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Robust Linear Spectral Unmixing
Using Anomaly Detection
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Abstract—This paper presents a Bayesian algorithm for lin-
ear spectral unmixing of hyperspectral images that accounts for
anomalies present in the data. The model proposed assumes that
the pixel reflectances are linear mixtures of unknown endmem-
bers, corrupted by an additional nonlinear term modeling anoma-
lies, and additive Gaussian noise. A Markov random field is used
for anomaly detection based on the spatial and spectral structures
of the anomalies. This allows outliers to be identified in particular
regions and wavelengths of the data cube. A Bayesian algorithm is
proposed to estimate the parameters involved in the model yield-
ing a joint linear unmixing and anomaly detection algorithm.
Simulations conducted with synthetic and real hyperspectral
images demonstrate the accuracy of the proposed unmixing and
outlier detection strategy for the analysis of hyperspectral images.

Index Terms—Hyperspectral imagery, unsupervised spectral
unmixing, Bayesian estimation, MCMC, anomaly detection.

I. INTRODUCTION

S PECTRAL unmixing (SU) of hyperspectral images (HSI)
has been the subject of intensive interest over the last two

decades. It consists of distinguishing the materials and quanti-
fying their proportions in each pixel of an observed image. The
SU problem has been widely studied for applications where
pixel reflectances are linear combinations of pure component
spectra (called endmembers) [1], [2]. However, as explained
in [2], the linear mixing model (LMM) can be inappropriate
for some hyperspectral images, such as those containing sand-
like materials or where relief is present in the scene. Moreover,
LMM-based methods can also fail when the data are corrupted
by (sparse) outliers, especially when extracting the endmem-
bers from the scene. Nonlinear mixing models (NLMMs) have
been proposed in the hyperspectral image literature and can be
divided into two main classes [3], [4]. The first class of NLMMs
consists of physical models based on the nature of the environ-
ment (e.g., intimate mixtures [5] and multiple scattering effects
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[6]–[8]). The second contains more flexible models allowing a
wider range of nonlinearities to be approximated [9], [10].

Here, we consider a general mixing model for spectral
unmixing which assumes that the observed pixels result from a
convex combination of the endmembers of the scene, corrupted
by an additive term modelling deviations from the classical
LMM (e.g., outliers, variability, nonlinear effects) and addi-
tive Gaussian Noise. The number of endmembers is assumed
to be known whereas their spectral signatures are unknown. It
is interesting to note that many nonlinear models in the litera-
ture, including polynomial models [6]–[8] can be expressed in
a similar manner. Here, the additional terms are assumed to be
a-priori independent of the endmembers and/or their propor-
tions (abundances), as in [11], [12]. This class of models for
robust linear SU allows for general deviations from the LMM
to be handled in blind source separation methods, i.e., nonlin-
ear effects, outliers or possible endmember variability [13]. In
[12], spatial and spectral sparsity structures were considered for
the additional term since deviations from the LMM can occur
in specific regions or spectral bands of the HSI. This is typi-
cally the case when outliers are present, but also when nonlinear
effects (relief) occurs and when the reflectance of materials
present has significant variations in particular spectral ranges
(e.g. due to natural variability of vegetation). In this paper, we
extend [12] by introducing a probabilistic 3D Ising model for
spatial and spectral influence of outliers thus allowing for more
flexible group-sparsity structures for the support sets of anoma-
lies, whereas [12] assumed the support sets of outliers to have a
fixed structure. Moreover, the algorithm presented in this paper
allows the estimation of the Ising model parameters directly
from the data.

Adopting a Bayesian framework, we assign prior distribu-
tions to the unknown model parameters to include available
information (such as parameter constraints) within the estima-
tion procedure. In particular, an Ising Markov random field
is introduced to model spatial and spectral correlations for
the anomalies. The joint posterior distribution of the unknown
parameter vector is then derived. Since classical Bayesian esti-
mators cannot be easily computed from this joint posterior, a
Markov chain Monte Carlo (MCMC) method is used to gen-
erate samples according to this posterior. More precisely, we
construct an efficient stochastic gradient MCMC (SGMCMC)
algorithm [14] that simultaneously estimates the endmember
and abundance matrices along with the Ising hyperparameters.

The main contributions of this work are threefold:
1) We develop a new hierarchical outlier model taking

into account spatial and spectral correlations through
Markovian dependencies, this contrasts with the model
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proposed in [12] which considered a fixed outlier
structure. This flexible model is embedded within the
mixing model for robust unsupervised linear spectral
unmixing via anomaly detection.

2) An adaptive MCMC algorithm is proposed to compute
the Bayesian estimates of interest and perform Bayesian
inference. This algorithm is equipped with a stochas-
tic optimisation adaptation mechanism that automatically
adjusts the parameters of the Markov random field by
maximum marginal likelihood estimation, thus remov-
ing the need to set the regularisation parameters by
cross-validation.

3) We show the benefits of the proposed flexible model for
linear spectral unmixing of synthetic and real hyperspec-
tral images. Specifically, we demonstrate the ability of the
proposed algorithm to detect structured anomalies thus
enhancing endmember and abundance estimation.

The remaining sections of the paper are organized as follows.
Section II introduces the mixing model for robust linear SU
of HSIs, followed by Section III which summarizes the likeli-
hood and the priors assigned to the unknown parameters of the
model. The resulting joint posterior distribution and the Gibbs
sampler used to sample from it are summarized in Section IV.
A generalization of the proposed Bayesian model for robust
Bayesian subspace identification is proposed in Section V.
Some simulation results conducted on synthetic data are shown
and discussed in Section VI. Conclusions and future work are
reported in Section VIII.

