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RAISR: Rapid and Accurate Image Super Resolution
Yaniv Romano, John Isidoro, and Peyman Milanfar, Fellow, IEEE

Abstract—Given an image, we wish to produce an image of larger
size with significantly more pixels and higher image quality. This
is generally known as the single image super-resolution problem.
The idea is that with sufficient training data (corresponding pairs
of low and high resolution images) we can learn set of filters (i.e., a
mapping) that when applied to given image that is not in the train-
ing set, will produce a higher resolution version of it, where the
learning is preferably low complexity. In our proposed approach,
the run-time is more than one to two orders of magnitude faster
than the best competing methods currently available, while pro-
ducing results comparable or better than state-of-the-art. A closely
related topic is image sharpening and contrast enhancement, i.e.,
improving the visual quality of a blurry image by amplifying the
underlying details (a wide range of frequencies). Our approach
additionally includes an extremely efficient way to produce an im-
age that is significantly sharper than the input blurry one, without
introducing artifacts, such as halos and noise amplification. We
illustrate how this effective sharpening algorithm, in addition to
being of independent interest, can be used as a preprocessing step
to induce the learning of more effective upscaling filters with built-
in sharpening and contrast enhancement effect.

Index Terms—Filter Learning, image enhancement, image
sharpening, super resolution.

I. INTRODUCTION

S INGLE Image Super Resolution (SISR) is the process
of estimating a High-Resolution (HR) version of a Low-

Resolution (LR) input image. This is a well-studied problem,
which comes up in practice in many applications, such as zoom-
in of still and text images, conversion of LR images/videos to
high definition screens, and more. The linear degradation model
of the SISR problem is formulated by

z = DsHx, (1)

where z ∈ RM×N is the input image, x ∈ RM s×N s is the un-
known HR image, both are held in lexicographic ordering. The
linear operator H ∈ RM N s2×M N s2

blurs the image x, followed
by a decimation in a factor of s in each axis, which is the
outcome of the multiplication by Ds ∈ RM N×M N s2

. In the SR
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task, the goal is to recover the unknown underlying imagex from
the known measurement z. Note that, in real world scenarios,
the degradation model can be non-linear (e.g. due to compres-
sion) or even unknown, and may also include noise.

The basic methods for upscaling a single image are the lin-
ear interpolators, including the nearest-neighbor, bilinear and
bicubic [1], [2]. These methods are widely used due to their
simplicity and low complexity, as the interpolation kernels (up-
scaling filters) are not adaptive to the content of the image.
However, naturally, these linear methods are limited in recon-
structing complex structures, often times result in pronounced
aliasing artifacts and over-smoothed regions. In the last decade
powerful image priors were developed, e.g., the self-similarity
[3]–[6], sparsity [7]–[12], and Gaussian Mixtures [13], leading
to high quality restoration with the cost of increased complexity.

In this paper we concentrate on example-based methods [8],
[9], [11], [14]–[18], which have drawn a lot of attention in recent
years. The core idea behind these methods is to utilize an exter-
nal database of images and learn a mapping from LR patches to
their HR counterparts. In the learning stage, LR-HR pairs of im-
age patches are synthetically generated, e.g., for 2× upscaling, a
typical size of the HR patch is 6× 6 and the one of the syntheti-
cally downscaled LR patch is 3× 3. Then, the desired mapping
is learned and regularized using various local image priors.

The sparsity model is one such prior [8], [9], where the learn-
ing mechanism results in a compact (sparse) representation of
pairs of LR and HR patches over learned dictionaries. Put differ-
ently, per each LR patch, these methods construct a non-linear
adaptive filter (formulated as a projection matrix), which is a
combination of a few basis elements (the learned dictionary
atoms) that best fit to the input patch. Applying the filter that is
tailored to the LR patch leads to the desired upscaling effect.

The Anchored Neighborhood Regression (ANR) [10] keeps
the high quality reconstruction of [8] and [9] while achieving a
significant speed-up in runtime. This is done by replacing the
sparse-coding step that computes the compact representation
of each patch over the learned dictionaries, with set of pre-
computed projection matrices (filters), which are the outcome
of ridge regression problems. As such, at runtime, instead of
applying sparse-coding, ANR suggest searching for the nearest
atom to the LR patch, followed by a multiplication by the cor-
responding pre-computed projection matrix. A follow-up work,
called A+ [11], improves the performance of ANR by learning
regressors not only from the nearest dictionary atoms, but also
from the locally nearest training samples, leading to state-of-
the-art restoration.

SRCNN [16] is another efficient example-based approach
that builds upon deep Convolutional Neural Network (CNN)
[19], and learns an end-to-end mapping from LR images to
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their HR counterparts. Note that, differently from sparsity-based
techniques, SRCNN does not explicitly learn the dictionaries
for modeling the patches. In this case, the model is implicitly
learned by the hidden convolutional layers.

The above mentioned SISR methods result in impressive
restoration, but with the cost of (relatively) high computational
complexity. In this paper we suggest a learning-based frame-
work, called RAISR, which produces high quality restoration
while being two orders of magnitude faster than the current
leading algorithms, with extremely low memory requirements.

The core idea behind RAISR is to enhance the quality of a
very cheap (e.g. bilinear) interpolation method by applying a
set of pre-learned filters on the image patches, chosen by an
efficient hashing mechanism. Note that the filters are learned
based on pairs of LR and HR training image patches, and the
hashing is done by estimating the local gradients’ statistics.
As a final step, in order to avoid artifacts, the initial upscaled
image and its filtered version are locally blended by applying a
weighted average, where the weights are a function of a structure
descriptor. We harness the Census Transform (CT) [20] for the
blending task, as it is extremely fast and cheap descriptor of
the image structure which can be utilized to detect structure
deformations that occur due to the filtering step.

A closely related topic to SISR is image sharpening, aim-
ing to amplify the structures/details of a blurry image. The basic
sharpening techniques apply a linear filter on the image, as in the
case of unsharp masking [21] or Difference of Gaussians (DoG)
[22], [23]. These techniques are highly effective in terms of com-
plexity, but tend to introduce artifacts such as over-sharpening,
gradient reversals, noise amplification, and more. Similarly to
SISR, improved results can be obtained by relying on patch pri-
ors, where the sensitivity to the content/structure of the image
is the key for artifact-free enhancement [24]–[28]. For example,
with the cost of increased complexity compared to the linear
approach, the edge-aware bilateral filter [29], [30], Non-Local
Means [3] and guided filter [25] produce impressive sharpening
effect.

As a way to generate high-quality sharp images, one can learn
a mapping from LR images to their sharpened HR versions,
thus achieving a built-in sharpening/contrast-enhancement ef-
fect “for free”. Furthermore, the learning stage is not limited to
a linear degradation model (as in Eq. (1)), as such, learning a
mapping from compressed LR images to their sharpened HR
versions can be easily done, leading to an “all in one” mech-
anism that not only increases the image resolution, but also
reduces compression artifacts and enhances the contrast of the
image.

