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Abstract—Capturing depth and reflectivity images at low light
levels from active illumination of a scene has wide-ranging appli-
cations. Conventionally, even with detectors sensitive to individual
photons, hundreds of photon detections are needed at each pixel
to mitigate Poisson noise. We develop a robust method for esti-
mating depth and reflectivity using fixed dwell time per pixel
and on the order of one detected photon per pixel averaged over
the scene. Our computational image formation method combines
physically accurate single-photon counting statistics with exploita-
tion of the spatial correlations present in real-world reflectivity
and 3-D structure. Experiments conducted in the presence of
strong background light demonstrate that our method is able to
accurately recover scene depth and reflectivity, while traditional
imaging methods based on maximum likelihood (ML) estimation
or approximations thereof lead to noisier images. For depth, per-
formance compares favorably to signal-independent noise removal
algorithms such as median filtering or block-matching and 3-D
filtering (BM3D) applied to the pixelwise ML estimate; for reflec-
tivity, performance is similar to signal-dependent noise removal
algorithms such as Poisson nonlocal sparse PCA and BM3D with
variance-stabilizing transformation. Our framework increases
photon efficiency 100-fold over traditional processing and also
improves, somewhat, upon first-photon imaging under a total
acquisition time constraint in raster-scanned operation. Thus, our
new imager will be useful for rapid, low-power, and noise-tolerant
active optical imaging, and its fixed dwell time will facilitate
parallelization through use of a detector array.

Index Terms—3-D imaging, computational imaging, convex
optimization, first-photon imaging, LIDAR, low-light imaging,
Poisson noise, single-photon detection, time-of-flight imaging.

I. INTRODUCTION

A CTIVE optical imaging methods measure properties
of a scene using illumination provided by the sys-

tem itself. Light detection and ranging (LIDAR) [1], also
known as laser radar or LADAR, is a well-known example
using periodically pulsed laser light. For each illuminated
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patch or pixel in an imaged scene, a LIDAR system builds
a histogram of photon detection times, relative to the most
recent pulse emission, over some number of pulses in a
period called the dwell time. The time delay of this his-
togram, relative to the transmitted pulse’s temporal profile,
is related through the speed of light to the depth (equiva-
lently, distance, range, or 3D structure) of the scene. The
amplitude of this histogram is related to the reflectivity
of the scene. For accurate depth and reflectivity estimation, the
signal acquisition time must be long enough to collect the 102 to
103 photons per pixel (ppp) needed to generate a finely binned
histogram for each pixel.

In this paper, we address the problem of achieving high pho-
ton efficiency in combined 3D and reflectivity imaging. We
expound upon a framework, introduced in [2], that builds upon
an approach initiated in [3], [4]. Like the first-photon imaging
(FPI) method of [3], our computational imager distinguishes
itself from other previous work by avoiding the formation of
histograms and instead using probabilistic modeling at the level
of individual detected photons. This physically accurate model-
ing of single-photon detection is combined with exploitation of
the spatial correlations present in real-world scenes to achieve
accurate 3D and reflectivity imaging from on the order of 1
detected ppp averaged over the scene, despite significant noise
from background light and dark counts.

High photon efficiency is important when very little back-
reflected light reaches the detector, as will be the case with
low optical power relative to the imaging range [5]. More
generally, increasing photon efficiency improves the trade-offs
among optical power, imaging range, detector size, and imaging
speed. The method introduced here uses a deterministic dwell
time, which is both more convenient for raster scanning and
amenable to parallelization through the use of a detector array.
This ease of applicability comes with somewhat improved per-
formance over FPI when compared at equal total acquisition
times in raster-scanned operation.

A. Prior Work

1) Active Imaging Methods: Active 3D imaging systems
differ in how they modulate their transmitted power, lead-
ing to a variety of trade-offs in accuracy, modulation fre-
quency, optical power, and photon efficiency; see Fig. 1 for
a qualitative summary. Temporal modulation enables absolute
(unaliased) distance measurement by the time-of-flight (TOF)
principle. Examples of TOF acquisition systems, ordered by
increasing modulation bandwidth (decreasing pulse duration),
include homodyne TOF cameras [6], pulsed TOF cameras [7],
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Fig. 1. Qualitative comparison of state-of-the-art active optical 3D sensing
technologies. Photon efficiency is defined as photons per pixel (ppp) necessary
for centimeter-accurate depth imaging.

and picosecond laser radar systems [8]. Spatial modulation
techniques include structured light [9] and active stereo imag-
ing [10]. These spatial-modulation techniques have low photon
efficiencies because they use an always-on optical source,
whereas pulsed-TOF systems have higher photon efficiencies
because they use sources that are on only for short intervals.
Additionally, the systems using temporal modulation have bet-
ter absolute-distance accuracy than those using spatial modula-
tion. The advantage of spatial modulation tends to be cheaper
sensing hardware, since high-speed sampling is not required.

The most photon-efficient TOF imagers—those requiring
the fewest photons for accurate imaging—use single-photon
avalanche diode (SPAD) detectors [11]. Earlier efforts in
SPAD-based 3D imaging from on the order of 1 detected
ppp are reported in [12]–[14]. The framework presented here
improves upon these works in part due to the use of estimated
reflectivity. This translates to SPAD-based imagers with lower
optical power and lower system bandwidth without sacrificing
image quality. There also has been significant recent interest
in compressive methods for 3D imaging, with [15]–[17] and
without [18] single-photon detection. While compressive meth-
ods may reduce some measures of acquisition cost, they do not
generally improve photon efficiency.

2) Optoelectronic Techniques for Low Light Levels: In low-
light scenarios, a variety of optoelectronic techniques are
employed to improve robustness. Active imagers use lasers

with narrow spectral bandwidths and spectral filters to sup-
press background light and minimize the Poisson noise it
creates. However, optical filtering alone cannot completely
eliminate background light, and it also causes signal attenua-
tion. Range-gated imaging [19] is another common technique,
but this method requires a priori knowledge of object location.
Furthermore, a SPAD may be replaced with a superconducting
nanowire single-photon detector (SNSPD) [20], which is much
faster, has lower timing jitter, and has lower dark-count rate than
a SPAD. However, SNSPDs have much smaller active areas and
hence have narrower fields of view than SPAD-based systems
with the same optics.

