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Abstract—Dynamic imaging addresses the recovery of a time-
varying 2D or 3D object at each time instant using its under-
sampled measurements. In particular, in the case of dynamic to-
mography, only a single projection at a single view angle may be
available at a time, making the problem severely ill-posed. We
propose an approach, RED-PSM, which combines for the first
time two powerful techniques to address this challenging imag-
ing problem. The first, are non-parametric factorized low rank
models, also known as partially separable models (PSMs), which
have been used to efficiently introduce a low-rank prior for the
spatio-temporal object. The second is the recent Regularization by
Denoising (RED), which provides a flexible framework to exploit
the impressive performance of state-of-the-art image denoising
algorithms, for various inverse problems. We propose a partially
separable objective with RED and a computationally efficient and
scalable optimization scheme with variable splitting and ADMM.
Theoretical analysis proves the convergence of our objective to a
value corresponding to a stationary point satisfying the first-order
optimality conditions. Convergence is accelerated by a particu-
lar projection-domain-based initialization. We demonstrate the
performance and computational improvements of our proposed
RED-PSM with a learned image denoiser by comparing it to a
recent deep-prior-based method known as TD-DIP. Although the
main focus is on dynamic tomography, we also show performance
advantages of RED-PSM in a cardiac dynamic MRI setting.

Index Terms—Dynamic imaging, regularization by denoising,
low rank modeling.

I. INTRODUCTION

T IME-VARYING or dynamic tomography involves the re-
construction of a dynamic object using its projections

acquired sequentially in time. The problem arises in micro
tomography [1], myocardial perfusion imaging [2], thoracic
CT [3], imaging of fluid flow processes [4], [5] and dynamic
imaging of material samples undergoing compression [6], [7].
Also, it is closely related to the dynamic MRI (dMRI) problem,
which typically arises in cardiac imaging [8].

Dynamic tomography is a challenging ill-posed inverse prob-
lem: since the measurements are inconsistent due to the evolving
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object, traditional reconstruction algorithms lead to significant
artifacts. As discussed further below, although numerous meth-
ods have been proposed to address this problem, they suffer
from various limitations, or provide less than satisfactory re-
construction quality, especially in the scenario of main interest
in this paper, when at each time instant only one projection is
available.

A. Proposed Approach

We propose an approach, RED-PSM, which combines for
the first time two powerful techniques to address this challeng-
ing imaging problem. The first technique, are non-parametric
factorized low-rank object models, popularized under the name
partially separable models (PSMs) [9]. PSM was combined with
low-rank matrix recovery in [10], [11], [12], and used since
then to represent or motivate a low-rank object prior in tens
of works on dynamic imaging. The second technique is the
recent Regularization by Denoising (RED) [13], which provides
a flexible framework to exploit the impressive performance of
state-of-the-art image denoising algorithms, for various inverse
problems.

We propose a non-convex partially separable objective with
RED for learning-regularized low-rank spatio-temporal object
recovery and a computationally efficient and scalable optimiza-
tion scheme with bi-convex ADMM.

Theoretical analysis proves the convergence of our objective
to a value corresponding to a stationary point satisfying the first-
order optimality conditions. Convergence is accelerated by a
particular projection-domain-based initialization.

We demonstrate the performance and computational improve-
ments of our proposed RED-PSM with a learned image denoiser
by comparing it to a recent deep-prior-based method known as
TD-DIP [14], and to spatial and spatiotemporal total variation
(TV) regularized versions of PSM with a bi-convex objective.

Although the main focus is on dynamic tomography, we also
show the performance advantages of RED-PSM in a cardiac
dynamic MRI setting.

RED was originally inspired by the Plug-and-Play (PnP) ap-
proach [15], which was the first to exploit powerful denoisers to
represent the prior on the object in inverse problems but without
explicitly defining the regularizer. Instead, in PnP the denoiser
is incorporated by replacing a proximal mapping. Both PnP
and RED have shown strong empirical performance in various
applications. A recent survey [16] provides a detailed discussion
of the main results and different applications of PnP and the
relation to RED. For the algorithmic variations PnP-ADMM and
PnP-ISTA there are convergence results to unique fixed points.
Moreover, for PnP-ISTA, similar to our result, convergence is
shown to a stationary point of a possibly non-convex objective
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when the denoiser is an MMSE estimator [17]. This result
requires the prior to be non-degenerate, i.e., not lie on a lower
dimensional manifold, which, unfortunately, would be violated
by the low-rank bilinear representation in our PSM. We believe
that a PnP-based method similar to RED-PSM can be formulated
for our problem, but a proof of convergence to a stationary point
may not directly follow, and a different approach and analysis
may be needed.