Triggered by this observation, we develop a sharpener as
well, which is of independent interest. The proposed sharpener
is highly efficient and able to enhance both fine details (high
frequencies) and the overall contrast of the image (mid-low fre-
quencies). The proposed method has almost similar complexity
to the linear sharpeners, while being competitive with far more
complex techniques. The suggested sharpener is based on ap-
plying DoG filters [22], [23] on the image, which are capable to
enhance a wide range of frequencies. Next, a CT-based structure-
aware blending step is applied as a way to prevent artifacts due

Fig. 1. The basic learning and application scheme of a global filter that maps
LR images to their HR versions. (a) Learning Stage. (b) Upscaling Stage.

to the added content-aware property (similar mechanism to the
one suggested in the context of SISR).

This paper is organized as follows: In Section II we describe
the global learning and upscaling scheme, formulating the core
engine of RAISR. In Section III we refine the global approach by
integrating the initial upscaling kernel to the learning scheme. In
Section IV we describe the overall learning and upscaling frame-
work, including the hashing and blending steps. The sharpening
algorithm is detailed in Section V. Experiments are brought in
Section VI, comparing the proposed upscaling and sharpening
algorithm with state-of-the-art methods. Conclusions and future
research directions are given in Section VII.

II. FIRST STEPS: GLOBAL FILTER LEARNING

Given an initial (e.g. bilinear in our case) upscaled versions of
the training database images, yi ∈ RM×N , with i = 1, · · · , L,
we aim to learn a d× d filter h that minimizes the Euclidean
distance between the collection {yi} and the desired training HR
images {xi}. Formally, this is done by solving a least-squares
minimization problem

min
h

L∑

i=1

‖Aih− bi‖22 (2)

where h ∈ Rd2
denotes the filter h ∈ Rd×d in vector-notation;

Ai ∈ RM N×d2
is a matrix, composed of patches of size d× d,

extracted from the image yi , each patch forming a row in the
matrix. The vector bi ∈ RM N is composed of pixels from xi ,
corresponding to the center coordinates of yi patches. The block
diagram, demonstrating the core idea of the learning process is
given in Fig. 1(a).

In practice, the matrix A can be very large, so we employ two
separate approaches to control the computational complexity of
estimating the filter. First, in general not all available patches
needs to be used in order to obtain a reliable estimate. In fact,
we typically construct Ai and bi by sampling K patches/pixels
from the images on a fixed grid, where K �MN . Second,
the minimization of the least-squares problem, formulated in
Eq. (2), can be recast in a way that significantly reduces both
memory and computational requirements. To simplify the expo-
sition, the following discussion is given in the context of filter
learning based on just one image, but extending the idea to
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several images and filters is trivial. The proposed approach re-
sults in an efficient solution for the learning stage where the
memory requirements are only on the order of the size of the
learned filter. The solution is based on the observation that in-
stead of minimizing Eq. (2), we can minimize

min
h
‖Qh−V‖22 , (3)

where Q = AT A and V = AT b.
Notice that Q is a small d2 × d2 matrix, thus requiring rel-

atively little memory. The same observation is valid for V that
requires less memory than holding the vector b. Furthermore,
based on the inherent definition of matrix-matrix and matrix-
vector multiplications, we in fact avoid holding the whole
matrix (and vector) in memory. More specifically, Q can
be computed cumulatively by summing chunks of rows (for
example sub matrices Aj ∈ Rq×d2

, q �MN ), which can be
multiplied independently, followed by an accumulation step; i.e.

Q = AT A =
∑

j

AT
j Aj (4)

The same observation is true for matrix-vector multiplication

V = AT b =
∑

j

AT
j bj , (5)

where bj ∈ Rq is a portion of the vector b, corresponding to
the matrix Aj . Thus, the complexity of the proposed learning
scheme in terms of memory is very low – it is in the order of the
filter size. Moreover, using this observation we can parallelize
the computation of AT

j Aj and AT
j bj , leading to a speedup in

the runtime. As for the least squares solver itself, minimizing
Eq. (3) can be done efficiently since Q is a positive semi-
definite matrix, which perfectly suits a fast conjugate gradients
solver [31].

To summarize, the learning stage is efficient both in terms
of the memory requirements and ability to parallelize. As dis-
played in Fig. 1(b), at run-time, given a LR image (that is not
in the training set), we produce its HR approximation by first
interpolating it using the same cheap upscaling method (e.g. bi-
linear) that is used in the learning stage, followed by a filtering
step with the pre-learned filter.

III. REFINING THE CHEAP UPSCALING KERNEL: DEALING

WITH ALIASING

The “cheap” upscaling method we employ as a first step,
can be any method, including a non-linear one. However, in
order to keep the low complexity of the proposed approach, we
use the bilinear interpolator as the initial upscaling method1.
Inspired by the work in [15], whatever the choice of the initial
upscaling method, we make the observation that when aliasing
is present the input LR image, the output of the initial upscaler
will generally not be shift-invariant to this aliasing.

As illustrated in Fig. 2, in the case of upscaling by a factor of
2 in each axis, the interpolation weights of the bilinear kernel

1We also restrict the discussion mainly to the case of 2× upscaling to keep
the discussion straightforward. Extensions will be discussed at the end of this
section.

Fig. 2. Bilinear upscaling by a factor of 2 in each axis. There are four types
of pixels, denoted by P1-P4, corresponding to the four kernels that are applied
during the bilinear interpolation.

Fig. 3. Spatially varying learning scheme of four global filters, taking into
consideration the internal structure of the bilinear.

Fig. 4. Visualization of the four global filters, corresponding to P1-P4 type of
pixels, in the pixel domain (a-d), along with their magnitude in the frequency
domain (e-f), where the warmer the color, the larger the value. The filters are
learned on Fig. 2 image: (a) P1-Filter, (b) P2-Filter, (c) P3-Filter, (d) P4-Filter,
(e) P1-Spectrum, (f) P2-Spectrum, (g) P3-Spectrum, (h) P4-Spectrum.

vary according to the pixel’s location. As can be seen, there are
four possible kernels that are applied on the LR image according
to the type of the pixel, denoted by P1-P4. Since a convolution
of two linear filters can be unified into one filter (in our case,
the first is the bilinear and the second is the pre-learned one)2,
we should learn four different filters, corresponding to the four
possible types of pixels, as demonstrated in Fig. 3.

The importance of this observation is illustrated in Fig. 4,
which plots examples of actual learned filters, along with their
magnitude in the frequency domain. The obtained filters act like

2This observation is a promising way to further speed up the algorithm and
reduce the overall complexity.
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Fig. 5. Applying the four spatially varying pre-learned filters on a LR image.

bandpass filters, amplifying the mid-frequencies, and suppress-
ing the high-frequencies (which contain aliasing components)
of the interpolated image. The learned filters have similar mag-
nitude response (Fig. 4(e)–4(h)), but different phase response
(Fig. 4(a)–4(d)), standing in agreement with the four different
shifted versions of the interpolation kernels.

On the application side, similarly to the core/naive upscaling
idea, we first upscale the LR image using the bilinear interpo-
lator. Then, differently from the naive approach, we apply the
pre-learned filters according to the type of the pixel, followed
by an aggregation step that simply combines the outcome of the
filtered patches (resulting in a pixel) to an image. This process
is illustrated in Fig. 5.