3) Image Denoising: For depth imaging using SPAD data,
it is typical to first form an image from a pixel-by-pixel estimate
of scene depth using a time-inhomogeneous Poisson process
model for photon detection times and then to apply an image
denoising method that exploits the scene’s spatial correlations.
As discussed in Section IV-B, even for an individual pixel, max-
imum likelihood (ML) estimation is considered prohibitively
complex and thus is typically replaced by a log-matched fil-
ter, which is an approximation to it. In this two-step approach
of pixelwise estimation and denoising, one commonly assumes
a Gaussian noise model for the output of the first step. This
is empirically justified for high light levels [21] and also jus-
tified by the asymptotic normality of ML estimates with large
numbers of data samples. However, at low light levels with sig-
nificant background light, performing denoising well is more
challenging due to the resulting high-variance uniform noise on
the observed photon arrival times. In Section VI, we compare
our technique with a state-of-the-art denoising method that uses
block matching. The superior performance of our method is due
in part to classification of photon detection events as being due
to signal (backscattered light) or noise (unwanted background
light and dark counts) prior to any depth image formation;
classical pixelwise image formation yields an extremely chal-
lenging denoising problem. Note that denoising of reflectivity
images is a better-developed field than denoising of depth
images, but existing methods are not designed for the very low
light levels and regularly-textured natural scenes considered in
this paper.

4) First-Photon Imaging: First-photon imaging (FPI) [3] is
a method that forms 3D and reflectivity images using only the
first detected photon at every pixel in a raster-scanned scene.
FPI combines accurate first-photon detection statistics with the
spatial correlations existing in natural scenes to achieve robust
low-light imaging. The use of the first detection time in FPI,
however, makes the dwell time at each pixel a random vari-
able. Thus, FPI does not extend naturally from raster-scanned
data collection to the use of SPAD arrays—since simultaneous
measurement implies equal dwell times—thus precluding the
dramatic speedup in image acquisition that such arrays enable.

In this paper, we develop models and methods analogous to
FPI that apply when there is a fixed dwell time at each pixel. In
the experimental configuration depicted in Fig. 2, we demon-
strate that the performance of the new method is similar to or
slightly better than FPI when compared for equal total acqui-
sition time in raster-scanned operation. Furthermore, with an
M -fold increase in laser power and an M -element SPAD array,
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Fig. 2. Experimental imaging setup used with random dwell time in [3] and
with constant dwell time here. A pulsed light source illuminates the scene in
a raster scan pattern. The backscattered light is collected by a time-resolved
single-photon detector. Each spatial location is illuminated with exactly N light
pulses (fixed dwell time). An incandescent lamp injects background light which
corrupts the information-bearing signal. The photon detection times and the
total photon count are recorded at every image pixel. This dataset is used to
estimate the 3D structure and reflectivity. The setup is analogous to having a
floodlight illumination source and an array of single-photon counting detectors
operating at a fixed dwell time.

our fixed dwell-time framework can provide this same robust
imaging M times faster than a single-detector raster-scanned
system.

B. Main Contributions

1) Modeling: We introduce a physically accurate model for
the signal produced by a SPAD under low-light conditions that
incorporates an arbitrary illumination pulse shape, background
(ambient) light contribution, dark counts, and the inhomo-
geneous Poisson process characteristics (shot noise from the
quantum nature of light) given a fixed dwell time. The same
model for a single illumination pulse was used in [3] (with lim-
ited explanation); while [3] used a random number of pulses,
the analysis in this paper is for a fixed number of pulses.

2) Algorithmic: We provide a method for computational
reconstruction of depth and reflectivity from noisy photon-
detection data. Our technique combines a shot-noise model
for single-photon detection with simple means to exploit the
high degree of spatial correlation present in real-world scenes.
The modularity of the technique—combining spatial regular-
ization for reflectivity, classification of detections as due to
signal or noise, and spatial regularization for depth—makes it
amenable to the generation of algorithmic variations to exploit
more sophisticated spatial correlation models.

3) Experimental: We experimentally demonstrate that our
proposed 3D imager’s photon efficiency is more than 100 times
higher than that of the conventional log-matched filter, which is
a well-known proxy for pixelwise ML estimation. We also show
that our 3D imager achieves sub-pulse-width depth resolution
under short acquisition times, in which 54% of the pixels have
missing data (no photon detections), and at high background
levels, when any given photon detection has approximately
probability 0.5 of originating from ambient light.

C. Outline

The remainder of the paper is organized as follows. Section II
introduces the LIDAR-like imaging configuration that we con-
sider. The key probabilistic models for the measured data
are derived in Section III. These models are related to con-
ventional image formation in Section IV, and they are the
basis for the novel image formation method in Section V.
Section VI presents experimental results for the novel method,
and Section VII provides additional discussion and conclu-
sions. An appendix presents performance bounds for pixelwise
estimators based on our modeling.

The methods detailed in this paper were presented in pre-
liminary, abbreviated form in [2]. The present manuscript
provides additional context (Section I-A), details on derivations
(Section III), performance bounds (Appendix), and experimen-
tal results that do not appear in [2] (Section VI). In particu-
lar, comparisons to Poisson non-local sparse PCA (NLSPCA)
[22] and block-matching and 3D filtering (BM3D) [23]—with
variance-stabilizing transform (VST) for reflectivity [24]—
replace the use of less-sophisticated bilateral filtering [25] in
the preliminary work.

II. IMAGING SETUP

Fig. 3 depicts the signal acquisition model underlying our
imager. We aim to form reflectivity image α ∈ R

n×n
+ and depth

image z ∈ R
n×n
+ of the scene. We index the scene pixels by

(i, j) ∈ {1, 2, . . . , n}2. The distance to pixel (i, j) is zi,j ∈
[0, zmax), where zmax is a known maximum scene depth, and
its reflectivity, αi,j ≥ 0, includes the effects of radial fall-off,
view angle, and material properties.

A. Illumination

We use a periodically pulsed laser to illuminate the scene
in a raster-scanned manner. The repetition period is Tr and
the waveform of a single pulse is denoted by s(t). Physically,
s(t) is the photon-flux waveform of the pulse emitted at t = 0
measured in counts/sec (cps). To avoid distance aliasing, we
assume Tr > 2zmax/c, where c is the speed of light, and the
support of s(t) is contained in [0, Tr]. With conventional pro-
cessing, the root mean-square (RMS) pulse width Tp governs
the achievable depth resolution in the absence of background
light [26]. As is typically done in depth imaging, we assume
that Tp � 2zmax/c.

B. Detection

A SPAD detector provides time-resolved single-photon
detections [11], called clicks. Its quantum efficiency η is the
fraction of photons passing through the pre-detection optical
filter that are detected. Each detected photon is time stamped
within a time bin of duration measuring a few picoseconds. We
will assume that this quantization of detection times is much
shorter than Tp and thus negligible; i.e., we treat the detection
times as continuous-valued variables.