II. PROBLEM FORMULATION

We consider a set of N observed pixels/spectra yn =
[y1,n, . . . , yL,n]

T , n ∈ {1, . . . , N} where L is the number of
spectral bands. Each of these spectra is assumed to result from
a linear combination of R unknown endmembers mr, cor-
rupted by possible additive outliers and Gaussian noise. The
observation model can be expressed as

yn =
R∑

r=1

mrar,n + rn + en

= Man + rn + en, n = 1, . . . , N

(1)

where mr = [mr,1, . . . ,mr,L]
T is the spectrum of the rth

material present in the scene and ar,n is its correspond-
ing proportion (abundance) in the nth pixel. In (1), en
is an additive independently but non identically distributed
zero-mean Gaussian noise sequence with diagonal covari-
ance matrix Σ0 = diag(σ2), denoted as en ∼ N (en;0L,Σ0),
where σ2 = [σ2

1 , . . . , σ
2
L]

T is the vector of the L noise vari-
ances and diag(σ2) is an L× L diagonal matrix containing the
elements of the vector σ2. Moreover, rn denotes the outlier
vector of the nth pixel. Note that the usual matrix and vec-
tor notations M = [m1, . . . ,mR] and an = [a1,n, . . . , aR,n]

T

have been used in the second row of (1).
As a consequence of physical constraints, the abundance

vectors an satisfy the following positivity and sum-to-one
constraints

R∑
r=1

ar,n = 1, ar,n > 0, ∀r ∈ {1, . . . , R} . (2)

The problem investigated in this paper is to estimate the end-
member matrix M, the abundance matrix A = [a1, . . . ,aN ],
the noise variances in σ2 and the outlier matrix R =
[r1 . . . , rN ] from the observation matrix Y = [y1, . . . ,yN ]. To
solve this problem, we propose a hierarchical Bayesian model
and a sampling method to estimate the unknown parameters.

III. ROBUST BAYESIAN LINEAR UNMIXING (RBLU)

A. Likelihood

Eq. (1) implies that yn|M,an, rn,σ
2 ∼

N (yn;Man + rn,Σ0). Assuming independence between
noise sequences of the N observed pixels, the likeli-
hood of the observation matrix Y can be expressed as
f(Y|M,A,R,σ2) ∝

|Σ0|−N/2etr

[
− (Y −MA−R)TΣ−1

0 (Y −MA−R)

2

]
(3)

where ∝ means “proportional to” and etr(·) denotes the expo-
nential trace.

B. Parameter priors

1) Prior for the abundance matrix A: Each abundance
vector can be written as an = [cTn , aR,n]

T with cn =

[a1,n, . . . , aR−1,n]
T and aR,n = 1−∑R−1

r=1 ar,n. The LMM
constraints (2) impose that cn belongs to the simplex S ={
c
∣∣∣cr ≥ 0, ∀r ∈ 1, . . . , R− 1,

∑R−1
r=1 cr ≤ 1

}
. To reflect the

lack of prior knowledge about the abundances, a uniform prior
is assigned for each vector cn,n ∈ {1, . . . , N}, i.e., f(cn) ∝
SS (cn), where SS (·) is the indicator function defined on
the simplex S . When prior knowledge about the abundances
are available, the uniform prior can be replaced by more
informative priors such as (mixtures of) Dirichlet distribu-
tions [15] or Gaussian mixtures using logistic coefficients [16].
Assuming prior independence between the N abundance vec-
tors {an}n=1,...,N leads to the following joint prior distribution

f(C) =

N∏
n=1

f(cn), (4)

where C = [c1, . . . , cN ] is an (R− 1)×N matrix.
2) Prior for the endmember matrix M: To reflect the lack

of prior knowledge about the endmembers, we use the follow-
ing multivariate truncated Gaussian prior

f(M|ξ) ∝
R∏

r=1

N(R+)L(mr;0, ξIL) (5)

where ξ is fixed to a large value, to ensure endmember posi-
tivity while using a weakly informative prior. Note that (5) is
considered in order to handle the case where the data are not
normalized. If the data are actual reflectance values, a prior can
be introduced ensuring that the endmember spectra belong to
(0, 1), such as a uniform, beta [17] or Gaussian distribution.
Note that the prior can also include prior information from an
endmember extraction algorithm, as in [18], [19].
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3) Prior for the noise variances: A Jeffreys’ prior is chosen
for the noise variance in each spectral band σ2

� , i.e., f(σ2
� ) ∝

σ−2
� 1R+

(
σ2
�

)
where 1R+ (·) denotes the indicator function

defined on R
+, which reflects the absence of knowledge about

these parameters. Again, these non-informative priors can be
easily replaced by conjugate inverse-Gamma priors to include
prior knowledge available about the noise levels. Assuming
prior independence between the noise variances, we obtain

f(σ2) =

L∏
�=1

f(σ2
� ). (6)

4) Priors of the outliers: As in [10], [12], the outliers are
assumed to be sparse, i.e., at most of the pixels and spectral
bands, the outliers are expected to be exactly equal to zero. To
model the outlier sparsity, we factorize the outlier matrix as

R = Z�X, (7)

where Z ∈ {0, 1}L×N is a label matrix, X ∈ R
L×N and �

denotes the Hadamard (termwise) product. This decomposition
allows one to decouple the location of the sparse components
from their values. More precisely, z�,n = [Z]�,n = 1 if an out-
lier is present in the �th spectral band of the nth observed pixel
with value equal to r�,n = x�,n. A conjugate Gaussian prior is
used for X, i.e.,

f(X|s2) =
∏
�,n

N (x�,n; 0, s
2
)
, (8)

where s2 controls the prior energy of the outliers. Note that
(8) allows the outliers to be negative. Other conjugate pri-
ors, such as exponential or truncated Gaussian priors, could be
used instead of (8), e.g., to enforce outlier positivity. The next
paragraph presents the prior considered for the label matrix Z.