Notice that a similar observation holds for upscaling by any
other integer factor s. For example, upscaling by a factor of 3
implies that we should learn 9 filters, one per each pixel-type.
Similarly, when upscaling by a factor of 4, there are 16 types of
pixels. As already mentioned, in order to keep the flow of the
explanations, we will concentrate on the 2× scenario since the
generalization to other scaling factors is straightforward.

IV. RAISR: HASHING-BASED LEARNING AND UPSCALING

Generally speaking, the global image filtering is fast and
cheap, as it implies the application of one filter per patch. Since
the learning scheme reduces the Euclidean distance between the
HR and the interpolated version of the LR images, the global
filtering has the ability to improve the restoration performance of
various linear upscaling methods. However, the global approach
described so far is weaker than the state-of-the-art algorithms,
e.g., sparsity-based methods [8]–[11] or the neural networks
based ones [16] that build upon large amount of parameters,
minimizing highly nonlinear cost functions. In contrast to these
methods, the global approach is not adaptive to the content of
the image, and its learning stage estimates only a small amount
of parameters.

Adaptivity to the image content can be achieved by dividing
the image patches into clusters, and constructing an appropri-
ate filter per each cluster (e.g. as done in [10], [11]). However,
the clustering implies the increase of the overall complexity of
the algorithm, which is an outgrowth that we want to avoid.
Therefore, instead of applying “expensive” clustering (e.g.
K-means [32], GMM [33], [34], dictionary learning [8], [9],
[11], [14]–[18]), we suggest using an efficient hashing approach,
leading to adaptive filtering that keeps the low complexity of the

Fig. 6. Hashing based learning and upscaling schemes. We suggest dividing
the patches into “buckets”, where each bucket contains patches with similar
geometry (can be considered as a cheap clustering method). Then, a least squares
fitting is applied per each bucket and possible shift. At run-time the hash-table
key is computed per each patch, leading to the corresponding pre-learned locally
adaptive filters.

linear filtering. More specifically, the local adaptivity is achieved
by dividing the image patches into groups (called “buckets”)
based on an informative and “cheap” geometry measures, which
utilize the statistics of the gradients (a detailed description is
given in Section IV-A). Then, similarly to the global approach,
we also learn four filters, but this time per each bucket. As a
consequence, the proposed learning scheme results in a hash-
table of filters, where the hash-table keys are a function of the
local gradients, and the hash-table entries are the corresponding
pre-learned filters. An overview of the proposed hashing-based
learning is shown in Fig. 6(a).

Given the hash-table, containing filters per quantized edge-
statistic descriptor (more details in Section IV-A), the upscaling
procedure becomes very effective. Following Fig. 6(b), we com-
pute the hash-table key per each patch of the initial interpolated
image, pointing to the relevant filters (four filters, one per patch-
type), to be applied on the corresponding patch.

Similarly to the global learning process (see Section II), we
utilize the matrix-matrix and matrix-vector multiplications once
again. Per each bucket q, we learn a filter hq by minimizing the
following cost function

min
hq

‖AT
q Aqhq −AT

q bq‖22 , (6)

where Aq and bq are the patches and pixels that belong to
the q-th bucket. In this case, the low memory requirements
of the proposed learning process are crucial, especially for
large hash-table that requires millions of examples to produce a
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reliable estimate for the filters. As a consequence, by utilizing
the observation described in Section II, we perform a sub-matrix
accumulation on a sub-image block basis, leading to a learning
process that can handle any desired number of examples.

A. Hash-Table Keys: Local Gradient Statistics (Angle,
Strength, Coherence)

Naturally, there are many possible local geometry measures
that can be used as the hash-table keys, whereas the statis-
tics of the gradients has a major influence on the proposed
approach. We suggest evaluating the local gradient character-
istics via eigenanalysis [35], which yields the gradient’s angle
and information about the strength and coherence of the nearby
gradients. Eigenanalysis also helps in cases of thin lines, stripes
and other scenarios that the mean gradient might be zero, yet
the neighborhood exhibits a strong directionality.

The direction, strength and coherence are computed by utiliz-
ing the

√
n×√n surroundings of each pixel, i.e., for the k-th

pixel we consider all the pixels that are located at k1 , . . . , kn .
The basic approach starts with a computation of 2× n matrix,
composed from the horizontal and vertical gradients, gx and gy ,
of the surroundings of the k-th pixel, expressed by

Gk =

⎡

⎢⎣
gxk 1

gyk 1
...

...
gxk n

gyk n

⎤

⎥⎦ . (7)

As stated in [35], the local gradient statistics can be computed
using the Singular Value Decomposition (SVD) of this matrix.
The right vector corresponds to the gradient orientation, and the
two singular values indicate the strength and spread of the gra-
dients. Since the work is being performed per-pixel, we hereby
focus on efficiency. We can compute those characteristics more
efficiently using an eigen-decomposition of GT

k Gk which is a
2× 2 matrix, which can be computed conveniently in a closed
form. Moreover, in order to incorporate a small neighborhood
of gradient samples per pixel, we employ a diagonal weighting
matrix Wk , constructed using a separable normalized Gaussian
kernel.

Following [35], the eigenvector φk
1 , corresponding to the

largest eigenvalue of GT
k WkGk , can be used to derive the

angle of the gradient θk , given by

θk = arctan(φk
1,y ,φk

1,x). (8)

Notice that due to the symmetry, a filter that corresponds to the
angle θk is identical to the one corresponding to θk + 180◦.

As shown in [35], the square root of the largest eigenvalue λk
1

is analogous to the “strength” of the gradient. The square root of
the smaller eigenvalue λk

2 can be considered as the “spread” of
the local gradients, or rather how much they vary in direction.
Both of these can be measured in units of intensity. The two
eigenvalues can be combined into a unitless measure known as
“coherence” [35]. The coherence value μk ranges from 0 to 1,
and formulated as

μk =

√
λk

1 −
√

λk
2√

λk
1 +

√
λk

2

. (9)

Algorithm 1: Computing the hash-table keys.
Inputs
1: Initial interpolated version of the LR image.
2: Qθ – Quantization factor for angle (e.g. 24).
3: Qs – Quantization factor for strength (e.g. 3).
4: Qμ – Quantization factor for coherence (e.g. 3).

Output
1: Hash-table keys per pixel, denoted by θk , λk

1 , and μk .
Process
• Compute the image gradients ;
• Construct the matrix GT

k WkGk , and obtain the gradients’
angle θk , strength λk

1 , and coherence μk ;

• Quantize: θi ←
⌈

θi

Qθ

⌉
λi

1 ←
⌈

λi
1

Qs

⌉
μi ←

⌈
μi

Qμ

⌉
, where �·	

is the ceiling function

Strength and coherence are very useful for detecting a va-
riety of different local image properties. A low strength and
low coherence often signifies a lack of image structure, and
usually corresponds to noise or compression artifacts. High
strength, but low coherence often indicates corners or other
multi-directional structure. Having a high coherence is gener-
ally an edge, or series of stripes in the same direction, with
the strength measuring the relative intensity of the stripes. Intu-
itively, strength and coherence allow us to detect semantically
different local image properties, so by using them as part of a
hash enables the filter learning process to adapt to these condi-
tions. As such, combining angle θk , strength λk

1 , and coherence
μk into a hash function, as detailed in Algorithm 1, can produce
a family of learned filters that are able to handle a variety of
situations.