A SPAD detector is not number-resolving, meaning that it
reports at most one click in a short period of time. This is
because SPAD detectors have a reset time or dead time after
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Fig. 3. Summary of observation model. Rate function of inhomogeneous Poisson process combining desired scene response and noise sources is shown. Here,
N = 3 and ki,j = 2. A background count (red) occurred after the second pulse was transmitted, and a signal count (blue) occurred after the third pulse was
transmitted.

each click, during which there is no sensitivity to incident
light. Here, we consider low-flux imaging where the probabil-
ity of multiple clicks within one repetition period of duration
Tr would be negligible even without reset time.

C. Data Acquisition

Each pixel (i, j) is illuminated with a sequence of N laser
pulses. Our methods are intended for values of N on the order
of 10 to 100. The total dwell time is thus Ta = NTr. To sim-
ulate significant noise from ambient light and dark counts, we
also shine background light, with photon flux bλ at the operat-
ing optical wavelength λ, onto the detector. For each pixel, we
record the total number of photon detections ki,j , along with

their detection times {t(�)i,j }ki,j

�=1, where the latter are measured
relative to the immediately-preceding transmitted pulse.

III. PROBABILISTIC MEASUREMENT MODEL

Illuminating pixel (i, j) with the pulse s(t) results in backre-
flected light with photon flux

ri,j(t) = αi,js(t− 2zi,j/c) + bλ

at the detector. The measurement of photon flux is through
photon detections, and carefully modeling the relationships
between the measured quantities and the reflectivity and depth
variables is central to our imaging method.

A. Poisson Statistics

Ignoring SPAD reset time, because of the low-flux condi-
tion, the photon detections produced by the SPAD in response
to the backreflected light from transmission of s(t) constitute
an inhomogeneous Poisson process [27] with time-varying rate
function ηri,j(t). To these photon detections we must add the
detector dark counts, which come from an independent homo-
geneous Poisson process with rate d. Lumping the dark counts
together with the background-generated clicks yields the obser-
vation process at the SPAD’s output, viz., as shown in Fig. 3, an
inhomogeneous Poisson process with rate function

λi,j(t) = ηri,j(t) + d

= ηαi,js(t− 2zi,j/c) + (ηbλ + d), (1)

when only a single pulse is transmitted. This means that the
probability mass function (PMF) for the number of arrivals
M(t1, t2) in time interval (t1, t2] is

p(k) =
m(t1, t2)

ke−m(t1,t2)

k!
, k = 0, 1, . . . , (2a)

where

m(t1, t2) =

∫ t2

t1

λi,j(τ) dτ. (2b)

Fig. 3 shows the rate function λi,j(t) for the periodic
transmission.
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Define S =
∫ Tr

0
s(t) dt and B = (ηbλ + d)Tr as the total

signal and background count per pulse-repetition period, where
we have used—and will use in all that follows—background
counts to include dark counts as well as counts arising from
ambient light. We assume that B is known, because it is
straightforward to measure it before we begin data acquisition.
The derivations to follow assume ηαi,jS +B � 1, meaning
that the photon-flux per pixel per pulse-repetition period is
much less than 1, as would be the case in low-light imaging
where an imager’s photon efficiency is paramount. This low
flux per pulse-repetition period necessitates imaging over many
pulse-repetition periods, i.e., at least a moderate value of N .

B. Distributions of Numbers of Detected Photons

For the moment, imagine the use of a number-resolving
detector rather than a SPAD; i.e., disregard detector reset time.
Using the rate function given in (1), the PMF for the number
of photons detected in response to a single illumination pulse is
given by (2a), where

m(0, Tr) =

∫ Tr

0

λi,j(τ) dτ = ηαi,jS +B (3)

is the mean number of detections. In particular, the probability
of zero detections is thus

P0(αi,j) = exp[−(ηαi,jS +B)]. (4)

The low-flux condition ensures that the probability of multiple
photon detections per repetition interval is negligible relative to
the probability of zero or one detection.

Returning to imaging with a SPAD, we either have zero
detections with the probability given in (4) or one detection
with the complementary probability. Then, because detections
across the N illumination pulses are statistically independent,
the number of detected photons Ki,j is binomially distributed
with PMF

Pr [Ki,j = ki,j ;αi,j ]

=

(
N
ki,j

)
P0(αi,j)

N−ki,j [1− P0(αi,j)]
ki,j , (5)

for ki,j = 0, 1, . . . , N .
Unlike previous works, our imaging method uses the PMF in

(5) explicitly. Note that for large N with P0(αi,j) held constant,
the binomial PMF is well-approximated as Gaussian; this jus-
tifies the traditional use of an additive Gaussian noise model
when the light level is high. Similarly, in the ultimate low-
flux limit in which ηαi,jS +B → 0+ with N → ∞ such that
C(αi,j) = N{1− exp[−(ηαi,jS +B)]} is held constant, Ki,j

converges to a Poisson random variable [21] with PMF

Pr[Ki,j = ki,j ; αi,j ] =
C(αi,j)

ki,j

ki,j !
exp[−C(αi,j)]; (6)

this model is often used for low light levels.

C. Distributions of Photon Detection Times

In our imaging system, the SPAD detects at most one photon
per pulse-repetition period. The time of this detection is equiv-
alent to the first detection time of a system not limited by the
reset time of a SPAD detector. Thus, we are interested in the dis-
tribution of the first arrival time in an inhomogeneous Poisson
process with rate function given in (1), given that there is at
least one arrival.

Let U denote the first arrival time. For any u ∈ (0, Tr), the
conditional cumulative distribution function of U given that
there is at least one arrival in (0, Tr] satisfies

F (u) = Pr[U ≤ u|M(0, Tr) ≥ 1]

= Pr[M(0, u) ≥ 1|M(0, Tr) ≥ 1]

(a)
=

Pr[{M(0, u) ≥ 1} ∩ {M(0, Tr) ≥ 1}]
Pr[M(0, Tr) ≥ 1]

(b)
=

Pr[M(0, u) ≥ 1]

Pr[M(0, Tr) ≥ 1]

=
1− Pr[M(0, u) = 0]

1− Pr[M(0, Tr) = 0]

(c)
=

1− exp
[− ∫ u

0
λi,j(τ) dτ

]
1− P0(αi,j)

, (7)

where (a) follows from the definition of conditioning; (b) from
u ∈ (0, Tr); and (c) from (2). Differentiating (7) with respect
to u gives the conditional probability density function (PDF) of
U to be

fU (u) =
λi,j(u) exp

[− ∫ u

0
λi,j(τ) dτ

]
1− P0(αi,j)

. (8)

Returning to our imaging system, by using the low-flux
assumption that ηαi,jS +B � 1, we incur very little error by
neglecting the exponential factor in (8). Thus, for any illumina-
tion pulse at pixel (i, j) for which there is a detected photon,
the PDF of the detection time Ti,j is modeled as

fTi,j
(ti,j ; αi,j , zi,j) =

λi,j(ti,j)

1− P0(αi,j)

=
ηαi,js(ti,j − 2zi,j/c) +B/Tr

1− P0(αi,j)

(a)≈ ηαi,js(ti,j − 2zi,j/c) +B/Tr

ηαi,jS +B

=
ηαi,jS

ηαi,jS +B

(
s(ti,j − 2zi,j/c)

S

)

+
B

ηαi,jS +B

(
1

Tr

)
, (9)

where (a) follows from 1− e−x ≈ x for 0 < x � 1. An alter-
nate derivation of this PDF that includes the time resolution of
the detector is given in [28].