5) Label matrix: For many applications, the locations of
outliers are likely to be spectrally (e.g., water absorption bands)
and/or spatially (e.g. weakly represented components, shad-
owing effects) correlated. An effective way to take correlated
outliers/nonlinear effects into account is to consider Markov
random fields (MRF) to build a prior for the label matrix
Z [10]. MRFs assume that the distribution of a label z�,n
conditionally to the other labels of the image equals the distri-
bution of this label vector conditionally to its neighbors, i.e.,
P(z�,n|Z\z�,n) = P(z�,n|ZV�,n

), where V�,n is the index set
of the neighbors of z�,n, Z\z�,n denotes the matrix Z whose
element z�,n has been removed and ZV�,n

is the subset of Z
composed of the elements whose indexes belong to V�,n. In this
study, we consider that the spatial and spectral correlations can
be different and thus consider two different neighborhoods. We
decompose the neighborhood V�,n as V�,n = VL

�,n ∪ VN
�,n where

VN
�,n (resp. VL

�,n) denotes the spatial (resp. spectral) neighbor-
hood of z�,n. In this paper, we consider an Ising model that can
be expressed as

P(Z|β′) =
1

B(β′)
exp
[
βTφ(Z) + φ0 (Z, β0)

]
(9)

where β = [βN , βL]
T , β′ = [βT , β0]

T and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φL (Z) =

∑
n,�

∑
z�′,n∈VL

�,n
δ(z�,n − z�′,n),

φN (Z) =
∑

n,�

∑
z�,n′∈VN

�,n
δ(z�,n − z�,n′),

φ(Z) = [φL (Z) , φN (Z)]T ,

φ0 (Z, β0) = β0

∑
n,�(1− z�,n) + (1− β0)

∑
n,� z�,n,

and δ(·) denotes the Kronecker delta function. Moreover, βN >
0 and βL > 0 are hyperparameters that control the spatial and
spectral granularity of the MRF and 0 ≤ β0 ≤ 1 is an additional
parameter that models the probability of having outliers in the
image. Specifically, the higher the value of β0, the lower the
probability of outliers in the data. The estimation of the pro-
posed Ising model hyperparameters will be discussed in the
next section. Different spectral and spatial neighbourhoods can
be used in (9). In this paper, we consider a 4-neighbour struc-
ture to account for the spatial correlation and a 2-neighbour
structure for the spectral dimension.

C. Outlier variance s2

The following conjugate inverse-Gamma prior is assigned
to s2

s2 ∼ IG(γ, ν), (10)

where (γ, ν) are fixed to (γ, ν) = (10−3, 10−3) to ensure
a weakly informative prior. This choice of hyperparameters
reflects the lack of prior information about the outliers variance.
However, (10) could be replaced by more informative priors by
suitably adapting (γ, ν).

D. Joint posterior distribution

Assuming the parameters M,A,Z,X and σ2 are a priori
independent, the joint posterior of the parameter vector θ ={
M,A,X,Z,σ2

}
and the parameter s2 can be expressed as

f(θ, s2|Y,φ,β′) ∝ f(Y|θ)f(θ|s2, ξ,β)f(s2|γ, ν) (11)

where

f(θ|s2, ξ,β′) = f(M|ξ)f(A)f(σ2)f(X|s2)P(Z|β′) (12)

and φ = [ξ, γ, ν]T a vector of model hyperparameters. The
MRF parameter vector β′ will be determined by maximum
marginal likelihood estimation during the inference procedure.
The directed acyclic graph (DAG) summarizing the structure of
proposed Bayesian model is depicted in Fig. 1.

Next we describe an MCMC method for sampling from
this posterior distribution to estimate the unknown model
parameters.

IV. BAYESIAN INFERENCE

The Bayesian model defined in Section III specifies the joint
posterior density for the unknown parameters θ, s2 given the
observations Y and the hyperparameters ξ, γ, ν and β′. This
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Fig. 1. Directed acyclic graph representing the proposed hierarchical Bayesian
model (fixed quantities appear in boxes).

posterior distribution models the complete knowledge about
the unknown parameters given the observed data and the prior
information available. We propose the following Bayesian esti-
mators for hyperspectral unmixing and nonlinearity detection:
the marginal posterior mean or minimum mean square error
estimator of the abundance and endmember matrices(

ÂMMSE, M̂MMSE

)
= E

[
A,M

∣∣∣Y,φ, β̂′
]
, (13)

where the expectation is taken with respect to the marginal
posterior density f(A,M|Y,φ, β̂′) (by marginalizing out
Z,X,σ2 and s2, this density takes into account their uncer-
tainty), the marginal maximum a posteriori (MMAP) estimator
for the outlier support Z

zMMAP
n,� = argmax

zn,�∈{0,1}
f(zn,�|Y,φ, β̂′), (14)

and, conditionally on the estimated outliers location, the mini-
mum mean square error estimator of the outlier values

rMMSE
n,� = E

[
xn,�

∣∣∣zn,� = zMMAP
n,� ,Y,φ, β̂′

]
, (15)

where

f(zn,�|Y,φ, β̂′) =
∫

f(θ, s2|Y,φ, β̂′)dθ\zn,�
ds2,

where E [·] denotes the expectation with respect to the condi-
tional marginal density

f(xn,�|zn,�,Y,φ, β̂′)

∫
f(θ, s2|Y,Y,φ, β̂′)dθ\zn,�

ds2

f(zn,�|Y,φ, β̂′)
.

Note that the outlier estimator (15) is sparse by construction

(i.e., E
[
xn,�

∣∣∣zn,� = 0,Y,φ, β̂′
]
= 0).