In Fig. 7, one can see that bucketing by angle, coherence
and strength produces a wide variety of filters. The ones that
correspond to low coherency and strength tend to be bandpass
and directionally invariant in nature. As coherency increases, so
does the directionality of the filter, smoothing orthogonal to the
gradient, but strongly sharpening in the direction of the gradient.

B. Using Patch Symmetry for Nearly-Free 8× More
Learning Examples

The amount of data needed for effective and stable learning
of filter sets can be large. For instance, in practice, it takes at
least 105 patches to reliably learn a given filter of size 9× 9
or 11× 11. Say we decompose the patches into B buckets,
when using a hashed set of filters, this implies that we need 105

patches per bucket. However, reaching this amount using real
world training data is not as simple as using 105 × B patches.

The problem emerges from the observation that certain
hash values occur much more commonly than other hashes.
There are often many more horizontal and vertical structures
in imagery, and flat regions (such as sky, and painted surfaces)
are common. Intuitively, these common structures result in the
more common hashes.
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Fig. 7. Visualization of the learned filter sets for (a) 2×, (b) 3× and (c) 4×
upscaling, learned from using an angle, strength, and coherence based hashing
scheme. Per each subset of filters, the angle varies from left to right; the top,
middle, and bottom 3 rows correspond to low, medium and high coherence.
Within each set of 3 rows, gradient strength increases from top to bottom. As can
be inferred, the general trend is that as coherence increases, the directionality of
the filter increases. Also, as strength increases the intensity of the filter increases.
Notice how the 3× and 4× upscaling filters are not simply scaled versions of
the 2× filters, but also have extracted additional information from the training
data.

In order to make the patches that hash to uncommon hash
values more effective, we leverage the patch symmetry and
increase the learning power of each patch. More specifically,
we can generate 8 different example patches; four 90◦ rotations,
and four mirrored 90◦ rotations. Since 8 patches are generated
for each original patch, we are effectively incorporating 8 times
as much information for learning. Since each transformation is
a rotation and mirroring, the transformed patches often belong
to a different hash bucket and shift. For example, a patch that
is rotated by 90◦ changes the hash angle bucket by 90◦. A
visual demonstration of the proposed idea is given in Fig. 8,
which demonstrates a simplified hashing scheme with 4 angular
buckets on a polar graph, and how they get rebucketed from
x-flips, y-flips, and xy-swaps.

Moreover, the patch transformations do not need to be per-
formed as actual image transformations of each incoming patch,
which would be expensive. If the gradient angle dependent hash
bucket boundaries are symmetric to flips in x, y and xy-swaps,
the accumulation for transformed patches can be performed.

Fig. 8. Rebucketing for x-flips, y-flips, and xy-swaps. For example bucket ’B’
accounts for gradient angles between 45◦ and 90◦. When the patch is flipped
on the x-axis, the bucketing also needs to be reflected, as shown in the second
graph. The third graph shows y-flips, for which the subsequent modulo 180◦
operation maps back to the 0◦ to 180◦ range. The final diagram shows xy-swaps
(flip around the x=y line). The different possible combinations of x-flip, y-flip,
and xy-swaps account for the 8 different patch transformations.

Achieving this symmetry is a function of the hashing function,
and, in our case, having a number of angle buckets that is divis-
ible by 4 satisfies this requirement. As such, we can accumulate
the per bucket and per pixel-type matrices AT

q Aq and AT
q b

across all training samples, as suggested in Eq. (6). Then, the
symmetry can be applied as one last accumulation of permuted
matrices, which act as a set of symmetry augmented matrices. In
practice, the additional accumulation step to enable symmetry
takes less than 0.1% of the learning runtime (only a few addi-
tional seconds on a 3.4 GHz 6-Core Xeon desktop computer).

C. Built-in Suppression of Compression Artifacts and
Sharpening Effect

The linear degradation model that assumes blur and deci-
mation, as expressed in Eq. (1), is very common in the litera-
ture, but less so in the real world. For example, often times the
measured images are blurred with unknown kernel, compressed,
post-processed (e.g. by applying gamma correction), contami-
nated by noise, and more.

Learning a mapping that is capable to handle highly non-
linear degradation model can be done by RAISR. We found that
an effective suppression of compression artifacts is achieved by
learning a mapping from compressed LR images to their HR ver-
sions. Notice that an inherent compression parameter is the bit-
rate/compression quality, affecting the outcome of the learning
scheme. For example, JPEG encoders use a quality level param-
eter, which varies from 0 (the worst quality) up to 100 (the best
quality). Our experiments show that an aggressive compression
(e.g. 80) indeed suppresses the compression artifacts, but can
lead to smoothed result. We also found that a moderate com-
pression level (e.g. 95) in training helps to suppress the aliasing
in addition to alleviating moderate compression artifacts.
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Fig. 9. Census transform. (a) 3x3 window of pixels, (b) Boolean comparisons between the center pixel and its neighbors, (c)-(e) Numerical example: (c) Intensity
values, (d) The outcome of the boolean comparisons, (e) Census result, an 8 bit string that measures the local structure.

In the same spirit, gaining sharpening effect can be done by
learning a mapping from LR training images to their sharpened
HR versions. The stronger the sharpening during the training
phase, the sharper the outcome of RAISR upscaling. We should
emphasize that at runtime, we simply apply the pre-learned
filters (with possibly built-in sharpening effect); we do not apply
a separate sharpening step.

To conclude, by applying compression and sharpening as pre-
processing steps, the learned filters are capable to map input
compressed LR image to a sharpened HR output. As such, by
choice, RAISR not only estimates the missing spatial informa-
tion, but also suppresses the compression artifacts and amplifies
the underlying signal.

D. Blending: An Efficient Structure-Preserving Solution

The proposed learning scheme results in adaptive upscaling
filters, having built-in suppression of compression artifacts and
sharpening effect. Concentrating on the sharpening property,
two well known side-effects that exist are halos that appear along
edges and the noise amplification. Put differently, applying the
pre-learned filters on the initial interpolated image can lead to
structure deformations due to the sharpening property.

As a way to avoid a significant modification in structure, we
suggest measuring the local change in structure that occurred
due to the filtering step, and blend accordingly. In areas that the
structure of the initial interpolated image and the filtered one
is somewhat similar – we choose the filtered version, while in
areas that a major change is occurred by the filtering step – we
choose the initial upscaled image. This suggestion relies on the
observation that the cheap interpolated image typically does
an adequate job on areas of the image that contain low spatial
frequencies (e.g. flat regions). On the other hand, the higher spa-
tial frequencies that need to be reconstructed require the care-
ful treatment of the estimated filters. The blending therefore
combines the most appropriate contributions from the cheap
upscaled and the RAISR filtered image to yield the final re-
sult. One could have identified these regions ahead of time by
clustering and apply different treatment, however this would
have resulted in slower execution. In what follows, we present a
fast alternative that works on two output images for point-wise
blending.

