributions present different shapes and supports,
we have

FiWije =0mij,xije) = foWije =0mij,2ije)
— eXp*Uy.jmy,.,Ar (6)

and
o0
Fryige =Unig wige) =Y folyiy = klnij.wije), (D)
k=1

which will be useful during the description of the proposed
estimation strategy.

The next section describes the Bayesian model and associated
estimation strategy proposed to solve the denoising problem
considered here; that is, the estimation of the unknown and non-
stationary intensity field X from the observed set of photon
countsin Y.

III. BAYESIAN MODEL

A. Intensity Field Modelling

As in most ill-posed inverse problems which need to be reg-
ularized, the choice of the regularization or prior model con-
sidered for image restoration is crucial both in terms of quality
of image recovery and the resulting computational complexity.

In this work we investigate a Bayesian model coupled with an
efficient simulation method which allows the estimation of de-
noised images but that can also provide information about the
denoising uncertainty via measures of uncertainty from the pos-
terior distribution of interest. Consequently, we investigate an
intensity prior model which allows the use of an simple simu-
lation strategy to exploit the posterior distribution. As will be
shown in Sections VI and VII, the prior models presented in
this section not only facilitate the estimation strategy but are
also flexible enough to compete with standard regularizations
used to denoise images corrupted by Poisson noise (e.g., total-
variation [16], [17] or Gaussian MRFs [18]).

It is well known that gamma distributions are conjugate pri-
ors for the means of Poisson distributions, which makes them
particularly attractive to denoise images corrupted by Poisson
noise. Moreover, as will be further discussed in Section IV,
gamma distributions remain conjugate priors when considering
saturating sensors (i.e., assuming (4)), which is particularly con-
venient in simplifying the denoising problem when the data are
Bernoulli distributed.

Due to the spatial organization of images, we expect the
values of x; ;; to vary smoothly from one pixel to another.
Moreover, if an image sequence is considered, it might be
relevant to capture the temporal correlation between succes-
sive images to improve the denoising performance, especially
since the sampling period can be extremely short (of the or-
der of nanoseconds or less). In order to model this behaviour,
we consider an extended prior model such that the resulting
prior for X is a hidden gamma-MRF (GMREF) [19]. In a similar
fashion to [6], we introduce T auxiliary matrices U; of size
(Nrow + 1) X (Ngor + 1) with elements u; ;; € R™ and T'+ 1
additional auxiliary images W, of size N;ow X Nyow. We then
define a tripartite conditional independence graph between X,
U = {U,} and W = {W,} such that each ; ; ; of X is con-
nected to four (spatial) neighbors of U, and two temporal neigh-
bors in W; and W, ;. This Ist order neighbourhood structure
is depicted in Fig. 1, where we notice that any given z; ; ; and
Ziy1,5,¢ are 2nd order neighbors viau; 1 ;s and w41 j41,¢. Sim-
ilarly, x; ;; and x; ;41 are 2nd order neighbors via w; j ¢41.
Following the general GMRF model proposed in [19] and spec-
ified here by the neighbourhood structure depicted in Fig. 1,
we assign (X, U, W) a (constrained) GMRF prior, and obtain
the joint prior f(X, U, W]q, ) (see [19] for the GMRF for-
mulation adopted here). This prior model explicitly depends
on the value of the hyperparameters o > 0 and 3 > 0, which
here act as regularization parameters that control the amount
of spatial (o) and temporal () smoothness enforced by the
GMREF. For brevity, we assume that these parameters are fixed
and constant across the image sequence in the remainder of this
Section. However, following an empirical Bayesian approach,
in the results presented in Sections VI and VII, the value of
(v, ) is adjusted automatically (either for each image or for
all the images) during the early iterations of the sampler by
maximum marginal likelihood estimation (the interested reader
is invited to consult [6], [20] for details about the estimation

of a (or (a, B))).
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Tit1,j-1,t Tit1,41,t Tit1,j+1,¢
Wi 4,t+1
i}
L gt41
Fig. 1. Proposed 1st order GMRF neighborhood structure V(4, j,t) € Vx x

T . The red (resp. blue) sub-graph highlights the spatial (resp. temporal) neigh-
borhood structure. For the pixels at the boundaries of the image/ image sequence,
we assume the images to be cyclic spatially (e.g., 0 j,t = TNy, j,¢) and set
Tij.0 = T j,T+1 =7, V(i,j) € Vx. The temporal boundary condition ~ is
set arbitrarily to the empirical mean of the observed images but the image
sequence can also be assumed to be cyclic.

Exploiting the proposed neighbourhood structure yields

2 j.t|Us, W, B~ Gy (o + 3,7 j¢) (8a)
wi | X, ~ G (o, oty jt) (8b)
w; ;1| X, B ~ZIG (5,080 ;) (8¢)
where
Tije = Ao (upj, +ulyj +u g, + u;—ll.,j—u)ﬂ
+2/8 (wij, + wi_,jl’,t+1>7l
Ui = (Tiju+Tiv1j0 +Tije1e + Tig1,j+1.0) /4
Wi g = (Tije—1 +Tije) /2

and Gy (-, ) denotes a gamma distribution restricted to X (this
distribution reduces to a standard gamma distribution with
X = (0,+00)) and ZG (-, -) denotes an inverse-gamma distri-
bution. If a single image or independent images are considered,
the GMRF-based prior f(X, U, W|a, (3) can be simplified by
removing the auxiliary variables W and by considering the
prior model f(X,Ula), as in [6]. In that case, the neighbor-
hood structure reduces to the red subgroup of Fig. 1 and we
obtain

zi j+|Us,a ~ Gy (047 xi;j’t) (9a)
w; j | Xy, ~ IG (o, oty j 1) (9b)
where
Tige = 4w, +uily g+ “7‘,_711471,t)71

In addition to their flexibility, one of the main motivations for
considering GMRFs here is the fact that they enable a simple
yet efficient sampling strategy (using the conjugacy of (8a) and
(2) or (9a) and (5) (see Eq. (14))), while introducing spatial
and temporal dependencies between the neighbouring intensi-
ties. As will be shown in Section IV, although we resort to
accept/reject procedures when considering binary images, the
resulting sampler presents high acceptance rates, which in turn
induces good mixing properties and improves the convergence
speed of the algorithm.