Computing (13), (14) and (15) is challenging because it
requires access to the joint marginal density of (M,A), the
univariate marginal densities of zn,� and the joint marginal
densities of (xn,�, zn,�), which in turn require computing
the posterior (11) and performing an integration over a very
high-dimensional space. Fortunately, these can be efficiently
approximated with arbitrarily good accuracy by Monte Carlo
integration. More precisely, it is possible to compute (13), (14)

and (15) by first using an MCMC computational method to gen-
erate samples asymptotically distributed according to (11) and
subsequently using these samples to approximate the required
marginal probabilities and expectations. Note that in (13),
(14) and (15), we have set β′ = β̂′, which denotes the maxi-
mum marginal likelihood estimator of the Ising regularisation
hyperparameter vector β′ given the observed data Y, i.e.,

β̂′ = argmax
β′∈B

f (Y|φ,β′) . (16)

This is an empirical Bayes approach for specifying β′ where
hyperparameters with unknown values are replaced by point
estimates computed from observed data (as opposed to being
fixed a priori or integrated out of the model by marginalisation).
As explained in [14], this strategy has several important advan-
tages for MRF hyperparameters such as β′ having intractable
conditional distributions. In particular, it allows automatic
adjustment of the value of β′ to each image, producing signifi-
cantly better estimation results than using a single fixed value of
β′ for all images. Furthermore it has significantly lower com-
putational cost compared to that of competing approaches, such
as including β′ in the model and subsequently marginalizing it
during the inference procedure [20].

A. Bayesian estimation algorithm

Exact computation of the MMSE and MMAP estimators
(13), (14) and (15) is very challenging because it involves
calculating expectations with respect to posterior marginal den-
sities, which in turn require evaluating the full posterior (11)
and integrating it over a very high-dimensional space. Exact
computation of β̂′ is also difficult because it involves solv-
ing an intractable optimisation problem (it is not possible to
evaluate the exact marginal likelihood f(Y|α3) or its gradi-
ent ∇f(Y|α3)). Here we follow the approach proposed in
[14] and design a stochastic optimisation and simulation algo-
rithm to compute (13), (14) and (15) simultaneously. We con-
struct an SGMCMC algorithm that simultaneously estimates
β̂′ and generates a chain of NMC samples {M(t),A(t)}NMC

t=1

asymptotically distributed according to the marginal density
f(M,A|Y, β̂′) (this algorithm is summarised in Algorithm 1
below). Once the samples have been generated, the estima-
tors (13), (14) and (15) are approximated by Monte Carlo
integration [21, Chap. 10], i.e.,

M̂MMSE =
1

NMC −Nbi

NMC∑
t=Nbi+1

M(t),

ÂMMSE =
1

NMC −Nbi

NMC∑
t=Nbi+1

A(t),

zMMAP
n,� =

{
0 if card(Zn,�) ≤ (NMC −Nbi) /2
1 else,

rMMSE
n,� =⎧⎨⎩

1

card(Zn,�)

∑
z
(t)
n,�∈Zn,�

r
(t)
n,� if zMMAP

n,� = 1

0 else,
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with Zn,� =
{
z
(t)
n,�|t ∈ {Nbi + 1, . . . , NMC}, z(t)n,� = 1

}
and

where the samples from the first Nbi iterations (corresponding
to the transient regime or burn-in period) are discarded. The
main steps of this algorithm are detailed in below.

Algorithm 1. RBLU algorithm

1: Fixed input parameters: Number of endmembers R,
number of burn-in iterations Nbi, total number of iterations
NMC

2: Initialization (t = 0)
• Set A(0),M(0),X(0),Z(0),σ2(0), s2(0),β(0)

3: Iterations (1 ≤ t ≤ NMC)
4: Sample Z(t) from (19)
5: Sample M(t) from (21)
6: Sample A(t) from (23)
7: Sample X(t) from (24)
8: Sample σ2(t) from (26)
9: Sample s2(t) from (27)

10: if t < Nbi then
11: Sample Z′ ∼ K(Z|Z(t),β′(t−1))

12: Set β(t)
N = P[0,Bt]

(
β
(t−1)
N +ΔβN

)
with

13: ΔβN = δt

[
d

dβN
log f(Z|β′)− d

dβN
log f(Z′|β′)

]
.

14: Set β(t)
L = P[0,Bt]

(
β
(t−1)
L +ΔβL

)
with

15: ΔβL = δt

[
d

dβL
log f(Z|β′)− d

dβL
log f(Z′|β′)

]
.

16: Set β(t)
0 = P[0,1]

(
β
(t−1)
0 +Δβ0

)
with

17: Δβ0 = δt

[
d

dβ0
log f(Z|β′)− d

dβ0
log f(Z′|β′)

]
.

18: else
19: Set β′(t) = β′(t−1)

20: end if
21: Set t = t+ 1.

1) Sampling the labels: It can be seen from (11) that

f(zn,� = i|Y,θ\zn,�
,β′, s2) ∝ π̃

(i)
n,�, ∀(n, �), (17)

where i ∈ {0, 1} and

log
(
π̃
(i)
n,�

)
= − (y�,n −m�,:an − ix�,n)

2

2σ2
�

− βTφ(Z)− φ0 (Z, β0) . (18)

Consequently, the label zn,� can be drawn from its con-
ditional distribution by drawing randomly from {0, 1} with
probabilities given by

f(zn,� = i|Y,θ\zn,�
,β′, s2) =

π̃
(i)
n,�

π̃
(0)
n,� + π̃

(1)
n,�

. (19)

2) Sampling the endmembers: It can be easily shown that

f(M|Y,θ\M, s2,φ,β′) =
L∏

�=1

f(m�,:|Y,θ\m�,:
, s2, ξ),

(20)

i.e., the rows of M, denoted as {m�,:} are a posteriori indepen-
dent (conditioned on the other parameters). Moreover,

m�,:

∣∣∣Y,θ\m�,:
, s2, ξ ∼ N(R+)R

(
m�,:; m̃�,:,S

(M)
�

)
. (21)

where

m̃�,: = σ−2
� ỹ�,:A

TS
(M)
�

S
(M)
� =

(
σ−2
� AAT + ξ−2IL

)−1
(22)

and ỹ�,: is the �th row of the L×N matrix Ỹ = Y −R.
Sampling from (21) can be achieved efficiently by using the
Hamiltonian method recently proposed in [22] or by successive
sampling from R truncated Gaussian distributions (via Gibbs
sampling).