Inspired by the CT descriptor [20], we suggest using its out-
come as an engine that detect structure deformations and revert
the errors of the upscaler. In order to understand the blending
mechanism, a brief overview about the CT is given here. This
transform maps the intensity values of the pixels within a small
squared region (e.g. of size 3× 3) to a bit string that captures the
image structure. The CT is based on the relative ordering of lo-
cal intensity values, and not on the intensity values themselves.

Fig. 10. RAISR upscaling that allows the amplification of high-frequencies
only. Applying the pre-leaned filters and avoiding halos and noise amplification.
The blending select the filtered pixels in structured areas, and the cheap upscaled
pixels in flat areas.

Fig. 11. RAISR upscaling that allows the amplification of wide range of
frequencies, enabling a contrast enhancement effect. Applying the pre-leaned
filters and avoiding halos and noise amplification. The blending mechanism
enables efficient structure and contrast enhancement, i.e., the amplification of a
wide range of frequencies.

Following Fig. 9, the center pixel’s intensity value (central cell in
Fig. 9(a) and (c) is replaced by a bit string descriptor of length 8
(Fig. 9(e)), composed of a set of boolean comparisons between
the center pixel and its 3× 3 neighborhood pixels (Fig. 9(b),
(d)). Note that, in practice, when applying the comparisons we
allow small variations in the intensity values, controlled by a
threshold.

Back to RAISR, we suggest two different blending schemes,
given in Fig. 10 and Fig. 11, which result in different enhance-
ment effects (as illustrated in Sections VI-A and VI-B, respec-
tively). The first scheme allows the pre-learned filters to enhance
only the high-frequencies of the image, leading to HR images
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that look natural, as required by the conventional SISR problem
(a demonstration is given in Fig. 14). While the second scheme
allows the enhancement of a wide range of frequencies, leading
to better looking images due to the contrast enhancement effect
(as shown in Fig. 17). Note that both versions aim at avoiding
artifacts and structure deformations.

We start with the first blending mechanism, which enables the
amplification of the high-frequencies only without modifying
the low/mid frequencies, as usually done by the conventional
SISR algorithms. Following Fig. 10, our suggestion is based on
the observation that in flat areas (or generally low frequency
areas), a linear upscaler produces good results because there are
no fine details to be recovered or aliasing to be suppressed, thus
there is no need to further improve the results in these areas. On
the other hand, the linear interpolation fails to recover structured
areas, where the proposed pre-learned filters play the key role.
Moreover, within the structured areas, especially along strong
edges, the pre-learned filters may introduce halos due to their
size (11× 11 or 9× 9) and the sharpening property.

For the sake of completeness, let us explain briefly how the
CT, which is indeed blind to the illumination, can be formulated
as a mechanism for edge/structure-detection, thus allowing us to
amplify only the high-frequencies of the image. In this case, the
blending weights are the outcome of the so called “randomness”
measure, which indicates how likely a pixel is in a structured
area. Specifically, the size of the Least Connected Component
(LCC) of the CT descriptor (in the case of Fig. 9(d) the LCC size
is 3) is translated to a weight, determining the strength/amount
of the structure within the descriptor window. In general, the
larger the size of LCC the higher the weight. Put differently,
by measuring the “randomness” of the bit string we can infer
whether the pixel is a part of an edge or not, forming the blend-
ing weights map. A block diagram of the proposed upscaling
scheme, which allows sharpening of high-frequencies only, is
given in Fig. 10.

Although the conventional SISR algorithms result in HR im-
ages that look natural, contrast enhancement (i.e. amplification
of low, mid, and high frequencies) often times can lead to better
looking images (a visual demonstration is given in Fig. 17). This
observation leads us to propose the second CT-based blending
scheme. According to Fig. 11, in order to measure the local
change in structure, we

1) Compute the CT of the initial upscaled image and the
filtered image, and then

2) Per each pixel – count the number of bits that were
changed, i.e., evaluate the Hamming distance, where the
larger the distance, the larger the change in structure.

As a consequence, by translating the number of bits that were
changed to weights, we form the desired blending map. Notice
that the CT is blind to the intensity value itself. Therefore,
differently from the randomness strategy (see Fig. 11), in this
case, the obtained blending map allows a local change in the
intensity (or contrast), while avoiding major changes in the
structure.

In the learning stage, the target HR images are pre-processed
by the proposed DoG sharpener (a detailed explanation about the
sharpener is given in Section V), which sharpens the structures

Fig. 12. CT-based DoG sharpener: Applying the DoG filters on the image,
followed by blending steps that utilize the outcome of the CT.

and improves the overall contrast of the image. As a result,
a built-in enhancement of both details (high-frequencies) and
contrast (mid/mid-low frequencies) is achieved when applying
the pre-learned filters. A block diagram of the upscaling scheme
that allows contrast enhancement (i.e. amplification of a wide
range of frequencies) is shown in Fig. 11.

Our experiments show that when enhancing only the high-
frequencies we obtain images that look natural, having the same
contrast of the LR ones (see Fig. 14). When enhancing a wider
range of frequencies (i.e. allowing contrast change), RAISR
produces better looking images (as illustrated in Fig. 17), but
there is no guarantee that the output will have the same nature of
the one of the LR. If we use the versions that clean compression
artifacts, do sharpening and contrast enhancement, the effect on
the PSNR or SSIM comparisons will not be very clear anymore.
So in terms of this quantitative measure, we might observe
deterioration, even if the images look excellent (even better
than the originals!).

To conclude, we introduced the RAISR algorithm that turns a
LR image into a HR image. The process is carried out in several
steps:

1) A very cheap (e.g. bilinear) interpolation method is used
to upscale the LR image.

2) A hash-table, containing set of filters, is learned from a
training database, where the hash-table keys are a function
of gradient properties. The filters are applied on the output
of step (i) to improve its quality.

3) The outputs of steps (i) and (ii) are selectively blended
(with different weights at each pixel) to produce the final
result.

As a closing remark, the whole learning phase is summa-
rized in Algorithm 2 and the upscaling stage is detailed in
Algorithm 3.

V. CT-BASED DOG SHARPENER

Inthis section we briefly revisit the Difference of Gaussian
(DoG) operator, which is widely used for edge enhancement
[23]. Then, we introduce a very efficient way to sharpen an
image using this operator while eliminating halos, noise ampli-
fication, and other similar common sharpening artifacts.

The DoG filter is formulated as a subtraction of two low-
pass filters – Gaussians with different standard-deviation σ. In
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general, a Gaussian filter attenuates the high frequencies of the
image, where the parameter σ controls the blurring effect, i.e.,
modifies the cut-off point of the filter. As such, when subtracting
two Gaussians with different standard-deviations, we manually
design a bandpass filter that reduces the amplitude of all fre-
quencies between two cut-off points. More formally, a DoG
filter Dσ,α,ρ(z) can be expressed by

Dσ,α,ρ(z) = (1 + ρ)Gσ (z)− ρGασ (z), (10)

where Gσ (z) is a Gaussian filter with standard deviation σ, the
scalar ρ controls the amplification factor, and α is a constant that
controls the range of the frequencies that we wish to pass. Ac-
cording to the chosen parameters, the filter Dσ,α,ρ(z) captures
different frequency-bands, thus being an efficient mechanism to
amplify a wide range of frequencies by choice [23].