B. Joint Posterior Distributions

Now that we have defined the prior model for the unknown
image or images to be recovered, we can derive the posterior dis-
tribution of (X, U) or (X, U, W) (depending on whether tem-
poral correlation is considered), given the observations Y, and
the fixed model parameters/hyperparameters ® = {N, a, 3}
and the observation model considered. Using Bayes’ rule, we
obtain

[ (X, UY, @) o fin (YN, X) f(X, Ula) (10)

with m = 0 (Poisson noise) or m = 1 (Bernoulli realizations)
for a single or independent images and

[ (X, U, WY, @) o f;, (YN, X) f(X, U, W|a, 3)(11)

when considering temporally correlated images, where
fm (Y|IN, X) is given either by (2) (ideal detector) or (5) (sat-
urated detector). The next paragraph details the Markov chain
Monte Carlo (MCMC) method proposed to sample the poste-
riors of interest (10) and (11) and subsequently estimate the
unknown intensity field X.

IV. ESTIMATION STRATEGY

In this work we adopt a simulation based strategy to approxi-
mate, for each model, the marginal posterior mean or minimum
mean square error (MMSE) estimator of X, i.e.,

X =E[X|Y,®], (12)

where the auxiliary variables U (and W when considering cor-
related frames) have been marginalized. Note that by consid-
ering the marginal posterior f,, (X|Y,®) the corresponding
measures of uncertainty automatically accounts for the un-
certainty induced by the unknown auxiliary variables in U
(and W).

Although marginalizing analytically U and W from (10) and
(11) is possible using the structure of the GMRFs f(X, U|«)
or f(X,U, W|a, ), estimating X directly from f,,, (X|Y, ®)
is challenging due to the complexity of this non-standard and
high-dimensional distribution. Fortunately, for the two obser-
vation models and the two prior models considered, (12) can
be efficiently approximated with arbitrarily large accuracy by
Monte Carlo integration. More precisely, it is possible to com-
pute (12) by first using an MCMC computational method to
generate samples asymptotically distributed according to (10)
or (11), and subsequently using these samples to approximate
the required marginal expectation.
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Here we propose a Gibbs/Metropolis-within-Gibbs sampler
to simulate samples from the full posterior of interest, as this type
of MCMC method is particularly suitable for models involving
hidden Markov random fields [21, Chap. 10]. The output of this
algorithm is a Markov chain of Ny samples X(1), ... X (Nwe)
that are asymptotically distributed according to the marginal
posterior distribution f,,, (X|Y,®). The first Ny samples of
these chains correspond to the so-called burn-in transient pe-
riod and should be discarded (the length of this period can be
assessed visually from the chain plots or by computing conver-
gence tests [22]). The remaining Nyc — Np; samples are used
to approximate the Bayesian estimator (12) as follows

Nwmc

> ox.

t=Npi+1

S 1
X Nuc — N (3
The remainder of this section details the main steps of the
proposed samplers, depending on the observation model con-
sidered. The main steps of the proposed PID-GMRF and
BID-GMREF (for Poisson and Bernoulli image denoising using
GMRF) are summarized in the Appendix (see Algo. VIII).

A. Sampling the Auxiliary Variables

Since the auxiliary variables U and W do not appear in the
likelihoods (2) and (5), sampling from their conditional distri-
butions reduces to sampling from (9b) (single or independent
images) or (8b)-(8c) (correlated images), whatever the obser-
vation model considered (e.g., Poisson or Bernoulli model).
Thanks to the structure of the GMRFs considered, the elements
of U and (U, W) are a posteriori mutually independent (condi-
tioned on the value of X) and can thus be updated in a parallel
manner.

B. Sampling X

Similarly, it is easy to show that for a given realization of U
(and W), the elements of X are a posteriori independent and can
be updated simultaneously. Consider a pixel (¢, j,t) following
the observation model (1) (Poisson noise). It is easy to obtain
using the Poisson-gamma conjugacy that

it

T
s U P~ o 14
mz,j,t‘yz,],h ts gX <a + yz,j,t7 1 +«f7},j,f,7h,]’> ( )
for a single image or independent images and
$i.j,t|yi,j,taUt7Wa¢’

~ Gy <a+ﬂ+yi,j,t7 (15)

Tije )
L+ jemij
for correlated images. These distributions, denoted as
fow (l'i,j,t|yi,j,t»Uta(I)) and ng (xi,j‘t‘yi.j,tyUtawv ), re-
spectively, can be easily sampled from via rejection sampling,
that is, by sampling from non-truncated gamma distributions,
in particular when the non-truncated distribution is mainly con-
centrated in X.

Consider now a pixel (4,7,t), whose observation follows
the observation model (4) (Bernoulli realisation). We are
interested in the expression of [P (z; ;+|yij+, Us, @) and

[P (i j4lyije, Uy, W, @), the conditional distributions of
x; 5+ using the 2D and 3D GMRFs respectively. By recalling
that (6) and (7), it can be shown that

FiP (@i

and

i =0,U, @) = foP (25

Yijie = 0,U;, @)

ff’D (CUz',j,z \yz‘,j,t =0,U;, W, ‘I’)

= f37 (@i jalyi e =0,Up, W, @) (16)
are truncated gamma distributions. It can also be seen that f2”
(@ijilyije = 1,0, @) and [P (2 54lyi 0 = 1,0, W, @)
are infinite mixtures of gamma distributions which are less
trivial to sample from. To tackle this problem, we introduce
a Metropolis-Hastings move to update x; ; ; under a Bernoulli
observation assumption. More precisely, for a given pixel (¢, j, )
at the kth iteration of the sampler, we can use a so-called pro-
posal distribution ¢(-) defined on X to generate a candidate x*.
This candidate is then accepted with probability 1 = min(p, 1)
where

2D (%], (k)

T (@i g, Ur, @)q(y) )

0:J,]

p= - (17)
20 (M) Jyi g Ur, @)q(a)
and
P « k

3D (xz(k]>,] |yi,j,t, Uta W7 Q)q(l‘*)

m

using the 2D and 3D GMREFs, respectively. Otherwise, we set
xf}‘jt = xi@}l) Here, to avoid additional algorithmic complex-
ity (e.g., tuning the variances of Gaussian random walks), we
use as proposal distributions the conditional distributions ob-
tained under Poisson noise assumption (14) or (15), depending
on the scenario considered (independent/correlated images). Us-
ing this choice of proposal, 1) when y; ; ; = 0, we obtain p = 1
and the Metropolis-Hastings step reduces to a Gibbs step and
2) in practice we have observed that this choice leads to satis-
factory acceptance rates (p > 0.6 for the pixels such such that
Yi.j,+ = 1) for all the results presented in Sections VI and VIL.