3) Sampling the abundances: In a similar fashion to obtain-
ing (20), it can be easily shown that

f(C|Y,θ\C, s2,φ,β′) =
N∏

n=1

f(cn|yn,θ\cn
, s2), (23)

i.e., the columns of A are a posteriori independent (conditioned
on the other parameters). Moreover, the conditional distribu-
tion of cn|yn,θ\cn

, s2 is a multivariate Gaussian distribution
restricted to the simplex S , which can be sampled efficiently
using the method proposed in[22].

4) Sampling the latent variable matrix X: In a similar man-
ner to the abundance matrix in (23), the elements of X are
a posteriori independent (conditioned on the other parame-
ters) and can be sampled independently. Since the prior (8)
is conjugate to the Gaussian distribution, the full conditional
distribution of x�,n is given by

x�,n

∣∣y�,n,θ\x�,n
, s2,β′ ∼ N (x�,n; x̃�,n, σ̃

2
�,n

)
(24)

where

x̃�,n = z�,n(y�,n −m�,:an)
σ̃2
�,:

σ2
�

σ̃2
�,n =

σ2
� s

2

σ2
� + z�,ns2

. (25)

5) Sampling the noise variances: Sampling the noise vari-
ances can be easily achieved by sampling from the following L
independent inverse-Gamma distributions

σ2
�

∣∣∣∣∣Y,θσ2
�
, s2 ∼ IG

(
σ2
� ;

N

2
,
‖y�,: −m�,:A− r�,:‖2

2

)
(26)

6) Sampling the outlier variance s2: Finally, in a similar
fashion to the noise variances, it can be shown that

s2

∣∣∣∣∣∣Y,θ,φ ∼ IG
⎛⎝NL

2
+ γ, ν +

∑
n,�

x2
�,n

2

⎞⎠ (27)

7) Updating the Ising regularisation model parameter vec-
tor β′: If the marginal likelihood f(Y|φ,β′) was tractable,
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we could update β′ from one MCMC iteration to the next by
using a classic gradient descent step

β′(t) = β′(t−1) + δt∇ log f(Y|φ,β′(t−1)),

with δt = t−3/4, such that β′(t) converges to β̂′ as t → ∞.
However, this gradient has two levels of intractability, one
due to the marginalisation of (θ, s2) and another one due to
the intractable normalising constant of the Ising model. We
address this difficulty by following the approach proposed in
[14]; that is, by replacing ∇ log f(Y|φ,β′(t)) with an estimator
computed with the samples generated by the MCMC algo-
rithm at iteration t, and a set of two auxiliary variables (Z′) ∼
K(Z|Z(t),β′(t−1)) generated with an MCMC kernel K with
target density (9) (in our experiments we used a Gibbs sampler
implemented using a colouring scheme such that half of the ele-
ments of Z′ are generated in parallel). The updated value β′(t) is
then projected onto the domain Bt = [0, Bt]× [0, Bt]× [0, 1]
to guarantee the constraints of βN , βL and β0 and the stability
of the stochastic optimisation algorithm, where Bt is an arbi-
trarily large upper bound on βN and βL that can be increased at
every iteration. In our experiments we have used Bt = 10.

It is worth mentioning that if it was possible to simulate
the auxiliary variables Z′ exactly from (9) then the estima-
tor of ∇ log f(Y|φ,β′(t−1)) used in Algorithm 1 would be
unbiased and as a result β′(t) would converge exactly to β̂′.
However, exact simulation from (9) is not computationally fea-
sible and therefore we resort to the MCMC kernel K and obtain
a biased estimator of ∇ log f(Y|φ,β′(t−1)) that drives β′(t) to
a neighbourhood of β̂′ [14]. We found that computing this is
significantly less expensive than alternative approaches, e.g.,
using an approximate Bayesian computation algorithm [20],
and that it leads to very accurate unmixing results.

Note that in Algorithm 1, P[0,Bt](·) denotes the projection
onto [0, Bt]. In this paper, we propose an MCMC method
that sequentially updates Z,M,A,X,σ2 and s2 at each sam-
pler iteration. However, some of these variables, such as
(Z,X),(M,X) or (A,X) could be updated simultaneously
or could be re-sampled within a given sampler iteration, thus
improving the mixing properties of the proposed sampling
scheme, c.f. [12].

V. GENERALIZATION TO ROBUST BAYESIAN PRINCIPAL

COMPONENT ANALYSIS

As mentioned previously, one of the main contributions of
this paper is the introduction of a 3D Ising model to model the
possible correlation between the outlier locations. This outlier
model has been applied to linear SU in Section III. However,
this model can be applied to many other blind source separa-
tion (subspace identification) and inverse problems (nonlinear
spectral unmixing) where the observations are corrupted by
additive Gaussian noise and outliers. In this section, we discuss
the generalization of the robust Bayesian principal component
analysis model studied in [12], [23]. As in [23], we consider the
following observation model (expressed in matrix form)

Y = L+R+E (28)

Fig. 2. Actual endmembers (red lines) used to generate the synthetic images
and endmembers estimated by VCA (black lines) and RBLU (dashed blue lines)
for I2.

where R (resp. E) are L×N matrices representing the outliers
(resp. the additive Gaussian noise) and L = DΛWT corre-
sponds to a low rank matrix. The L×R matrices D and W are
matrices of the left- and right-singular vectors, respectively, and
Λ = diag ([λ1, . . . , λR]) is a diagonal matrix consisting of the
singular values {λr}r=1,...,R. Following the model considered
in [12], [23], we can set λr = ζrηr where ζr ∈ {0, 1}, which
allows estimation of the dimension of the principal subspace.
Since the columns of E are i.i.d., i.e.,

en ∼ N (en;0L,Σ0) ∀n, (29)

we can assign appropriate prior distributions to σ2,D,W, {ζr}
and {ηr}, and consider the Bayesian model proposed in
Section III for the outlier matrix R (i.e., Eqs. (7)–(10). The
resulting robust Bayesian principal component analysis model
can then be used to estimate the data principal subspace in the
presence of non-i.i.d. additive Gaussian noise and possibly cor-
related outliers. As the posterior distribution of the anomalous
outliers can also be estimated, the model also allows the outlier
matrix to be estimated. The sampling strategy associated with
Bayesian model is similar to those proposed in [12], [23] and
that presented in Section IV and is not further developed here
due to space constraints.