Similarly to the explanation that is given in Section IV-D,
when dealing with sharpening two main issues are raised: (i)

Noise amplification, and (ii) Halos artifacts. The noise may ex-
ist in the whole frequency domain, thus amplified by the naive
DoG sharpener along with the underlying signal. In addition,
since this sharpener is not adaptive to the content/structure of
the image it tends to produce sharpening artifacts, such as ha-
los, over-sharpening, gradient-reversals and more. Differently
from the linear DoG filter, the content-aware non-linear filter-
ing methods [24]–[28] successfully avoid these common arti-
facts. However, computationally, they are more complex than
the linear approach.

We wish to keep the computational advantages of working
with the linear DoG filter, while gaining adaptivity to the content
of the image. Similarly to RAISR, we use the “blending trick”
(see Section IV-D) once again. By integrating the CT blender to
the naive DoG sharpener scheme we achieve the desired content-
aware property, in an extremely efficient fashion. The blending
is similar to the one that described in the context of RAISR,
with the exception that now there are several images that are
fused together. Specifically, the input image is locally blended
with its different enhanced versions, obtained by applying naive
DoG filters that amplifies different frequency-bands.

Moreover, in order to reduce computations, we suggest a cas-
cade implementation that utilizes the already filtered images
between the levels (see Fig. 12). For example, instead of ap-
plying a wide separable Gaussian filter in order to capture the
mid-low frequency band, one can filter the already computed
smoothed image, obtained in the previous cascade level. As can
be easily inferred, the complexity of the proposed sharpener is
very low; it is equivalent to the application of linear separable
filters on the image, followed by a pixel-wise weighted average.
Notice that the weights are a function of very cheap descriptor
that applies extremely basic manipulations on 3× 3 neighbor-
hood of a pixel (e.g. boolean comparisons and evaluation of
Hamming distance).
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Following Fig. 12, notice that different blending mechanisms
leads to different enhancement effect: When counting the mod-
ified bits of the CT descriptor, we are capable to enhance the
contrast of the image (even in relatively low-frequencies). On
the other hand, when choosing the randomness measure as a
blending map, we enhance the content only along edges and
structures.

VI. EXPERIMENTS

In this section we test the proposed algorithm in various
scenarios. First, in the context of the conventional SISR, the
effectiveness of RAISR is tested and compared to several state-
of-the-art algorithms for 2×, 3×, and 4× upscaling. Then, the
abilities of the proposed algorithm to tackle real-world scenar-
ios are demonstrated by applying RAISR upscaling on arbitrary
compressed images. In this case, we show that RAISR is able
to produce contrast-enhanced high quality images by learning
filters from compressed LR images to their contrast-enhanced
HR versions. The pre-processing of the training images is done
by applying the proposed CT-based DoG sharpener.

A. Single Image Super-Resolution

In this subsection we compare the performance of proposed
algorithm with several state-of-the-art methods for 2×, 3×, and
4× upscaling factors, both quantitatively and visually. All the
results are obtained by applying the scheme that is given in
Fig. 10 (and its variants for 3× and 4× upscaling), followed by
a back-projection step (see Appendix A). The filters are learned
using a collection of 10,000 advertising banner images. This
imagery type was chosen for its wide variety of both synthetic
and real world content.

For all upscaling factors, we learn filters of size 11× 11. In
the context of the hash-table, we consider a neighborhood of size
9× 9 for the computation of the angle, strength, and coherence
of the gradients. Also, the quantization factors of the angle Qθ ,
strength Qs , and coherence Qμ are set to result in a total of 216
total buckets (24 angular bins by 3 strength bins by 3 coherence
bins). In addition, we found that an amplification of the high-
frequencies of the training-set HR images leads to an improved
restoration. The proposed CT-based DoG sharpener (see Fig. 12)
is utilized for this task, where we use the randomness measure
as the blending map; the number of layers is set to 3, with
σ = 0.85, α =

√
2 and ρ = 55. Note that a fast approximation

of separable Gaussian filter is suggested, obtained by applying
one dimensional [1, 2, 1]/4 filter in a separable fashion (acts as
a LP Gaussian filter with σ ≈ 0.85).

As done by the leading algorithms [11], [16], [17], the pro-
posed algorithm is tested on 2 widely used databases: (i) Set5
[36], and (ii) Set14 [9], which are composed of 5 and 14 stan-
dard images, respectively. For all scaling factors, the test LR
images are generated by downscaling the original HR images
using the bicubic interpolation.

The restoration performance is evaluated using the Peak Sig-
nal to Noise Ratio (PSNR), and Structural Similarity (SSIM)
metrics, measured between the luminance channel of the orig-
inal and the estimated images. The higher these measures the

Fig. 13. Quantitative comparison between the restoration performance vs.
runtime. The vertical coordinate of each point in the scatter plots corresponds
to the average PSNR (a,c,e) and SSIM (b,d,f) of each method, measured on
the test images of Set5 and Set14. The horizontal coordinate corresponds
to the average runtime (the average size of the upscaled images is about
0.63 × 106 pixels). The size of each point reflects the standard error of the
PSNR/SSIM. Detailed quantitative results can be found in the supplementary
material, https://goo.gl/D0ETxG.

better the restoration. Note that upscaling an RGB image is done
by converting it to the YCbCr color space. Then, a bicubic in-
terpolation is applied on the luminance channel, which is used
as an initialization for RAISR, while the chromatic channels are
upscaled only by the bicubic interpolation. Finally, the estimated
HR channels are converted back to the RGB color space.

The proposed algorithm is compared to various methods, in-
cluding the sparse-coding approach of Zeyde et al. [9], along
with the efficients GR and ANR [10]. Since we put empha-
sis on runtime, we test two versions of A+ [11], the first is
a fast version that uses 16 atoms, while the second produces
state-of-the-art results (with the cost of increased runtime) by
utilizing 1024 atoms. In addition, we compare our algorithm
to the state-of-the-art SRCNN [16], [17], which is based on a
powerful convolutional neural network architecture. A neighbor
embedding technique is also included, called NE+LLE, which
assumes that the LR-HR patches lie on low-dimensional man-
ifolds, having locally similar geometry [37]3. We should note
that all the baseline methods significantly outperform the bicu-
bic interpolation.

3We would like to thank the authors of [9], [11], [16], [17] for providing the
software that produces the results of NE+LLE, Zeyde et al., GR, ANR, A+, and
SRCNN. In all cases we use the original codes, with default parameters.
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Fig. 14. Visual comparison for upscaling by a factor of 2 for the images Zebra, Flowers and Baby. (a,e,i) Bicubic interpolation, (b,f,j) SRCNN, (c,g,k) A+ with
1024 atoms, and (d,h,l) RAISR.