In this Section, we considered two intensity prior models,
depending on whether the 7" > 1 observed images are assumed
to be temporally correlated or not. As the underlying intensity
field is the same if the detectors saturate or not, a single prior
model is considered when analysing Poisson or Bernoulli im-
ages. We then detailed a single sampling strategy to exploit the
posterior distributions of the different scenarios. When the data
are Bernoulli observations, accept/reject procedures are only re-
quired for the pixels where a detection occurs, i.e., y; j; = 1,
which, in the case of low illumination images (E [y; ; ] << 1),
represent a small fraction of the pixels. In the case of Poisson
data, the proposed Metropolis-within-Gibbs sampler reduces to
a standard, yet highly parallelizable, Gibbs sampler. The fol-
lowing Sections illustrate the potential benefits of the proposed
method through a series of experiments conducted using syn-
thetic and real single-photon images.
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Fig.2. (a): Firstimage I; composed of a piece-wise constant intensity profile.

(b) Second image I considered, which presents smoother intensity variations.

V. FAULTY SENSOR AND MISSING DATA

In addition to the potential of sensor saturation, faulty detec-
tors and missing data migth occur within the array. As mentioned
in the introduction, the proposed denoising framework exploits
the spatial correlation between neighbouring pixels to regular-
ize the denoising problem and the presence of spurious pixels
can degrade the algorithm performance. To tackle this problem,
it is possible to modify the observation models (or equivalently
the likelihood functions (2) and (5) so that the spurious values
are not used during the denoising process. In such cases, the
associated intensities are simply drawn from their conditional
prior distribution, i.e. from (9a) (single or independent images)
or from (8a) (correlated images), as they no longer appear in
the likelihood. We assessed the performance of the proposed
methods with up to 0.1% of missing data, uniformly distributed
across the field of view and we did not observe a significant
degradation of the intensity estimation when compared to ob-
serving all the pixels. Although the proposed methods could
be used for restoration of sparsely and/or irregularly sampled
images, more informative prior models might however provide
better results than the proposed GMRFs when the number of
missing data becomes more significant. The very interesting
and more challenging problem of sparsely sampled images con-
structed from extremely sparse single-photon data outwith the
scope of this paper and will be the subject of future work.

VI. SIMULATIONS USING SYNTHETIC IMAGES

In this Section we investigate the performance of the proposed
methods and the effect of the detector saturation on the inten-
sity estimation performance through simulations conducted with
synthetic images. First, we compare the performance of the pro-
posed algorithms with existing methods when denoising a single
image. Then we assess the benefits of the proposed 3D GMREF,
when denoising a sequence of images.

A. Single Image Denoising

We evaluate the proposed methods in denoising the two test
images depicted in Fig. 2. The first image of size 256 x 256
(circular pattern) and denoted I, presents a piece-wise constant
intensity profile while the second image I, of size 512 x 512
presents smoother intensity variations. In all the experiments

TABLE I
AVERAGE NUMBER OF DETECTED PHOTONS PER PIXEL E [y; ;] FOR THE TWO
IMAGES I; AND I5 CORRUPTED BY POISSON AND BERNOULLI NOISE FOR
DIFFERENT VALUES OF E [z; ;|

E(z; ;]
2.5% 5% 10% 50% 80% 100%
I Poisson 0.025 0.05 0.10 0.50 0.80 1.00
Bernoulli 0.025 0.05 0.09 0.36 0.48 0.54
Iy Poisson 0.025 0.05 0.10 0.50 0.80 1.00
Bernoulli 0.025 0.05 0.09 0.38 0.52 0.59

presented in this section, for fair comparisons to methods which
cannot handle missing data, we assume that all pixels are ob-
served. We then repeated the same experiments with up to 0.1%
of missing data/outliers and did not observe noticeable changes
in the denoising performance of the proposed methods. Here, we
used 7, ; = 1,V(i, j). The two original images have been scaled
such that the expected number of counts (averaged over the im-
age pixels) E [z; ;] € {2.5%;5%; 10%; 50%; 80%; 100%}. For
each value of E [z; ;], T' = 20 independent noisy images have
been generated using the model described by (4). To compare the
results with those obtained when the data are corrupted by Pois-
son noise, we also generate data using (1). Table I gathers details
about the mean observed intensity values (averaged over all the
pixels and the T = 20 noise realizations) for the different sce-
narios. In contrast to the corruption by Poisson noise, E [y; ;] is
much smaller than E [z; ;] for large values of E [z; ;] when con-
sidering Bernoulli noise. However, this difference (which also
depends on the distribution of x; ; across the pixels) reduces
for small values of E [x; ;]. As expected, for E [z; ;] < 5%, the
Bernoulli and Poisson distribution are very similar.

We have compared our methods with the following state-of-
the art methods: First, we considered a set of methods relying on
the Poisson noise assumption. Precisely, we used SPIRAL-TV
[17], which solves the same optimization as PIDAL [16]; that is

T
min —log (fo(YIN, X)) +Arv 3 TV (Xy),

t=1

(19)

where TV (-) is the total variation regularization whose influence
is controlled by Aty > 0. We also applied the other regulariza-
tions proposed in [17] but SPIRAL-TV seems to provide the
best and most robust results in this very sparse photon regime,
which is why we only present the results obtained with this ver-
sion of SPIRAL. We also implemented an alternative algorithm
which solves the following problem

T

iy ~ 108 (6(YIN. X)) + 31 3 [P, 20
where x; is the vectorized version of X; and D is the
Nrow X Neol X NiowNeor circulant convolution matrix of the
Laplacian filter [18]. In contrast to the TV regularization which
promotes piece-wise constant intensity profiles, the penaliza-
tion in (20) promotes smooth intensity variations. The problem
(20) is solved using an ADMM scheme, similar to that used in
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PIDAL, therefore, this method is referred to as “PIDAL-Lap”.
We also used the NL-PCA algorithm [23] which is a state-of-the-
art unsupervised method for image denoising under a Poisson
noise assumption (we used the parameter values recommended
in [23] in all the experiments presented here).