VI. SIMULATIONS USING SYNTHETIC DATA

A. Linear mixtures corrupted by outliers

The performance of the proposed method, referred to as
“RBLU” (Robust Bayesian linear unmixing), is investigated on
two synthetic 60× 60 pixel hyperspectral images composed of
R = 3 endmembers and observed at L = 207 different spec-
tral bands (see Fig. 2). The abundances of the two images are
uniformly distributed in the simplex, defined by the positivity
and sum-to-one constraints, and the noise variances set to σ2

� =
10−4, ∀�, corresponding to an average SNR of 30 dB without
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TABLE I
ESTIMATION PERFORMANCE

TABLE II
OUTLIER DETECTION (I2): CONFUSION MATRIX

any anomaly addition. The first image I1 does not contain out-
liers whereas the parameter s2 controlling the outlier power has
been set to s2 = 0.1 for the second image I2. The label matrix
of I2 has been generated using (9) with β = [0.25; 0.25; 0.55]T

which leads to approximately 10% of actual outliers in R. The
proposed method has been applied to the images with NMC =
1000 iterations (including Nbi = 300). The endmember matrix
was initialized using VCA [24] and the abundance matrix was
initialized using FCLS [1]. The combination VCA-FCLS is also
used for performance comparison.

The quality of the unmixing procedures can be measured by
comparing the estimated and actual abundance vector using the
root normalized mean square error (RNMSE) defined by

RNMSE =

√√√√ 1

NR

N∑
n=1

‖ân − an‖2 (30)

where an and ân are the actual and estimated abundance vec-
tors for the nth pixel of the image. The quality of endmember
estimation is evaluated by the spectral angle mapper (SAM)
defined as

SAM = arccos

( 〈m̂r,mr〉
‖m̂r‖ ‖mr‖

)
(31)

where mr is the rth actual endmember and m̂r its estimate.
The smaller the value of |SAM|, the closer the estimated
endmembers to their actual values.

Table I compares the performance of the proposed method
and the VCA-FCLS unmixing strategy and shows that the pro-
posed methods outperforms VCA-FCLS in terms of abundance
and endmember estimation. Moreover, the confusion matrix of
the proposed outlier detection method in Table II illustrates the
ability of the method to identify the corrupted data.

Table III compares the abundance estimation performance
of RBLU to o-FCLS (which assumes perfectly known end-
members) for different outlier corruption scenarios (proportions
and variances) and two noise settings, σ2 = 10−4 and σ2 =
10−3 (which correspond to SNR of approximately 30dB and

TABLE III
ABUNDANCE RNMSE (×10−2) FOR DIFFERENT OUTLIER ENERGIES

AND PROPORTIONS

20dB, respectively, when considering data without anomalies).
This table shows a general performance degradation of the
algorithms when the number of outliers increases. However,
although RBLU also estimates the endmembers (jointly with
the abundances), the performance degradation is less severe for
RBLU than for o-FCLS by virtue of RBLU’s outlier detection
ability. It is interesting to note that RBLU is also less sensi-
tive than o-FCLS to variations in the outlier variance (o-FCLS
abundance estimation performance decreases when the outlier
variance increases). In addition, as the proportion of outliers
increases, sparsity ceases to be a reliable discriminant and it
becomes increasingly difficult to detect the outlier samples.
Similarly, if the variances of the noise and the anomalies are
similar RBLU will not be able to detect the potential anoma-
lies, confounding the outliers with a fictitious Gaussian noise
having larger variance.

For a 64-bit Matlab R2014b implementation on a 3 GHz Intel
Xeon quad-core workstation, RBLU required 30min to analyse
each image composed of 60× 60 pixels (3s for VCA-FCLS).
Although RBLU can provide significantly improved endmem-
ber and abundance estimates, it has a higher computational cost
than VCA-FCLS.

Next we discuss the unmixing problem when both linearly
and nonlinearly mixed pixels are present in the image.

B. Unmixing of linear and nonlinear mixtures

As mentioned previously, many nonlinear models of the
spectral unmixing literature can be expressed as (1). This is the
case, for instance, for polynomial models [6]–[8] introduced
to handle multiple scattering effects. The proposed model (1)
seems particularly well adapted to detecting nonlinear effects
that are often spatially localized, e.g., regions with significant
relief variations, and/or spectrally concentrated such as nonlin-
ear interactions (if present) varying smoothly over wavelengths.
To evaluate the performance of the RBLU algorithm in terms
of endmember estimation, abundance estimation and nonlinear-
ity detection, we synthesised a 60× 60 pixel image composed
of the three endmembers considered in the previous paragraph.
Most of the pixels (75%) were generated according to the clas-
sical LMM while the remaining 25% were generated according
to a bilinear model, namely, the generalized bilinear model [8]

yn = Man+

R−1∑
i=1

R∑
j=i+1

γi,j,nai,naj,nmi �mj + en, (32)
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Fig. 3. Left: Actual location of the linearly (black pixels) and nonlinearly
(white pixels) mixed pixels. Actual (middle) and estimated (right) anomaly
energy in each pixel of the synthetic image composed of linearly and nonlin-
early mixed pixels.