A detection could be a signal count or a background count.
The detection statistics result from the merging of the Poisson
processes corresponding to these sources. Under our low-flux
assumption, the detection time for a signal count from a sin-
gle pulse-repetition interval is characterized by the normalized
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time-shifted pulse shape. On the other hand, the detection time
for a background count in that interval is uniformly distributed
on [0, Tr); this is a standard property for the arrival time in
a homogenous Poisson process conditioned on having exactly
one arrival. These two distributions are apparent in the PDF in
(9); it is a mixture distribution, with mixture weights

Pr[Detection at (i, j) is signal] =
ηαi,jS

ηαi,jS +B
,

Pr[ Detection at (i, j) is noise] =
B

ηαi,jS +B
.

IV. CONVENTIONAL IMAGE FORMATION

A. Pixelwise Reflectivity Estimation

Given the total observed photon count ki,j at pixel (i, j), the
constrained ML (CML) reflectivity estimate is

α̂CML
i,j = argmax

αi,j≥0
Pr[Ki,j = ki,j ;αi,j ]

= max

{
1

ηS

[
log

(
N

N − ki,j

)
−B

]
, 0

}
,

where we have used (5), log is the natural logarithm, and
the constraint is simply the nonnegativity of reflectivity.
Traditionally, the normalized photon-count value is used as an
estimate for reflectivity [29],

α̃i,j =
ki,j
NηS

. (10)

Because the probability mass function of the photon count is

Pr[Ki,j = ki,j ;αi,j ]

=
exp[−N(ηαi,jS +B)](N(ηαi,jS +B))ki,j

ki,j !
(11)

under the Poisson approximation to the binomial distribution
in (6), we note that the normalized photon-count estimate α̃ is
equal to the ML estimate under the Poisson approximation to
the binomial distribution when B = 0.

B. Pixelwise Depth Estimation

Assuming that the photon detection-time dataset {t(�)i,j }ki,j

�=1 at
pixel (i, j) is non-empty, the CML depth estimate is given in
principle by

ẑCML
i,j = argmax

zi,j∈[0,zmax)

ki,j∏
�=1

fTi,j
(t

(�)
i,j ; αi,j , zi,j)

= argmax
zi,j∈[0,zmax)

ki,j∑
�=1

log

[
ηαi,js

(
t
(�)
i,j −

2zi,j
c

)
+

B

Tr

]
,

(12)

where we have used (9). However, this estimate rarely used in
practice. If B > 0, this optimization problem is non-convex.

Moreover, when B > 0, this CML estimation requires knowl-
edge of the true reflectivity αi,j , which is not typically avail-
able. Thus, to solve (12) for an arbitrary pulse waveform s(t),
the optimization depends on discretization of zi,j and of αi,j

and a subsequent search; since Tp � Tr, the search may be
prohibitively expensive to achieve depth resolution on the order
of Tpc.

For reduced complexity, the log-matched filter [27] is instead
traditionally used for estimating depth from ki,j ≥ 1 photon
detections:

z̃i,j = argmax
zi,j∈[0,zmax)

ki,j∑
�=1

log
[
s
(
t
(�)
i,j − 2zi,j/c

)]
. (13)

The log-matched filter solution is equal to the CML estimate
when B = 0, since then the scaling by ηαi,j is irrelevant to the
location of the maximum with respect to zi,j . For a Gaussian
pulse waveform s centered at time zero, the log-matched filter
estimate z̃i,j simplifies further to the sample mean of {t(�)i,j }ki,j

�=1.
This simpler estimate is also commonly employed [30].

V. NOVEL IMAGE FORMATION

In the limit of large sample size or high signal-to-noise ratio
(SNR), the ML estimate converges to the true parameter value
[31]. However, when the data is limited or SNR is low—such
as in our problem—pixelwise ML solutions yield inaccurate
estimates. We compare our 3D imaging method with the base-
line normalized-count reflectivity estimate α̃i,j from (10) and
the log-matched filter depth estimate z̃i,j from (13), which are
ML estimates asymptotically in the signal count. Along with
using the single-photon detection statistics, we exploit the spa-
tial correlations present in real-world scenes by regularizing
these estimators. Our approach provides significant improve-
ments over pixelwise estimators as well as over denoising
techniques that may better exploit scene structure but assume
additive Gaussian noise or implicitly assume at least moder-
ate light levels. Our computational image formation proceeds
in three steps.

Step 1: Reflectivity estimation. Using (5), the negative log-
likelihood of scene reflectivity αi,j given count data ki,j is

Lα(αi,j ; ki,j) = (N − ki,j)ηSαi,j

− ki,j log {1− exp[−(ηαi,jS +B)]} , (14)

after constants independent of αi,j are dropped. Since
Lα(αi,j ; ki,j) is a strictly convex function of αi,j on [0,∞), it
is amenable to global minimization using convex optimization,
with or without the inclusion of sparsity-based regularization
[32]. The penalized ML (PML) estimate for scene reflectivity is
obtained from noisy data {ki,j}ni,j=1 by solving the following
convex program:

α̂PML = argmin
α:αi,j≥0

n∑
i=1

n∑
j=1

Lα(αi,j ; ki,j) + βα penα(α), (15)

where penα(·) is a convex function that penalizes the non-
smoothness of the reflectivity estimate, and βα controls the
degree of penalization.
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Step 2: Rejection of background detections. Direct applica-
tion of a similar regularized-ML approach to depth estimation
using time-of-detection data is infeasible. This is because the
background contribution to the likelihood function creates a
non-convex cost function with locally optimal solutions that are
far from the global optimum. Hence, before estimating depth,
a second processing step attempts to identify and censor the
detections that are due to background.