To the best of our knowledge, there is no published algorithm
to directly estimate the intensity profiles involved in (5). How-
ever, we implemented an ADMM-based algorithm based on the
following convex problem

T
min — log (f1(Y|N, X)) +Arv Y TV (X:), Q1)

t=1

This algorithm is referred to as “Ber-TV” in the remainder of
this paper. Note that as described in [24], it might be possi-
ble to consider other regularizations, for both the Poisson and
Bernoulli observation models. However, an extensive compar-
ison of regularizations, potentially using changes of variables
and whose regularization parameters need to be carefully ad-
justed, is outwith the scope of this paper and we concentrate
on the TV and Laplacian-based penalizations, whose effects are
easily understood and which require the adjustment of a single
parameter.

We measure the performance of the different algorithms in
term of normalized mean squared error (NMSE) defined by

@i — Eia)?

NMSE; = )
Do . x%j,t

where x; ; ; (resp. &; ; ¢) is the actual (resp. estimated) intensity
value of the pixel (¢,7,¢). The lower the NMSEs, the more
similar the original and reconstructed images. Note that the
NMSE does not depend on the intensity dynamic of the original
image. We also evaluate how the reconstruction error varies
across the image pixels around the NMSE using the standard
deviation of the normalized squared error

(22)

Var

(23)

(‘ri,j,t - flATi’j_’t)2
,J x?.j,t/Nrochol

We have applied the proposed PID-GMRF and BID-GMRF
algorithms with Nyc = 2000 (including Ny; = 600 burn-in it-
erations) to the data corrupted by Poisson and Bernoulli noise.
We have also applied PID-GMREF to data corrupted by Bernoulli
noise to simulate the performance of methods relying on a Pois-
son noise assumption when denoising data recorded by non
photon-number resolving detectors. The PIDAL-TV, PIDAL-
Lap and Ber-TV algorithms, requires tuning of a regularization
parameter (Aty Or Aryp). We adopted the methods proposed in
[25] to automatically adjust these hyperparameters, but these
methods tend to significantly overestimate the smoothness of
the intensity field, due to the extreme sparsity of the observed
images and thus yield poor results, visually and in terms of
NMSE:s. Consequently, for the results presented here, these hy-
perparameters have been optimized in a supervised manner in
order to minimize the NMSE, which however requires knowing
the actual intensity image in advance.
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Fig. 3. Average NMSEs obtained with PID-GMRF on images corrupted by

Poisson noise (red lines), with BID-GMRF on images corrupted by Bernoulli
noise (blue lines) and PID-GMRF on images corrupted by Bernoulli noise
(black lines). The vertical bars depict the corresponding confidence regions
(+ standard deviation). The subplot (a) (resp. (b)) corresponds to I; (resp. I2).

We first compare the performance of the two proposed meth-
ods when denoising images corrupted by Bernoulli and Poisson
noise. Fig. 3 depicts the NMSEs and associated confidence re-
gions (£ standard deviation), computed for each image and av-
eraged over the ' = 20 noise realizations. This figure shows that
when E [z; ;] — 0 the results obtained by the two algorithms are
similar for the two observation models. This can be explained
by the fact that the likelihoods (1) and (4) become similar and
weakly informative and that the intensity estimates are mostly
driven by the intensity prior model, which is the same in all the
scenarios. As expected, using a Poisson observation model when
the data are Bernoulli distributed (black lines) yields less accu-
rate intensity estimates when E [z; ;] increases due to the poor
Poisson approximation of the Bernoulli distribution. More sur-
prisingly, the two methods using the correct observation model
(blue and red curves) present similar behaviors for all values of
E [z; ;]. Indeed, we could expect the intensity estimation to be
significantly less accurate when considering Bernoulli observa-
tions since the detectors cannot detect all the photons reaching
the sensors (at most one per pixel). However, these results show
that although a non photon-number resolving detector is used, it
is possible to obtain similar intensity estimates to those obtained
by an ideal detector (provided that the appropriate observation
model is used and that E [z; ;] is not too large).

Table II compare the NMSEs and associated standard de-
viations (averaged over 7' = 20 realizations) obtained by Ber-
TV, BID-GMREF, NL-PCA and PID-GMRF when denoising the
images I; and I, corrupted by Bernoulli noise. These results
confirm that for high values of E [; ;], the methods relying on
Poisson noise assumption (NL-PCA and PID-GMRF) provide
less accurate intensity estimates than Ber-TV and BID-GMRF.
Moreover, BID-GMREF is more robust than Ber-TV for small
values of E [z; ;] but is outperformed by Ber-TV in terms of
NMSE (when appropriately tuned) when E [z; ;] — 1. Itis im-
portant to mention that the NMSE performance has to be moder-
ated by the relatively high standard deviations in Table II. This
table also shows that even if BID-GMRF does not necessar-
ily provide lower NMSEs, it generally provides lower standard
deviations, in particular for small values of E [z; ;].