A quantitative comparison between RAISR and the leading
SISR methods for 2×, 3×, and 4× upscaling is given in Fig. 13.
Per each method and upscaling factor we measure the aver-
age PSNR and SSIM over the images of Set5 and Set14 (the
horizontal coordinate in Fig. 13) vs. the average runtime (the
vertical coordinate in Fig. 13). The size of each point equals to
10 · σerr

PSNR and 103 · σerr
SSIM, where σerr is the standard error of

the PSNR/SSIM. As can be inferred from Fig. 13, RAISR is
competitive with the state-of-the-art methods in terms of these
quality measures while being much faster. More specifically,
for all upscaling factors, RAISR has similar restoration quality
to the fast version of A+ (using 16 atoms), and it outperforms
NE+LS, Zeyde et al., GR, and ANR. Notice that the more com-
plex version of A+ (the one that uses 1024 atoms) and SRCNN
performs better than RAISR, but with the cost of increased
computations.

In terms of runtime, RAISR is the fastest method by far,
demonstrating that high-quality results can be achieved without

sacrificing the computational complexity. Following Fig. 13, our
implementation is about one to two orders of magnitude faster
than the baseline methods (please refer to the supplementary
material for detailed results). The runtime is evaluated on a 3.4
GHz 6-Core Xeon desktop computer4.

In the case of upscaling by a factor of 2, a visual compar-
ison between RAISR, bicubic and the state-of-the-art A+ and
SRCNN is provided in Fig. 14. As can be seen, the restoration
quality of RAISR for both Zebra, Flowers and Baby images is
competitive with much more complex algorithms. The ability
of RAISR to restore continues edges is shown on the Zebra
image. In addition, the effective reconstruction of fine details is
demonstrated via the Flowers and Baby images.

Next, we test the effect of sharpening the HR training im-
ages. To this end, we learn a new set of filters using the same

4Notably, we implemented a version of RAISR running on a mobile GPU,
which runs at speeds of over 200Mpix/s. The desktop GPU version of the same
can be expected to perform an order of magnitude faster.
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TABLE I
QUANTIFYING THE BENEFIT OF THE BUILT-IN SHARPENING EFFECT. WE MEASURE THE AVERAGE PSNR AND SSIM (HIGHER IS BETTER) OVER SET5 AND SET14

IMAGES, ALONG WITH THE STANDARD-ERROR OF EACH QUALITY METRIC

Dataset Scaling
Learning without sharpening Learning with sharpening Improvement

PSNR σ err
PSNR SSIM σ err

SSIM PSNR σ err
PSNR SSIM σ err

SSIM PSNR SSIM

2× 35.913 1.374 0.947 0.015 36.153 1.337 0.951 0.015 0.241 0.004
Set5 3× 32.061 1.392 0.895 0.019 32.211 1.363 0.901 0.019 0.150 0.006

4× 29.689 1.479 0.839 0.021 29.837 1.481 0.848 0.021 0.147 0.009

2× 31.980 0.998 0.900 0.015 32.127 1.024 0.902 0.015 0.147 0.003
Set14 3× 28.764 0.985 0.809 0.026 28.860 0.999 0.812 0.027 0.096 0.003

4× 26.912 0.908 0.732 0.032 27.002 0.921 0.738 0.033 0.090 0.006

Fig. 15. Visual illustration of the evolution of Butterfly image throughout the different blocks of RAISR, along with a demonstration of the built-in sharpening
effect. (a) The original HR image, (b) Bicubic interpolation by a factor of 2 of the input LR image, (c) Filtered image – the filters do not include a built-in
sharpening, (d) Filtered image – the filters map the initial interpolated image to its sharpened HR version, (e) blending result of the image in (b) with the one in
(c), and (f) blending result of the image in (b) with the one in (d).

collection of 10,000 images, however this time without apply-
ing the pre-sharpening step. Following Table I, this step indeed
leads to an improvement both in PSNR and SSIM, emphasizing
its potential. Motivated by these results, a promising future di-
rection could be to test this concept as a way to improve various
other state-of-the-art methods, e.g. A+ and SRCNN.

Fig. 15 illustrates how the Butterfly image (taken from Set5)
evolves throughout the different stages of RAISR, demonstrat-
ing the effect of the sharpening and the need for the blending
step. The LR image is first upscaled by a factor of 2 using the
bicubic interpolation (see Fig. 15(b)). Then, the pre-learned fil-
ters are applied: Fig. 15(c) shows the result when the filters are
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Fig. 16. Visual comparison for upscaling by a factor of 2 the JPEG-compressed Comic image (taken from Set14). (a) Bilinear interpolation, (b) RAISR with
learning stage as in Section VI-A which does not include compression of the training LR images, (c) RAISR with learning that involves compression of the training
LR images.

learned without sharpening, while Fig. 15(d) illustrates the case
where the filters have a built-in sharpening effect. As can be
seen, the image in Fig. 15(d) is indeed sharper than the one in
Fig. 15(c), and both have noticeable halos along the edges in
addition to an amplification of the noise especially in flat ar-
eas. These artifacts are then reduced by the blending step, as
depicted in Fig. 15(e) and 15(f). In this case, the improvement
achieved by the pre-sharpening during training is 0.44 dB and
0.009 in terms of PSNR and SSIM, respectively.

To conclude, we tested the upscaling performance of the pro-
posed method on popular datasets and for various upscaling fac-
tors. As demonstrated, RAISR is much faster than the leading
algorithms, while achieving a competitive restoration perfor-
mance.

B. All in One Enhancement

The ability of the proposed algorithm to handle real-world
scenarios is evaluated as well. More specifically, we test the abil-
ity of RAISR to upscale an image while reducing compression
artifacts and improving the overall contrast of the image. The
results are obtained using the scheme that is given in Fig. 11. Dif-
ferently from the conventional SISR problem (Section VI-A),
in this case we do not apply the back-projection step. In addition,
in order to further reduce computations, we choose the bilinear
as the initial interpolator. As a result, we manage to reduce the
runtime by about a factor of 2, i.e, this version of RAISR is more
than two orders of magnitude faster than the state-of-the-art
methods A+ and SRCNN.

In the learning stage, we downscaled the training images
(taken from BSDS300 database [38]) using the bicubic inter-
polation, followed by a compression step using JPEG, with
a quality parameter that is set to 85 out of 100. In order to
achieve contrast enhancement effect, the target HR images are
pre-processed using the proposed CT-based DoG sharpener
(see Fig. 12), where the blending is done by counting the

modified bits of the CT descriptor, which allows the amplifi-
cation of a wide range of frequencies. Naturally, the wider the
Gaussian filters that are used in the DoG scheme, the wider the
range of frequencies that are amplified. As such, we suggest us-
ing 2 DoG layers: The first layer applies a narrow Gaussian filter,
with σ ≈ 0.85 (i.e., the separable one dimensional [1, 2, 1]/4
filter), while the second is a much larger Gaussian filter of size
64× 64, with σ = 8.5 (i.e., we set α = 10). In both cases we use
ρ = 55. Note that the hyper parameters of RAISR (filter-size,
hashing parameters, etc.) are the same as in Section VI-A.