Background counts do not contain any scene depth infor-
mation. Their detection times are mutually independent over
spatial locations with variance T 2

r /12. In contrast, since light
pulses have duration Tp � Tr and depths zi,j are correlated
over spatial locations, the detection times of signal counts have
conditional variances, given data from neighboring positions,
that are much lower than T 2

r /12. Based on this key obser-
vation, our method to censor a noisy detection at (i, j) is as
follows:

1) Compute the rank-ordered mean (ROM) tROM
i,j for each

pixel, which is the median value of the detection times
at the 8 neighboring pixels of (i, j) [33]. If tROM

i,j cannot
be computed due to missing data (there are no detections
for all of the neighboring pixels), set tROM

i,j = ∞.
2) Form the set of uncensored detections (those presumed to

be signal detections), as follows:

Ui,j =

{
� ∈ {1, . . . , ki,j} :

|t(�)i,j − tROM
i,j | < 2Tp

(
B

ηα̂PML
i,j S +B

)}
.

If ki,j = 0, then set Ui,j = ∅.1

The ROM filter is different from the standard median fil-
ter because it uses signal values from only the neighboring
pixels and not the reference pixel. It is demonstrated in [33]
that the ROM filtered image tROM is a good approximation
of the true image when the true image is corrupted by high-
variance impulse noise at every pixel. In our imaging setup, the
background photon detections are uniformly distributed with
high variance. Also, the variances of signal photon detections
depend on the duration of the transmitted pulse. Thus, the qual-
ity of ROM approximation at pixel (i, j) deteriorates as the
probability of detecting a background photon B/(ηαi,jS +B)
increases or the RMS pulse width Tp increases. Because the
condition for censoring photon detections must be relaxed for
an unreliable ROM estimate at every pixel, we set the censor-
ing threshold parameter to be linearly dependent on both the
RMS pulse width and our estimate of the background detec-
tion probability. We have found that removing dependence on
α̂PML
i,j from the censoring rule results in significantly worse per-

formance; this link between estimation of reflectivity and depth
is a feature common to this work and FPI but not seen in earlier
methods for photon-efficient imaging.

Step 3: Depth Estimation. Neglecting the second term of (9)
because background detections have been rejected, the negative

1Through the definition of tROM
i,j , we also have Ui,j = ∅ when there are no

detections for all of the neighboring pixels. In this case, it is likely from corre-
lations in reflectivity that the reflectivity at (i, j) is very low; hence, it is likely
that detections at (i, j) are due to noise.

log-likelihood function of depth zi,j , given uncensored data

{t(�)i,j }�∈Ui,j
is

Lz

(
zi,j ; {t(�)i,j }�∈Ui,j

)
= −

∑
�∈Ui,j

log
[
s
(
t
(�)
i,j − 2zi,j/c

)]
,

after constants independent of zi,j are dropped. Note the
simplicity compared to the CML estimate (12) and the sim-
ilarity to the log-matched filter (13) (with detections pre-
sumed to be due to background omitted). If Ui,j = ∅, then set

Lz(zi,j ; {t(�)i,j }�∈Ui,j
) = 0, so that it has no contribution to the

scene’s negative log-likelihood cost function.
Our modeling to this point allows the illumination pulse

shape s(t) to be arbitrary, but properties of s(t) determine the
difficulty of computing ML or penalized ML estimates. Many
practical pulse shapes are well approximated using log-concave
functions (such as Gaussian), where s(t) ∝ exp[−v(t)] and
v(t) is a convex function in t. Then,

Lz(zi,j ; {t(�)i,j }�∈Ui,j
) =

∑
�∈Ui,j

v(t
(�)
i,j − 2zi,j/c)

is a convex function in zi,j . Our penalized ML estimate for the
scene depth image is thus obtained using uncensored data and
solving the following convex optimization problem:

ẑPML = argmin
z:zi,j∈[0,zmax)

n∑
i=1

n∑
j=1

Lz

(
zi,j ; {t(�)i,j }�∈Ui,j

)
+ βzpenz(z), (16)

where penz(·) is a convex function that penalizes non-
smoothness of the depth estimate and βz > 0 controls the
degree of penalization.

Choices of Regularizers. The regularizers penα(·) and
penz(·) should be chosen based on characteristics of the scenes
of interest. Our framework is not tied to a particular choice of
the regularizers, though convex regularizers are needed for the
optimization problems (15) and (16) to be convex. Our exper-
iments in the next section use the total variation semi-norm
[34], [35] for both penα(·) and penz(·). In a Bayesian setting,
using regularizers proportional to the negative log prior makes
the PML estimators equivalent to maximum a posteriori (MAP)
estimators.

VI. EXPERIMENTAL RESULTS

To test the performance of our proposed 3D structure and
reflectivity imaging method, we used the photon arrival dataset
collected by D. Venkatraman for [3], which is available from
[36]. The experimental setup used to collect data is shown in
Fig. 2. A pulsed laser diode with pulse width Tp = 270 ps
and repetition period Tr = 100 ns was used as the illumina-
tion source. A two-axis galvonometer was used to raster scan
1000 × 1000 pixels, with the goal of angular uniformity along
both axes. A lensless SPAD detector with quantum efficiency
η = 0.35 was used for detection. The background light level
was set such that B equaled the scene-averaged value of ηαi,jS.
Further details of the experimental setup are given in [3],
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Fig. 4. Resolution test experiments. Reflectivity chart imaging (top) was done using Ta = 30 µs and had a mean count per pixel of 0.48. They were scaled such
that the relevant reflectivity features are captured in the interval [0,1]. Depth chart imaging (bottom) was done using Ta = 6.2 µs and had a mean count per pixel
of 1.1 with 33% of the pixels having missing data, i.e., no detections.

[4] and its supplementary material [37]. Because ideal raster
scanning with a fixed dwell time is equivalent to using a flood-
light illumination source and a detector array, our experimental
results are indicative of what can be accomplished in real-time
imaging scenarios using SPAD arrays.