Figs. 4 and 5 compare examples of single image denoising
using E [z; ;] = 5% and E [z; ;| = 2.5%. These results illustrate
the fact the GMRF considered is flexible enough to capture the



ALTMANN et al.: BAYESIAN APPROACH TO DENOISING OF SINGLE-PHOTON BINARY IMAGES 467

TABLE II
AVERAGE NORMALIZED MEAN SQUARE ERRORS (NMSES) OBTAINED BY DIFFERENT ALGORITHMS FOR THE IMAGES I; AND [o CORRUPTED BY BERNOULLI
NOISE VERSUS E [y; ;]

Efz; ;]
2.5% 5% 10% 50% 80% 100%

I Ber-TV 0383(0.533) 0309 (0.350)  0.255(0.214)  0.090 (0.220)  0.068 (0.174)  0.059 (0.157)
BID-GMRF ~ 0.237 (0.215) 0208 (0.184)  0.179(0.164)  0.115(0.125)  0.091 (0.107)  0.097 (0.115)
NL-PCA 0286 (0.888)  0.234(0.207)  0.159 (0.172)  0.143(0.135) 0206 (0.169) 0331 (0.200)
PID-GMRF 0242 (0.227)  0.207 (0.180)  0.179(0.149) 0204 (0.143)  0272(0.182) 0320 (0.214)

I Ber-TV 0.191(0.307)  0.091(0.157)  0.065(0.126)  0.042 (0.088)  0.032 (0.077)  0.032 (0.077)
BID-GMRF  0.081 (0.155)  0.071(0.142)  0.066 (0.143)  0.056 (0.103)  0.037 (0.068)  0.036 (0.071)
NL-PCA 0218 (0.757)  0.169 (0.145) 0097 (0.092) 0049 (0.145)  0.073(0.228)  0.177 (0.283)
PID-GMRF 0095 (0.191) 0077 (0.150)  0.060 (0.110)  0.102(0.156)  0.173 (0.235) 0221 (0.287)

Ber-TV

BID-GMRF NL-PCA

=0.05

0.025 E[x]

E[x]

Fig. 4. Intensity estimates for I; (corrupted using (4)), using BID-GMREF,
NL-PCA and Ber-TV, and for different values of E [x; ;]. For each row, the
same scale (0, max(z; ;)) is used for the three methods.

BID-GMRF NL-PCA Ber-TV

N

=0.05

0.025 E[x]

E[x]

Fig. 5. Intensity estimates for /5 (corrupted using (4)), using BID-GMREF,
NL-PCA and Ber-TV, and for different values of E [x; ;]. For each row, the
same scale (0, max(x; ;)) is used for the three methods.

spatial correlation of piece-wise constant (/1) and smoother (/)
images and is visually more robust than Ber-TV (less prominent
patch-like artifacts). NL-PCA provides similar images and is
able to detect spatial structure in the data but underestimate the
large intensities due to the model mismatch, yielding higher
NMSE when E [z; ;] — 1 (see Table II).

Table III compares the NMSEs (averaged over T' = 20 re-
alizations) obtained by SPIRAL-TV, PIDAL-Lap, NL-PCA
and PID-GMRF when denoising the images I; and I, cor-
rupted by Poisson noise. These results shows that the pro-
posed Bayesian approach, when assuming Poisson noise, pro-

vides more robust results than the other state-of-the-art methods
when E [y; ;] — 0. When E [y; ;] — 1 however, the three other
methods generally yield slightly better NMSEs. Although
SPIRAL-TV and PIDAL-Lap need to be tuned to obtain such
performance, NL-PCA does not which open routes to further
improve the denoising performance of BID-GMREF, e.g., us-
ing dictionary techniques such as NL-PCA, in particular when

B. Denoising of Image Sequences

We now illustrate the benefits of the proposed 3D GMRF
model when denoising videos constructed from single-photon
data. We consider a video composed of 7' = 141 frames of
size 240 x 310 pixels, which represents someone striking
a xylophone. This video has been selected from the video
library available in Matlab R2014b. In the experiments
presented in this section, there is no missing data and we used
7;,; = 1,VY(4, 7). The original video has been scaled such that
the expected number of counts (averaged over the image pixels
and frames) E[z; ;] € {2.5%;5%;10%;50%:; 80%;100%}.
We have applied the proposed PID-GMREF (resp. BID-GMRF)
algorithms with Nyic = 3000, including Np; = 1000 burn-in
iterations, to the data corrupted by Poisson (resp. Bernoulli)
noise. The methods using 2D (resp. 3D) GMRFs are denoted
PID-GMRF-2D and BID-GMRF-2D (resp. PID-GMRF-3D and
BID-GMRF-3D). Fig. 6 compares the NMSEs, obtained by
the proposed algorithms (using the correct observation model).
These plots show that the NMSEs generally increase as
E[z; ;] decreases and that the NMSEs are similar across the
T frames when using PID-GMRF-2D and BID-GMRF-2D.
When PID-GMRF-3D and BID-GMRF-3D are used instead,
the NMSEs generally decrease due to the consideration of the
temporal correlation between successive frames. Moreover, the
consideration of temporal correlation also reduces the standard
deviations of the normalized squared errors (when compared to
the 2D-GMRF). Thus the 3D-GMREF tends to prevent large de-
viations between the true and estimated intensities. Note that the
NMSEs increase at the very beginning and the very end of the se-
quences due to the GMRF boundary conditions considered. This
bias can however be easily reduced if we further assume that
the temporal sequence is cyclic. In order not to add unnecessary
assumptions in the general case, we did not present this case
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TABLE III
AVERAGE NORMALIZED MEAN SQUARE ERRORS (NMSES) OBTAINED BY DIFFERENT ALGORITHMS FOR THE IMAGES I; AND Io CORRUPTED BY POISSON NOISE
VERSUS E [y; ;]

Elz; ;]

2.5% 5%

10%

50% 80% 100%

I,  SPIRAL-TV 0410 (0.564) 0301 (0.366)

0.243 (0.360)

0.085 (0.221) 0.062 (0.176)  0.051 (0.143)

PIDAL-Lap 0258 (0.289)  0.221(0.205)  0.150 (0.209)  0.073 (0.124)  0.060 (0.105)  0.054 (0.098)
NL-PCA 0346 (1.208)  0.210 (0.238)  0.148 (0.174) 0077 (0.115) 0073 (0.110)  0.072 (0.108)
PID-GMRF  0.240 (0.220)  0212(0.186)  0.183(0.161)  0.109 (0.116)  0.089 (0.102)  0.083 (0.093)

I, SPIRAL-TV  0.167(0.258)  0.083(0.144) 0067 (0.128)  0.028 (0.071)  0.027 (0.070)  0.025(0.061)
PIDAL-Lap  0.065 (0.124)  0.052 (0.104)  0.042 (0.088)  0.026(0.064)  0.022(0.057)  0.021 (0.052)
NL-PCA 0.186 (0.938)  0.075(0.174)  0.048(0.092)  0.022 (0.054) 0.019 (0.050)  0.018 (0.049)
PID-GMRF  0.075(0.129) 0062 (0.114) 0053 (0.104)  0.037(0.076)  0.036 (0.067)  0.034 (0.062)
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Fig. 6.