TABLE IV
ABUNDANCE AND ENDMEMBER ESTIMATION FOR THE SYNTHETIC IMAGE

COMPOSED OF LINEARLY AND NONLINEARLY MIXED PIXELS

where 0 ≤ γi,j,n ≤ 1 characterizes the level of interaction
between the endmembers mi and mj in the nth pixel. This
choice of nonlinear model is motivated by the fact the polyno-
mial (and in particular bilinear) models, introduced to account
for multiple scattering effects, have demonstrated improved
performance for certain types of urban and vegetated areas
[6]–[8]. The abundances of each pixel (linearly or nonlinearly)
mixed were uniformly drawn from the simplex defined by
the abundance positivity and sum-to-one constraints. The non-
linearity parameters in (32) were fixed to γi,j,n = 1, which
corresponds to the choice made in Fan’s model [25]. All pixels
have been corrupted by a zero-mean additive Gaussian noise
i.i.d, with variance σ2, corresponding to an average SNR of
28dB. Note that although the generated abundance vectors are
spatially independent, the positions of the generated anomalies
are spatially correlated due to the spatial organization of the
linearly and nonlinearly mixed pixels (see Fig. 3 (left)). The
RBLU algorithm was applied to the data using NMC = 2000
iterations (including Nbi = 500).

Table IV compares the estimation performance of RBLU to
the results obtained with 1) BLU [18], 2) VCA+FCLS [1], [24],
3) NfindR + FCLS [1], [26], 4)o-FCLS [1], 5) NfindR [26]
followed by the gradient-based inversion step proposed in [8]
based on the GBM (32) (referred to as “NfindR + GBM” in
the table), 6) VCA [24] followed by the gradient-based inver-
sion step proposed in [8] based on the GBM (32) (referred
to as “VCA + GBM” in the table), and 7) the GBM method
[8] applied to the data assuming the endmembers are known
(referred to as “o-GBM” in the table for oracle-GBM). Due
to its anomaly detection ability, RBLU generally provides bet-
ter abundance estimates than LMM-based methods. Although
RBLU does not rely on the GBM, its provides better abundance
estimates than BLU, in particular for nonlinearly mixed pix-
els. For this data set containing pure pixels, N-FindR and VCA

TABLE V
COMPUTATIONAL TIME (IN SECONDS) FOR THE SYNTHETIC IMAGE

COMPOSED OF LINEARLY AND NONLINEARLY MIXED PIXELS

can provide better endmember estimates than RBLU, which
would be different in the absence of pure pixels. Indeed, in a
similar manner to BLU, the proposed RBLU algorithm does
not require the pure pixel assumption. However, due to space
constraints, simulations conducted on synthetic data which do
not contain pure pixels are not presented in this paper which
focuses on the anomaly detection capability of RBLU (the inter-
ested reader is invited to consult [27] for additional results on
data which do not contain pure pixels). We discuss this point
in the next section in the context of the RBLU analysis of real
hyperspectral images.

Fig. 3 (middle and right) shows the actual and estimated out-
lier energy in each pixel (i.e., ‖r̂n‖22) and illustrates the ability
of RBLU to detect bilinear mixtures in an image containing
both linear and non-linear mixtures.

Finally, Table V compares the execution time required by
the different methods to analyse the 3600 pixels of the image
composed of linearly and nonlinearly mixed pixels on the same
basis as before. Although the GBM-based method proposed
[8] takes longer than FCLS, it processes the pixels indepen-
dently and successively. Its run-time could thus be improved
(e.g., using parallelization) and its computational complexity
could approach that of FCLS. BLU and RBLU are unsupervised
unmixing algorithms, which jointly estimate the endmembers
and abundances and are based on MCMC methods, which
are more computationally demanding. Although some sam-
pling steps can be performed in parallel, the underlying Gibbs
samplers are intrinsically sequential processes that require a
sufficient number of iterations to explore the posterior distri-
bution of interest. RBLU is more computationally demanding
than BLU as it includes additional sampling steps (labels and
anomaly values) and the estimation of the Ising model regular-
ization parameters. However, the results presented in this paper
illustrate the benefits of the (structured) anomaly detection abil-
ity of RBLU on the endmember and abundance estimation
performance.

VII. SIMULATIONS USING REAL HYPERSPECTRAL DATA

A. Moffett data set

The first real image considered in this section is composed
of L = 189 spectral bands and was acquired in 1997 by the
AVIRIS satellite. The acquired image covers a region over
Moffett Field, CA. A subimage of size 50× 50 pixels has been
chosen here to evaluate the performance of RBLU. The AVIRIS
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Fig. 4. The R = 3 endmembers extracted from the Moffett image by N-FindR
(red) and RBLU (blue).

Fig. 5. The R = 3 abundance maps associated with the Moffett image and
estimated by FCLS (top) and RBLU (bottom).

Moffet Field dataset has been previously used for comparing
methods of linear [8], [18], [28]–[30] and nonlinear [8] unmix-
ing. The subimage of interest is mainly composed of water,
vegetation, and soil. As in in the previous subsection, the RBLU
algorithm was applied with NMC = 2000 iterations (including
Nbi = 500).

Fig. 4 depicts the endmembers estimated by N-FindR and
RBLU. Fig. 5 compares the abundance maps provided by
RBLU to those obtained with N-FindR followed by FCLS.
These figures show that the endmembers and abundance maps
are all in good agreement. In addition to the endmember and
abundance estimates, RBLU provides spectral and spatial infor-
mation about the possible outliers/nonlinearities. Fig. 6 (left)
shows average spectral outlier energy over wavelength for the
Moffett subimage. In addition to significant outlier levels near
the water absorption bands, around 1400 nm and 1800 nm,
RBLU identifies important deviations from the linear mixing
model for the spectral bands between 400 nm and 800 nm.
Fig. 6 (right) displays the estimated outlier energy (i.e., ‖r̂n‖22)
map over all pixels in the Moffett scene and shows that the devi-
ations from the linear mixing model are mainly located in the
coastal area, which is in agreement with the results obtained in
[8], [28]. Fig. 7 compares the estimated spectrum of the out-
liers in the pixel (40, 31) (located in the coastal area) to the
estimated endmembers. Although RBLU promotes groups of

Fig. 6. Left: Average spectral energy of the outliers in the Moffett scene esti-
mated by RBLU. Right: Estimated outlier energy ‖r̂n‖22 in each pixel of the
Moffett image.