A. Reflectivity Resolution Test

Reflectivity resolution was evaluated using the linear
grayscale reflectivity chart shown in Fig. 4(a). To play the role
of a reference (ground-truth) image, we formed the pixelwise
ML estimate shown in Fig. 4(b) from about 1000 photon detec-
tions per pixel collected with a dwell time of about 60 ms.
Evaluation of our method used a much shorter dwell time of
Ta = 30 µs, which resulted in mean photon count per pixel
of 0.48. Fig. 4(f) shows that our image formation method
(Equation (15) with the total variation semi-norm for penα(·))
resolves the 16 gray levels present in the chart. The con-
ventional normalized photon-count estimate (Equation (10))
yields the very noisy image shown in Fig. 4(c). Since α̃i,j is a
scaled Poisson random variable, this image can presumably be
improved using existing state-of-the-art image denoising algo-
rithms suitable for Poisson observations. Fig. 4(d) shows that
the result of applying Poisson non-local sparse PCA (NLSPCA)
[22]; the parameters were set using the suggestions in code
distributed with [22], with the binning removed to improve per-
formance for the natural scenes. Fig. 4(e) shows that applying
BM3D after variance stabilization using the Anscombe trans-
formation [23], [38] gives a result very similar to Poisson
NLSPCA.

To quantify the performance of a reflectivity estimator α̂
using reference scene reflectivity α, we compute the mean-
squared error (MSE) in dB:

MSE(α, α̂) = 10 log10

⎛
⎝ 1

n2

n∑
i=1

n∑
j=1

(αi,j − α̂i,j)
2

⎞
⎠ .

The values listed in Fig. 4(c) and (f) show that the MSE of
our reflectivity estimation method is lower than that of pixel-
wise estimation by 17.4 dB. Also, referring to Fig. 4(d) and (e),
our computational imager gives MSE reductions of 1.7 dB and
1.1 dB over the state-of-the-art denoising methods of Poisson
NLSPCA and BM3D with variance stabilization, respectively.
Here and in all subsequent reflectivity experiments, the regu-
larization parameter βα of our proposed reflectivity imager is
chosen to minimize MSE.

B. Depth Resolution Test

Depth resolution was evaluated with a test target compris-
ing 5 cm × 5 cm squares of varying thickness mounted on a
flat board, as shown by the red-labeled squares in Fig. 4(g).
The smallest resolvable height (thickness) above the reference
level is an indicator of achievable depth resolution. Fig. 4(l)
shows that our method (Equation (16) with the total variation
semi-norm for penz(·)) achieves 4 mm depth resolution, which
is comparable to that of the reference (ground-truth) image
(Fig. 4(h)) formed from 100 detections per pixel, and far supe-
rior to the log-matched filter image (Equation (13)). Fig. 4(j)
and (k), which are the images obtained by applying the median
filter and BM3D respectively on the log-matched filter estimate,
show that the state-of-the-art denoising methods fail to give
significant reduction in RMSE due to the high-variance noise
component of the log-matched filter output.

We quantified the performance of a depth estimator ẑ of a
true scene depth z using root mean-square error (RMSE):

RMSE(z, ẑ) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

(zi,j − ẑi,j)2.

At the background level in our experiment, the log-matched fil-
ter estimates have an RMSE of at least 3 m. Because many
pixels are missing photon detection-time observations, before
applying the denoising algorithms, we first fill in every pixel
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Fig. 5. Experimental results for reflectivity and 3D imaging of natural scenes. All reflectivity images were scaled such that the relevant features are captured in the
interval [0,1]. We compare the reflectivity and depth images from our proposed method with those from pixelwise estimation (see Section IV). Pixelwise RMSEs
for the reflectivity and 3D images using our method were generated from 100 trials of the experiments. For the mannequin dataset (top), the mean per-pixel count
was 1.21 and 54% of the pixels were missing data. For the basketball-and-can dataset (bottom), the mean per-pixel count was 2.1 and 32% of the pixels were
missing data.

with missing data with the average of valid depth values in
its 5× 5 window. Here and in all subsequent depth experi-
ments, the sigma parameter of BM3D was chosen as

√
1/12

based on the fact that the depth from a background noise detec-
tion is uniform in [0,1] after scaling the log-matched filter
depth image to map detections times in [0, Tr] to [0,1]. This
noise standard deviation models the pixels with low reflectiv-
ity, while using the square root of the spatial average of the
noise variance would be smaller by about a factor of 1/

√
2.

Also, the regularization parameter βz of the proposed depth
imager is chosen to minimize RMSE. The depth resolution of
our method (4 mm) corresponds to more than a 10-fold depth
error reduction, compared to the denoised estimates.

C. Natural Scenes

Reflectivity and depth images of two natural scenes—a life-
size mannequin, and a basketball next to a can—are shown in
Fig. 5. Images that play the role of ground truth were obtained
using pixelwise estimation from 200 detections at each pixel
and appear in Fig. 5(a) and (g). The mannequin dataset for
evaluation of our method was generated using acquisition time

Ta = 100 µs. This dataset had 1.21 detections per pixel aver-
aged over the entire scene, with 54% of the pixels having no
detections. The formation of the reference (ground-truth) man-
nequin images required an acquisition time of Ta = 20 ms. The
basketball-and-can dataset for evaluation of our method also
had Ta = 100 µs, but its mean number of detections per pixel
was 2.1, with 32% of the pixels having no detections. The for-
mation of reference (ground-truth) basketball-and-can images
required an acquisition time of Ta = 10 ms.

Fig. 5(b) and (h) shows that the pixelwise estimation
approaches (normalized photon-count (10) for reflectivity and
log-matched filter (13) for depth) give estimates with high
errors due to background-count shot noise at low light lev-
els. Because of the low light levels, many pixels were missing
photon arrivals. For the computation of RMSE of log-matched
filter depth, we make a random guess of depth from the interval
[0, cTr/2) at every pixel with missing data.

Denoising the scaled photon-count reflectivity estimates
of mannequin and basketball-and-can scenes using Poisson
NLSPCA and BM3D with variance stabilization improves the
image qualities enough that the resulting images are perceptu-
ally similar to the ground-truth images, and MSE reduction is
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Fig. 6. Comparison between our framework and conventional LIDAR
technology.

similar to our method. As in Section VI-B, before denoising the
log-matched filter depth image, each pixel with missing data
was imputed with the average of valid depth values in its 5× 5
window. We observe that denoising the pixelwise depth esti-
mates performs poorly; a large portion of the scene has high
background noise and thus many of its pixels have missing
data. On the other hand, our framework, which exploits spa-
tial prior information in its noise censoring step, constructs
3D images with small RMSE values of 0.8 cm and 1.1 cm
for the mannequin and basketball-and-can scenes, respectively
(Fig. 5(k)).

Fig. 6 shows how much photon efficiency we gain over tra-
ditional LIDAR systems that use the histogramming approach.
The histogramming approach is a pixelwise depth-estimation
method that simply searches for the location of the peak in the
photon-count histogram of the backreflected pulse. Whereas
depth estimation using the log-matched filter is asymptoti-
cally ML as B → 0+, histogramming-based depth estimation
method is asymptotically ML as N → ∞. Thus, when Ta is
long enough, as is the case in traditional LIDAR, it is effec-
tive to use the histogramming-based depth estimation method.
Based on values of reflectivity MSE and depth RMSE, we
see that our framework can allow more than 30× speed-up in
acquisition, while constructing the same high-quality 3D and
reflectivity images that a traditional LIDAR system would have
formed using long acquisition times.