NMSEs (solid lines) obtained with PID-GMRF and BIP-GMRF (2D and 3D versions) on the synthetic videos of the xylophone for E [z; ;] = 1 (a),

E(z; ;] = 0.8 (b), E[z; ] = 0.5 (¢), E[x; ;] = 0.1 (d), E [z ;] = 0.05 (e) and E [z, ;] = 0.025 (f). The dashed lines depict the corresponding confidence

regions (% standard deviation).

9which can be addressed by changing the GMRF boundary
conditions (see Fig. 1)].

VII. SIMULATIONS USING REAL DATA

We illustrate the benefits of the proposed denoising frame-
work to denoise sparse images of an object recorded by a ghost-
imaging system similar to those considered in [26], [27]. The
system considered here uses correlated photons at 710nm and
the images were displayed on a spatial light modulator (SLM).
We consider a set of 12 spatial patterns, i.e, 12 smiley faces
gradually changing from a sad to happy face. The images of
size 256 x 256 are recorded by an intensified camera with a
CCD detector array (ICCD) triggered by a Perkin Elmer silicon
SPAD (see [26], [27] for more details about data acquisition and
setup of the ghost-imaging instrument). Each face is observed
over 300 seconds with a frame rate of 1Hz, leading to 300 frames

per face position. The ICCD acts here as a non photon-number
resolving SPD, and thus provides binary images. The average
intensity profile relates to the image of the faces formed from a
polished silicon wafer onto which was patterned a microscopic
gold test target. At the wavelength considered, the silicon is
transparent whereas the gold layer is not. Consequently, the ac-
quired images are darker in the region where the gold target is
present. The laser source is adjusted so that the average number
of detected photons per pixel and per frame is significantly lower
than 5% (E [z; j+] = 2.3 x 10~* and z; ;, < 2%, V(i, j,1)). In
other word, the probability of having more than one photon
reaching a given pixel within a given 1s frame is extremely
low. In this extremely sparse photon-limited imaging regime,
the distributions of the photon count can be approximated by
Poisson distributions. Fig. 7 depicts the accumulated photon
counts obtained by summing the 300 images associated with
each position.
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Fig. 7. Measured photon counts, obtained by integration of groups of 300
successive images.

TABLE IV
AVERAGE NORMALIZED MEAN SQUARE ERRORS (NMSES) (x1072)
OBTAINED FOR DIFFERENT EXPOSURE TIMES/NUMBER OF FRAMES PER GROUP.

Integration time per frame (in seconds)

25 50 100 300
Per frame photon counts 4423 844.7 1689.4 5068.1
Per frame detection counts 417.3 824.0 1608.7 4379.3
Per pixel detection rate 0.64% 1.26% 2.45%  6.68%
NMSE 0.220 0.071 0.050 0.017

Fig. 8. Images denoised using NL-PCA and used as reference to compute
NMSE:s. The input images are obtained by summing groups of 300 successive
original images during which the intensity field is stationary.

To illustrate the benefits of the proposed denoising method,
we denoise images that would have been obtained using expo-
sure times of 255,50 s, 100 s and 300 s. Such images are obtained
by integrating non-overlapping groups of 25 up to 300 images.
These images (approximately corrupted by Poisson noise) are
then used to produce binary images associated with the pres-
ence/absence of detected photons within successive 25s, 50s,
100s or 300 s periods. The top rows of Table IV show the average
number of photons in the images to be enhanced. In particular,
less than 500 photons per frame are available when considering
the shortest exposure, which corresponds to a per pixel detection

Fig. 9. Examples of images using BID-GMRF-3D. The input images are
obtained by summing groups of 300 successive original images, during which
the underlying intensity field is stationary. The images are then thresholded
(presence/absence of detected photons) to simulate longer integration times
(300 s here).

Fig. 10. Examples of images using BID-GMRF-3D. The input images are
obtained by summing groups of 50 successive original images, during which
the underlying intensity field is stationary. The images are then thresholded
(presence/absence of detected photons) to simulate longer integration times
(50s here). Each face position is thus visible in six successive images and the
images presented correspond to the first image of each position.

rate less than 1%. The bottom row of Table IV compares the
NMSEs obtained using BID-GMRF-2D as denoising method,
where the reference intensities, depicted in Fig. 8, are those ob-
tained with NL-PCA on the integrated groups of 300 images.
Note that the images depicted in Fig. 8 present some vertical
artifacts and should not be considered as absolute ground truth.
However, since NL-PCA provides the visually most accurate
enhanced images (over all the existing methods considered in
Section VI), this algorithm has been used as reference. Note
that given the reduced numbers of frames considered (only 1
frame per pattern for the longest exposure of 300 s), we did not
use BID-GMRF-3D which would have exhibit significantly es-
timation bias at the beginning and at the end of the sequence, as
in Fig. 6. Moreover, due to the low photon counts depicted
in Table IV, PID-GMRF-2D provides similar results which
are thus not omitted. For completeness, examples of denoised
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Fig. 11. Examples of images using BID-GMRF-3D. The input images are
obtained by summing groups of 25 successive original images, during which
the underlying intensity field is stationary. The images are then thresholded
(presence/absence of detected photons) to simulate longer integration times
(25s here). Each face position is thus visible in twelve successive images and
the images presented correspond to the first image of each position.

images extracted from the whole image sequences are provided
in Figs. 9, 10, and 11. These results show that it is possible
to use much lower frame rates (combined with lower overall
exposures) and still obtain satisfactory intensity field estimates,
which can be particularly useful to reduce the amount of data
(divided by up to 300 here) to be stored, transmitted and/or
processed. These results also show that the proposed method
can be used to enhance image sequences of dynamic scenes
constructed from extremely sparse single-photon data.