Before testing RAISR in a real world scenario, where
the degradation model is unknown, we show the benefits of
compressing the training LR images on a synthetic example. To
this end, following Fig. 16, we degrade the Comic image (taken
from Set14) by downscaling it by a factor of 2 in each axis and
then apply a JPEG compression on the result. As can be seen
in Fig. 16(b), when the filters are learned without compressing
the training LR images we obtain a sharp result but with the
cost of undesired amplification of compression artifacts. On
the other hand, when the learning stage includes compression,
the upscaled outcome has less artifacts without the loss of
sharpness, as illustrated in Fig. 16(c). This result should not
surprise us as we take into account the degradation model that
includes both downscaling (by a factor of 2) and compression.
Quantitatively, compared to a learning stage that does not
involve such a compression, in terms of PSNR we achieve an av-
erage improvement of 0.43 dB and 0.34 dB for Set5 and Set14,
respectively. Similarly, we obtain higher SSIM score, where the
average improvement is of 0.017 and 0.012 for Set5 and Set14,
respectively.

Fig. 17 shows the superiority of handling compression arti-
facts along with the visually pleasant outcome of our contrast-
enhancement learning scheme. Upscaling results of a cropped
and compressed version of the Resolution-Chart image is given
in Fig. 17(a)–(c), obtained by applying SRCNN, A+, and
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Fig. 17. Visual comparison for upscaling by a factor of 2 of Resolution-Chart, Newspaper and Painting images. (a,d,g) SRCNN, (b,e,h) A+ with 1024 atoms,
and (c,f,i) RAISR. In this case, RAISR filters map compressed LR images to their contrast-enhanced HR versions.

RAISR, respectively. As can be seen, RAISR reduces some
of the compression artifacts (especially around the digits and in
between the circles, located in the bottom-right and left parts of
the image, respectively). Despite the reduction of compression
artifacts, RAISR successfully keeps the desired sharpness prop-
erty (notice the effective restoration of the very fine details of
the circles in the left part of the image).

The ability of RAISR to handle compressed, blurred with
an unknown (possibly motion-blur) kernel, and noisy images is
shown in Fig. 17(d)–(i). As can be inferred, the blending step
and the built-in suppression of compression artifacts increase

the robustness of the algorithm, especially when tackling noisy
images. Furthermore, the contrast-enhancement effect leads to
better looking images (notice the contrast-enhanced letters in
the Newspaper image and the amplification of the fine details
in the Painting image). Additional examples on real images are
shown in the https://goo.gl/D0ETxG.

To summarize, we demonstrated the ability of RAISR to
achieve a high-quality restoration in various scenarios. Our ex-
periments indicate that the proposed method stands in a line
with the best algorithms that are currently available, while be-
ing about 2 orders of magnitude faster.
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VII. CONCLUSION

In this paper we proposed a rapid and accurate learning-based
approach for single image super-resolution (called RAISR). The
suggested algorithm requires a relatively small set of training
images to produce a low-complexity mechanism for increasing
the resolution of any arbitrary image not seen before. The core
idea behind RAISR is to learn a mapping from LR images to
their HR versions. The mapping is done by filtering a “cheap”
upscaled version of the LR image with a set of filters, which are
designed to minimize the Euclidean distance between the input
and ground-truth images.

More specifically, RAISR suggests a highly efficient locally
adaptive filtering process, where the low-complexity is kept
thanks to an appealing hashing scheme: In the learning stage,
a database of images is divided into buckets (“cheap” clusters)
of patches that share similar geometry, and a filter is learned
per each bucket. In the application side, based on the geometry
of the LR patch (hash-table key), the relevant pre-learned filter
(hash-table entry) is chosen and applied on the patch.

Moreover, artifact-free results are obtained by blending the
initial (cheap) estimation of the HR image with the filtered
one. This step is based on the observation that in flat areas
the reconstruction of the cheap upscaler is effective (there are
no fine details or edges to be recovered in these areas). We
harness the efficient CT descriptor for this task. As such, with
a negligible computational cost, an accurate reconstruction is
achieved. Note that two different blenders are suggested; the
first allows the amplification of high frequencies only (using the
“randomness” mask), while the second allows the enhancement
of a wide range of frequencies. Differently from the randomness
mask, the latter blending mechanism counts the number of bits
of the CT descriptors that were changed due to the filtering step.

As such, the additional complexity of RAISR over a very ba-
sic interpolation method (e.g. bilinear interpolation) is roughly
the application of 2-3 linear filters on the image: The first filter
leads to the hash-table-key, pointing to the second filter that en-
hances the quality of the patch (the pre-learned filter), and the
last filter (which is almost negligible) is used for the blending
step. Despite the extremely low computational cost, the restora-
tion performance of RAISR is competitive with much more
complex state-of-the-art methods. For example, in the case of
A+ (which is one the fastest methods that currently available),
the complexity of choosing the filter is linear with the size of the
dictionary, where the complexity of our approach for choosing
the filter is constant due to the hashing mechanism.

Furthermore, sharpening and suppression of compression ar-
tifacts are achieved by pre-processing the training images. A
sharpening/contrast-enhancement effect is obtained by ampli-
fying the details and contrast of the HR training images. Simi-
larly, compression artifacts are handled by compressing the LR
training images. This results in filters that are unique in profile,
and perform the dual purpose of de-aliasing and sharpening in a
single filter. The pre-learned filters tend to have a smoothing ef-
fect in the center of the kernel to perform aliasing removal,
while containing ridges near the edges of the kernel which
have the effect of sharpening that edge. As such, our learning

approach is able to learn an effective set of filters that would be
nearly impossible to construct by hand.

Motivated by the sharpening effect that can be achieved, we
suggested a novel sharpener, which is based on applying (sep-
arable) DoG filters on the image, which are capable of flexibly
enhancing a wide range of frequencies. As a way to reduce
artifacts (e.g. halos and noise amplification), we suggest using
once again the CT blender, leading to an extremely efficient and
effective sharpener.

We should note that the quality of the hashing mechanism
is crucial. Therefore, a further study of the hash function is
needed, and could possibly lead to improved results. In addition,
we use a simple least squares solver to learn the filters, while
improved results may be achieved by regularizing the learning
with efficient priors. In a wider perspective, we wish to explore
the ability of RAISR to cast as a boosting mechanism [39]–[46],
where in this case the learned filters can be designed to map any
input images (not only the “cheap” interpolated images) to the
desired outputs.

APPENDIX

A. Back Projection

As a way to reduce artifacts and estimation errors, many
methods (e.g., [14], [47]–[50]) harness the popular Iterative
Back Projection (IBP) [51] as a global post processing step.
Following the degradation model in Eq. (1), one can demand an
equivalence between the LR image and the downscaled version
of the estimated HR image. More formally, given an estimation
of the HR image x̃ (i.e., the output of RAISR), we suggest
minimizing the following cost

min
x
‖x− x̃‖22 s.t. z = DsHx, (11)

leading to the desired HR estimation x̂. The solution of
Eq. (11) can be obtained by applying several iterations of gra-
dient descent. We found it helpful to apply this post-processing
step in the case of the conventional SISR process (the results in
Section VI-A).
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