Fig. 7. RMSE simulation results for 3D imaging. Signal-to-background ratio
(SBR) given in (17) was varied by simulating background levels on the ground-
truth mannequin dataset. Note the differences in the colorbar scales.

D. Repeatability Test

For each natural scene, we processed 100 independent
datasets and computed the sample RMSE images that approx-

imate
√

E[(αi,j − α̂PML
i,j )2] and

√
E[(zi,j − ẑPML

i,j )2] at each

pixel (i, j). The pixelwise RMSE images for the mannequin
and basketball-and-can scenes are provided in Fig. 5(f) and (l).
They corroborate the consistent accuracy and high resolution of
our computational reflectivity and 3D imager.

E. Effect of System Parameters

Fig. 7 shows how the performance of traditional pixel-
wise log-matched filter and our image formation methods are
affected by changing the acquisition time Ta and the signal-to-
background ratio (SBR), defined to be

SBR =
1

n2

n∑
i=1

n∑
j=1

ηαi,jS

B
. (17)

To obtain the results reported in Fig. 7, SBR was modified
by simulating increases in B through the addition of pseudo-
random detections at times uniformly distributed over [0, Tr].
RMSE decreases monotonically with increasing Ta and SBR,
as one would expect; the RMSE of our method is dramatically
lower over all parameter combinations tested.

Fig. 8 provides additional evidence that our 3D recovery
method is robust under strong background noise and short
acquisition times. Here, SBR was varied by emulating a 7-fold
reduction in Tr through time gating; since B = (ηbλ + d)Tr,
this emulates a 7-fold increase in SBR.

F. Comparison with First-Photon Imaging

First-photon imaging [3] requires a single detection at each
pixel, hence its dwell time on each pixel is a random variable.
Our method requires a fixed dwell time on each pixel, hence
the number of detections on each pixel is a random variable.
So, to compare the performance of first-photon imaging with
that of our method, we set the average per-pixel dwell time of
the former equal to the fixed per-pixel dwell time of the lat-
ter. That comparison, shown in Table I, between the MSEs of
their reflectivity images and the RMSEs of their depth images,
reveals several interesting characteristics. In particular, when
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Fig. 8. Effect of dwell time Ta and signal-to-background ratio (SBR) on our
3D recovery method. For acquisition times of 100 µs and 50 µs, we calculated
the mean photon count ki,j over all pixels to be 1.4 and 0.6, respectively.

TABLE I
COMPARISON BETWEEN FIRST-PHOTON IMAGING AND OUR

FRAMEWORK. NOTE THAT ki,j IS FIXED AND Ta PER PIXEL IS A

RANDOM VARIABLE FOR FPI, WHEREAS ki,j IS A RANDOM VARIABLE

AND Ta PER PIXEL IS FIXED FOR OUR FRAMEWORK

our method’s image acquisition time is matched to that of
first-photon imaging, a substantial fraction of its pixels have
missing data (no detections). Nevertheless, our method success-
fully deals with this problem and yields performance similar to,
or slightly better than, that of first-photon imaging for the five
different scenes we have measured.

G. Limitations

Our method of estimating reflectivity becomes less effec-
tive as the probability of a photon detection from one pulse
grows (i.e., P0(αi,j) in (4) shrinks); this is simply because the
dynamic range of {ki,j}ni,j=1 shrinks. If the probability of a
click is high because of a strong backreflected signal, accurate
imaging can be achieved with traditional optical sensing com-
bined with Poisson denoising algorithms [22], [39], [40]. If it
is due to high background, performance may be improved by
using a narrower spectral filter.

Our method’s depth image incurs its highest error near the
edges of scene objects. The surface normals at these locations
are nearly perpendicular to the line of sight, which dramatically
reduces SNR. Consequently, these regions have fewer detec-
tions, with more of them being background counts, than do the
rest of the pixels. Although our method censors depth anoma-
lies near edges, it estimates the missing depths using spatial cor-
relations, leading to loss of subtle depth details. Also, a detected
photon may have originated from a multiple reflection, causing
estimation inaccuracy. However, for quasi-Lambertian scenes,
diffuse scattering causes multiple reflections to be considerably
weaker than the direct reflection. Combined with Poisson statis-
tics, this implies an exponentially diminishing probability of
photon detection originating from multiple reflections.

Transverse spatial resolution for both reflectivity and depth
is also limited by the accuracy of the raster scanning. Careful
examination of the data revealed possible vertical offsets of
odd- and even-indexed columns on the order of 2 pixels. With
appropriate calibration targets, one may measure the accuracy
of the raster scanning and devise appropriate mitigation meth-
ods. Methods for mitigation of jitter in sampling may also
be appropriate. Here, we believe the effect of this inaccuracy
would be similar across the various approximation methods.
Jitter in raster scanning is obviated by using a detector array.

Recall from Section II that reflectivity image α ∈ R
n×n
+ is

defined to include the effects of radial fall-off, view angle, and
material properties. With the simultaneous estimation of α and
depth image z, one may compensate for radial fall-off to obtain
estimates of absolute scene patch scattering properties.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced a method for 3D and reflectivity imaging
similar to FPI [3]. Both methods use physics-based proba-
bilistic models for the detection of single photons to treat
an individual laser pulse as a Bernoulli trial. In FPI, these
Bernoulli trials are repeated until the first detection, yielding a
geometric random variable; in the present method, a fixed num-
ber of Bernoulli trials yields a binomial random variable. This
distinction necessitates distinct algorithms and leads to different
imaging results.

As a technological matter, using a fixed, deterministic num-
ber of laser pulses is greatly advantageous. Our new method’s
fixed dwell time makes it easier to implement with raster scan-
ning and also compatible with detector arrays. The performance
we demonstrate using on the order of 1 detected photon per
pixel, averaged over the scene, motivates the development of
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accurate and low-power SPAD array-based 3D and reflectivity
imagers. Current commercial CMOS-based depth imagers, for
example Kinect and TOF cameras, have significantly impacted
research in 3D imaging. These sensors offer high depth resolu-
tion, but their use is limited due to poor spatial resolution and
high power consumption. Our approach offers a potential route
to solving these problems.