Fig. 7. Endmembers and outlier signature of the pixel (40,31) estimated by
RBLU for the Moffett image.

Fig. 8. Reconstruction errors of the Moffett image using N-FindR+FCLS (left)
and RBLU.

outliers, it does not explicitly enforce spatial nor spectral depen-
dencies for the outlier values. However, the outliers in this pixel
seem to be spectrally correlated. These results show that RBLU
is able to distinguish structured outliers from Gaussian noise.
These results also show that the outlier spectrum and the vege-
tation spectral signature (in red) seem correlated, especially in
the visible spectrum. A possible explanation for this correlation
could be local significant changes of vegetation, e.g., chloro-
phyll and water content, additional vegetation species, multiple
scattering effects. Finally, the reconstruction errors obtained
by N-FindR+FCLS and RBLU are compared in Fig. 8. Due
to its outlier detection ability, RBLU provides lower recon-
struction errors in the coastal area, which is the region where
outliers/anomalies are the most dominant.

B. Villelongue data set

The second real image considered was acquired in 2010 in
the Madonna project and collected by the Hyspex hyperspectral
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Fig. 9. True color image of the Villelongue area (left) and sub-image of interest
(right).

Fig. 10. The R = 4 endmembers extracted from the Villelongue image by
N-FindR (red) and RBLU (blue).

scanner over Villelongue, France (00◦03′W and 42◦57′N). L =
160 spectral bands were recorded from the visible to near
infrared with a spatial resolution of 0.5 m. This dataset has
previously been studied in [10], [31], [32] and is mainly com-
posed of forested and urban areas. More details about the data
acquisition and pre-processing steps can be found in [31]. A
sub-image of size 300× 250 pixels is chosen here to evaluate
the proposed unmixing procedure and is depicted in Fig. 9. The
scene is composed mainly of trees and grass, resulting in R = 4
endmembers (soil, grass, trees and shade).

Fig. 10 compares the R = 4 endmembers estimated by
N-FindR and RBLU for this second real image. Although it is
difficult to objectively assess the performance of the two EEAs
for this image, it is interesting to note that the results obtained
by the two methods are similar for the tree, soil and grass
spectra. The shade signature identified by RBLU has a lower
amplitude than the spectrum estimated by N-FindR, which is
probably due to the absence of completely shadowed pixels in
the image (as discussed above, RBLU does not rely on the pure
pixel assumption, in contrast to N-FindR). The two methods
however lead to abundance maps (depicted in Fig. 11) that are
in agreement with the true color image in Fig. 9. In particu-
lar, the two algorithms are able to identify the path (soil) in the
scene. This path is barely visible in Fig. 9 but its presence can
be confirmed using the Google Map image for this region (see
Fig. 12).

Fig. 11. The R = 4 abundance maps associated with the Villelongue image
and estimated by FCLS (right) and RBLU (left).

Fig. 12. Soil abundance map estimated by RBLU for the Villelongue image
(left) and corresponding Google Map image (right) highlighting the presence
of a path in the region of interest.

Fig. 13 (left) depicts the anomaly energy map estimated by
RBLU over the Villelongue image and highlights two main
regions where significant deviations from the linear mixing
model occur. The first region, on the top of Fig. 13 (left) is
located where trees are identified and the deviations are likely
to be due to the presence of different tree species. Note that this
region can also be identified in Fig. 13 (right) (lighter green
region). The second region representing a line in the centre of
Fig. 13 (left) is more difficult to interpret and is barely visi-
ble in the true color image. However, it is interesting to note
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Fig. 13. Left: Anomaly energy map estimated by RBLU for the Villelongue
scene. Right: sub-image of interest in true colors.

Fig. 14. Anomaly spectra in the green (top) and red (bottom) boxes depicted in
Fig 13.

TABLE VI
COMPUTATIONAL TIME (IN SECONDS) TO ANALYSE THE REAL IMAGES

USING RBLU AND N-FINDR+FCLS

that the anomalies in this region form a stripe whose energy is
higher in the pixels composed of grass than it is in those con-
taining trees. Consequently, it is reasonable to postulate that the
physical phenomena causing deviations from the linear mixing
model occur on the ground or below the surface, i.e., not in the
canopy. One possible cause of these spectral signature changes
could be the presence of different kinds of surface vegetation.
Finally, Fig. 14 presents examples of anomaly spectra of the
first (green box in Fig. 13) and second (red box in Fig. 13) spa-
tial regions. This figure shows that the deviations from the linear
mixing model occur in specific spectral bands and are relatively
similar within each spatial region. Moreover, the anomalies are
spectrally different in the two regions, which confirms they are
probably due to different physical phenomena.

Finally, Table VI compares the Matlab execution time
required to analyse the Moffett and Villelongue data using
RBLU and N-FindR+FCLS.

VIII. CONCLUSION

In this paper, we have proposed a Bayesian algorithm for
robust linear spectral unmixing of hyperspectral images that
performs joint endmember estimation, abundance estimation
and outlier/anomaly detection. Appropriate prior distributions
were used to enforce endmember and abundance positivity
in addition to abundance sum-to-one constraints. Moreover,
a 3D spatial-spectral Ising Markov random field was used
to model correlations between outliers. Finally, an adaptive
MCMC method was proposed to sample from the resulting
posterior distribution in order to estimate the unknown model
parameters. Simulations conducted on synthetic data showed
superior performance of the proposed method for linear SU
and the detection of outliers in hyperspectral images. The pro-
posed method was also applied to real hyperspectral images and
provided interesting results in terms of outlier analysis. Future
work might include generalization of the proposed method for
non-Gaussian observation noise.
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