VIII. CONCLUSION

Here we have proposed a new Bayesian method for binary
image denoising. The model considered assumed that each
pixel measurement follows a Bernoulli distribution whose mean
is related by a nonlinear function to the underlying intensity
value to be recovered. In contrast with classical Poisson
noise models, this model is particularly adapted for data
recorded single-photon detectors which are not photon-number
resolving, especially when the unknown mean intensity value
tends to 1. A gamma Markov random field was proposed to
design an intensity prior model able and capture the spatial
and temporal structures of the unknown intensity field. A
Markov chain Monte Carlo method was then developed to
exploit the resulting posterior distribution and estimate the
parameters of interest, including the regularization parameters
of the Markov random field (thus avoiding parameter tuning
via cross-validation). By including a minor modification of
the algorithm, we have shown that the proposed method can
also be applied to data corrupted by Poisson noise. A series
of simulations conducted on synthetic data demonstrated the
benefits (robustness) of the proposed method, especially for
extremely sparse data. Moreover, we have demonstrated that
the proposed version assuming Poisson noise is able to compete
with state-of-the art denoising methods (based on a Poisson

noise assumption). We have shown that for average intensities
close to 1, it is possible to obtain from saturating sensors, an
estimation accuracy close to that obtained using non-saturating
sensors. For instance, the results of simulations conducted using
real sparse single-photon measurements illustrated how one
can reduce the amount of data (by reducing the frame rate here
but one could also adjust the laser source and reduce the overall
acquisition time when possible) while being able to estimate the
intensity profile without a significant performance degradation.

Here we used a hidden gamma Markov random field to build
a prior model. However, we noticed that dictionary learning
techniques (such as NL-PCA) can significantly improve the de-
noising performance in the presence of sparse single-photon
images. Including such considerations in future binary image
denoising methods is clearly interesting. Moreover, the gener-
alization of the proposed methodology for images following
binomial distributions (e.g., sum of binary images) is currently
under investigation.

APPENDIX: PROPOSED SAMPLING STRATEGY

The main steps of the proposed PID-GMRF and BID-GMRF
methods detailed in Section IV are summarized in Algo. VIII
below.

Algorithm 1: Poisson/Bernoulli image denoising (PID-
GMRF/BID-GMRF)

1: Fixed input parameters: o, (3, number of burn-in
iterations Vp;, total number of iterations Vyc, temporal
correlation binary label z3p € (0, 1), observation model
m (0 for Poisson and 1 for Bernoulli).

2: Initialization (k = 0)
3: Set X(©), U and W)
4: Iterations (1 < k < Nyc)
5: Sample U ~ f(U®) X1 o) in (8b)
6: if z3p = 1 then
7: Sample W*) ~ f(W|X#=1)3) in (8c)
8: end if
9: for (i,j,t) € Vx x 7 do
10:  if m=0 then
11: Sample z} ; , using (U*), W(*)) and (14)
(z3p = 0)or (15) (z3p = 1)
12:  else
13: Sample x* using (14) (z3p = 0) or (15) (z3p = 1)
14: Compute p and p using (17) (z3p = 0) or (18)
(z3p = 1)
15: Sample v ~ U 1) (V)
16: if v < p then
17: Seta"), = o
18: else
19: Set xfkj), = :rfk]*,l)
20: end if
21:  endif
22: end for

23: Optional: Update « or (v, 3) using [20].
24: Setk =k + 1.




ALTMANN et al.: BAYESIAN APPROACH TO DENOISING OF SINGLE-PHOTON BINARY IMAGES

[1]

[2]

[3]

[4]

[5]

[6]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernandez, A. M. Wallace,
and G. S. Buller, “Long-range time-of-flight scanning sensor based on
high-speed time-correlated single-photon counting,” Appl. Opt., vol. 48,
no. 32, pp. 6241-6251, Nov. 2009.

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity
in a photon counting depth imager operating at kilometer distances,” Opt.
Express, vol. 18, no. 9, pp. 9192-9206, Apr. 2010.

A. M. Wallace, J. Ye, N. J. Krichel, A. McCarthy, R. J. Collins, and
G. S. Buller, “Full waveform analysis for long-range 3d imaging laser
radar,” EURASIP J. Adv. Signal Process., vol. 2010, no. 1, pp. 896-708,
2010.

A. McCarthy et al., “Kilometer-range depth imaging at 1550 nm wave-
length using an InGaAs/InP single-photon avalanche diode detector,” Opt.
Express, vol. 21, no. 19, pp. 22 098-22 113, Sep. 2013.

A. Maccarone et al., “Underwater depth imaging using time-correlated
single-photon counting,” Opt. Express, vol. 23, no. 26, pp. 33 911-33 926,
Dec. 2015.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar
waveform based analysis of depth images constructed using sparse single-
photon data,” IEEE Trans. Image Process., vol. 25, no. 5, pp. 1935-1946,
May 2016.

A. Kirmani et al., “First-photon imaging,” Science, vol. 343, no. 6166,
pp. 58-61, 2014.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and
M. J. Padgett, “3d single-pixel video,” J. Opt., vol. 18, no. 3, 2016,
Art. no. 035203.

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett,
“Improving the signal-to-noise ratio of single-pixel imaging using dig-
ital microscanning,” Opt. Express, vol. 24, no. 10, pp. 10 476-10 485,
May 2016.

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based
ghost imaging using a single-photon-sensitive camera,” New J. Phys.,
vol. 15, no. 7, 2013, Art. no. 073032.

R. S. Aspden et al., “Photon-sparse microscopy: Visible light imaging
using infrared illumination,” Optica, vol. 2, no. 12, pp. 1049-1052,
Dec. 2015. [Online]. Available: http://www.osapublishing.org/optica/
abstract.cfm?URI=optica-2-12-1049

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett,
“Imaging with a small number of photons,” Nature Commun., vol. 6, 2015,
Art. no. 5913.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review
article: Single-photon sources and detectors,” Rev. Sci. Instrum., vol. 82,
no. 7, 2011, Art. no. 071101.

J. M. Zwier, G. J. V. Rooij, J. W. Hofstraat, and G. J. Brakenhoff, “Im-
age calibration in fluorescence microscopy,” J. Microsc., vol. 216, no. 1,
pp. 15-24, 2004.