More generally, our framework can be used in a variety of
low-light imaging applications using photon-counting detec-
tors, such as spatially-resolved fluorescence lifetime imaging
(FLIM) [41] and high-resolution LIDAR [11]. Our method nat-
urally extends to imaging at a variety of wavelengths, making
it suitable for practical implementations. Furthermore, future
advances in optoelectronic methods can improve the accuracy
of our 3D and reflectivity imager. In particular, it can bene-
fit from improved background suppression techniques [5] and
range-gating methods [19].

Many methods in the image processing literature are more
sophisticated and powerful than our method in their exploitation
of spatial structure. Poisson NLSPCA [22] and BM3D [23],
[24] are among these methods and have been used here only
for post-processing after pixelwise estimation. More thorough
integration of state-of-the-art spatial models with the physi-
cal models presented here would presumably provide improved
performance.

APPENDIX

This appendix provides performance analyses for pixelwise
estimation. The Cramér-Rao lower bound (CRLB) sets the limit
on the mean-square error (MSE) of an unbiased estimator of a
parameter. Let x be a scalar continuous parameter in the PDF
fY (y;x) of random variable Y . The CRLB for an unbiased esti-
mator x̂ of the parameter x based on observation of Y is the
inverse of the Fisher information J(x) [31]:

E[(x− x̂)2] ≥ CRLB(x) = J−1(x)

=

{
E

[
d2

d2x
(− log fY (y;x))

]}−1

. (18)

An unbiased estimator x̂ is efficient if E[(x− x̂)2] =
CRLB(x).

A. Mean-Square Error of Reflectivity Estimation

With some algebra, the CRLB for estimating the reflectivity
αi,j at pixel (i, j) can be shown using (5) to be

CRLB (αi,j) =

{
E

[
d2

d2αi,j
(− log Pr[Ki,j = k;αi,j ])

]}−1

=

{
E

[
kη2S2 exp [ηαi,jS +B]

(exp [ηαi,jS +B]− 1)
2

]}−1

=
exp [ηαi,jS +B]− 1

Nη2S2

≈ ηαi,jS +B

Nη2S2
, (19)

where the approximation makes use of the low-flux condition
ηαi,jS +B � 1 and exp(x) ≈ 1 + x for small x. As could
easily be expected, increasing the number of pulse repetitions,N ,
collects more photons and hence decreases the CRLB.

Note, however, that we cannot directly use the CRLB result
to lower bound the mean-square error of the unconstrained ML
reflectivity estimate α̂ML

i,j given by

α̂ML
i,j =

1

ηS

[
log

(
N

N − ki,j

)
−B

]
.

This is because the ML estimate is biased, (E[α̂ML
i,j ] = αi,j):

E
[
α̂ML
i,j

]
= E

[
1

ηS
log

(
N

N − ki,j

)
− B

ηS

]

=
1

ηS
logN − 1

ηS
E [log (N −Ki,j)]− B

ηS

>
1

ηS
logN − 1

ηS
log (N − E[Ki,j ])− B

ηS

= αi,j ,

where the strict inequality comes from Jensen’s inequality and
the fact that the logarithm function is strictly concave.

When N → ∞ and ηαi,jS +B → 0+ with
N [1− exp(ηαi,jS +B)] equal to a constant C(αi,j), the
ML reflectivity estimate is

α̂ML
i,j =

k

NηS
− B

ηS
. (20)

In this case, the CRLB equals the MSE of the ML reflectivity
estimate,

CRLB(αi,j) = E

[(
αi,j − α̂ML

i,j

)2]
=

1

N

(
αi,j

ηS
+

B

η2S2

)
.

We see that the CRLB expression from the Poisson likeli-
hood is equal to the first-order Taylor expansion of the CRLB
expression of the exact binomial likelihood given by (19).

Knowing that the ML solution in the limiting Poisson distri-
bution is unbiased and efficient, we conclude that the maximum
likelihood reflectivity estimate α̂ML

i,j is efficient asymptotically
as (ηαi,jS +B) → 0+ and N → ∞.

B. Mean-Square Error of 3D Estimation

We again assume that ηαi,jS +B → 0+ and N → ∞ such
that N [1− exp(ηαi,jS +B)] is a constant C(αi,j). The CRLB
for estimating the depth zi,j is then found to be

CRLB(zi,j) =

{
E

[
d2

d2zi,j

(
− log fTi,j

({t(�)i,j }ki,j

�=1; zi,j)
)]}−1

=

⎧⎨
⎩E

⎡
⎣− ki,j∑

�=1

d2

d2zi,j
log fTi,j

(t
(�)
i,j ; zi,j)

⎤
⎦
⎫⎬
⎭

−1

=
1

C(αi,j)

(∫ Tr

0

ṗ(t; zi,j)
2

p(t; zi,j)
dt

)−1

, (21)
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where

p(t; zi,j) =
λi,j(t)∫ Tr

0
λi,j(τ) dτ

with λi,j(t) the single-pulse rate from (1) and ṗ(t; zi,j) its
derivative with respect to time.

We can exactly compute the MSE expression for certain
pulse waveforms. For example, if the illumination waveform
is a Gaussian pulse s(t) ∝ exp[t2/2T 2

p ], then using the uncon-
strained log-matched filter expression, we get

ẑML
i,j = argmax

zi,j

ki,j∑
�=1

log
[
s(t

(�)
i,j − 2zi,j/c)

]
=

c

2

(∑ki,j

�=1 t
(�)
i,j

ki,j

)
,

given ki,j ≥ 1. If ki,j = 0, then a standard pixelwise data impu-
tation is done by making a uniformly random guess over the
interval [0, zmax). Assuming B = 0, the MSE expression can
be written as

E[(zi,j − ẑML
i,j )

2] = EKi,j

[
E[(zi,j − ẑML

i,j )
2 |Ki,j ]

]
=

∞∑
k=0

Ck(αi,j)e
−C(αi,j)

k!
E[(zi,j − ẑML

i,j )
2 |Ki,j = k]

= e−C(αi,j)

[(
cTr

2

)2

+

(
zi,j − cTr

4

)2

+
∞∑
k=1

Ck(αi,j)

k!

1

k

(
cTp

2

)2
]

= e−C(αi,j)

⎛
⎜⎜⎜⎝
(
cTr

2

)2

+

(
zi,j − cTr

4

)2

︸ ︷︷ ︸
random guess error

+

(
cTp

2

)2 ∫ C(αi,j)

0

exp[τ ]− 1

τ
dτ︸ ︷︷ ︸

pulse-width error

⎞
⎟⎟⎟⎠ . (22)

As C(αi,j) → ∞, the pulse-width error term in MSE domi-
nates and ẑML

i,j becomes an efficient estimator.
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