A. Jezierska, H. Talbot, C. Chaux, J.-C. Pesquet, and G. Engler, “Poisson-
Gaussian noise parameter estimation in fluorescence microscopy imag-
ing,” in Proc. IEEE Int. Symp. Biomed. Imaging, Barcelona, Spain, May
2012, pp. 1663-1666.

M. Figueiredo and J. Bioucas-Dias, “Restoration of poissonian images
using alternating direction optimization,” IEEE Trans. Image Process.,
vol. 19, no. 12, pp. 3133-3145, Dec. 2010.

Z.T. Harmany, R. F. Marcia, and R. M. Willett, “This is spiral-tap: Sparse
poisson intensity reconstruction algorithms—Theory and practice,” IEEE
Trans. Image Process., vol. 21, no. 3, pp. 1084-1096, Mar. 2012.

F. Orieux, O. Feron, and J. F. Giovannelli, “Sampling high-dimensional
gaussian distributions for general linear inverse problems,” IEEE Signal
Process. Lett., vol. 19, no. 5, pp. 251-254, May 2012.

O. Dikmen and A. Cemgil, “Gamma markov random fields for audio
source modeling,” IEEE Trans. Audio, Speech,, Lang. Process., vol. 18,
no. 3, pp. 589-601, Mar. 2010.

M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, “Maximum
marginal likelihood estimation of the granularity coefficient of a Potts-
Markov random field within an MCMC algorithm,” in Proc. IEEE-SP
Workshop Statist. Signal Process., Gold Coast, Australia, Jul. 2014,
pp. 121-124.

C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed.
New York, NY, USA: Springer-Verlag, 2004.

C. P. Robert and D. Cellier, “Convergence control of MCMC algorithms,”
in Discretization and MCMC Convergence Assessment, C. P. Robert, Ed.
New York, NY, USA: Springer-Verlag, 1998, pp. 27-46.

471

[23] J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise
reduction with non-local PCA,” J. Math. Imaging Vis., vol. 48, no. 2,
pp. 279-294, 2014.

A. Oh and R. Willett, “Regularized non-Gaussian

noising,” Math.-Opt. Control, Aug. 2015. [Online].
http://adsabs.harvard.edu/abs/2015arXiv1508029710.

M. Pereyra, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Maximum-a-
posteriori estimation with unknown regularisation parameters,” in Proc.
Eur. Signal Process. Conf., Aug. 2015, pp. 230-234.

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and
M. J. Padgett, “The influence of non-imaging detector design on heralded
ghost-imaging and ghost-diffraction examined using a triggered ICCD
camera,” Opt. Express, vol. 21, no. 25, pp. 30 460-30 473, Dec. 2013.

R. S. Aspden, P. A. Morris, R. He, Q. Chen, and M. J. Padgett, “Her-
alded phase-contrast imaging using an orbital angular momentum phase-
filter,” J. Opt., vol. 18, no. 5, 2016, Art. no. 055204. [Online]. Available:
http://stacks.iop.org/2040-8986/18/i=5/a=055204

[24] image de-

Available:

[25]

[26]

[27]

Yoann Altmann (M’14) was born in Toulouse, France, in 1987. He re-
ceived the Engineering degree in electrical engineering from Ecole Nationale
Supérieure d’Electronique, d’Electrotechnique, d’Informatique, d’Hydraulique
et des Téécommunications, Toulouse, France, and the M.Sc. degree in sig-
nal processing from the National Polytechnic Institute of Toulouse (INP
Toulouse), Toulouse, France, both in 2010, and the Ph.D. degree from INP
Toulouse, Toulouse, France, in 2013. From 2014 until 2016, he was with the
Heriot-Watt University, Edinburgh, as a Post-Doctoral Researcher. Since 2017,
he has been an Assistant Professor in the Institute of Sensors, Signals and Sys-
tems, School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh, U.K. His current research interests include statistical signal and
image processing, with a particular interest in Bayesian inverse problems with
applications to remote sensing and biomedical imaging.

Reuben Aspden received the Graduate degree and the MSci. degree in physics
in 2011 from the University of Glasgow, Glasgow, Scotland, and the Ph.D.
degree in 2015. He continued his work on imaging using single photons as
part of the Quantic UK Quantum Technology hub following his Ph.D. Since
leaving the University of Glasgow at the end of 2016, he has been involved in
community development and educational outreach.

Miles Padgett is the Kelvin Chair of natural philosophy at the University
of Glasgow, Glasgow, Scotland. He is fascinated by light both classical and
quantum—specifically light’s momentum. In 2001, he was elected to Fellowship
of the Royal Society of Edinburgh and in 2014 the Royal Society, the U.K.’s
National Academy. In 2009, with Les Allen, he received the IoP Young Medal,
in 2014 the RSE Kelvin Medal, in 2015 the Science of Light Prize from the
EPS, and in 2017 the Max Born Award of the OSA.

Steve McLaughlin (F’11) was born in Clydebank, Scotland, in 1960. He re-
ceived the B.Sc. degree in electronics and electrical engineering from the Uni-
versity of Glasgow, Glasgow, Scotland, in 1981, and the Ph.D. degree from the
University of Edinburgh, Edinburgh, Scotland, in 1990. From 1981 to 1984, he
was a Development Engineer in industry involved in the design and simulation
of integrated thermal imaging and fire control systems. From 1984 to 1986, he
worked on the design and development of high-frequency data communication
systems. In 1986, he joined the Deptartment of Electronics and Electrical En-
gineering, University of Edinburgh as a research fellow, where he studied the
performance of linear adaptive algorithms in high noise and nonstationary en-
vironments. In 1988, he joined the academic staff at Edinburgh, and from 1991
until 2001 he held a Royal Society University Research Fellowship to study
nonlinear signal processing techniques. In 2002, he was awarded a personal
Chair in Electronic Communication Systems at the University of Edinburgh.
In October 2011, he joined Heriot-Watt University as a Professor of Signal
Processing and Head of the School of Engineering and Physical Sciences. His
research interests include the fields of adaptive signal processing and nonlinear
dynamical systems theory and their applications to biomedical , energy and
communication systems. He is a Fellow of the Royal Academy of Engineering,
Royal Society of Edinburgh, and Institute of Engineering and Technology.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