Our motivation for using the original RED formulation in
RED-PSM rather than more recent formulations and analyses
(e.g., as in [18] and the references therein) are its simple gradi-
ent expression, and explicit regularizer expression facilitating
implementation and theoretical analysis. The objective is to
demonstrate the large improvement in performance that this
simple learned regularizer can bring to the PSM scheme, and
the improvement over much more complex and slower state-
of-the-art methods. Recent variations on RED such as in [18],
and PnP methods (as covered in [16]) have improved over
the original methods in reconstruction quality in various static
imaging problems and/or in theoretical guarantees. However,
theoretical guarantees for the case of a non-convex data fidelity
term have been provided recently for only one such non-convex
scenario - phase-retrieval [19]. As this is the first work to extend
RED to spatio-temporal imaging with a PSM, and to provide a
convergence guarantee for the method in the non-convex bilinear
scenario, we chose to limit our attention in this paper to the
original RED version [13], [20].

B. Previous Work

We limit our discussion to dynamic CT and dMRI, although
similar or analogous methods have been or can be applied in
other dynamic imaging modalities. The same can be said of the
method proposed in this paper.

1) Dynamic MRI (dMRI): In spite of major advances in
hardware and signal acquisition methods, MRI has remained
a relatively slow modality, posing significant challenges for
dynamic imaging. This, coupled with the high flexibility in the
acquisition strategy, has motivated extensive work on dMRI,
with hundreds of papers on the subject. We highlight some key
developments in the algorithm-based dMRI techniques.

Fundamentally, algorithmic approaches to dMRI are based
on identifying and exploiting redundancy in the dynamic object,
which enable its recovery from an incomplete, and usually sparse
set of samples acquired in the joint k-space and time domain –
the k-t-space. Many of the proposed methods have extensions to
parallel imaging, which introduces additional such redundancy
by additional hardware.

A large set of approaches rely on modeling the support of the
object in the domain dual to the k-t-domain – the (x-f ) domain
(the space – temporal frequency domain). These approaches
may be classified into three groups. The first involves generic
modeling of the (x-f ) support as in reduced field-of-view (FOV)
techniques [21], [22], [23]. The second involves sparse and
unknown support modeling in a transform domain, and sampling
and recovery using the methods of compressed sensing [24],
[25], [26], [27]. The third involves adaptive sparse support
modeling [28], [29], [30], [31], where the support information
is adapted to the dynamics of the imaged slice, and the theory
of time-sequential sampling [32], [33] is used to design an
optimal k-t sampling and reconstruction scheme. Other related
approaches model prior information such as motion periodicity

and related harmonic structure [34], [35], or the object’s spatial
and temporal correlation functions [36].

Since its introduction, the partially-separable model
(PSM) [9], with a non-parametric factorized low-rank form
separating the spatial and temporal structure, has been used
extensively in many works on dMRI to represent the underlying
spatio-temporal object. A group of methods recover the PSM in
two steps: (a) estimate the temporal subspace using data (e.g.,
a navigator signal) sampled at low spatial, but high temporal
resolution; and (b) estimate the spatial subspace using the
entire acquired data set. Such methods include e.g., [9], [37],
[38], [39], [40], with followup versions promoting sparsity
of the object in a transform domain (e.g., [41]). Other PSM
approaches use a low-rank matrix recovery formulation to
estimate spatial and temporal components jointly (free of
conditions or additional data acquisition enabling a separate
reconstruction of the temporal subspace), e.g., [10], [11]), also
with versions promoting sparsity [12], [42].

Manifold models have also been considered for dMRI. Recent
such work [43] surveys previous related works, and proposes
a new method that is related to PSM. The method partitions
the dynamic object into temporal subsets each lying on a
low-dimensional manifold, approximated by its tangent sub-
space. As a result, the object is represented by a temporally
partitioned PSM. A simple sparsity penalty is used for the
spatial representation. The spatial basis functions and linear
transformations aligning the temporal subsets are determined
by optimizing a non-convex objective using an ADMM al-
gorithm. The subset temporal partitioning and temporal bases
are estimated using an initial reconstruction obtained from
training data. In some applications, such data may not be
available.

Another set of methods, including [44], [45], [46], [47], pro-
motes low-rankness of the entire spatio-temporal object matrix
or of patches thereof [48], [49] implicitly by using the nuclear
norm or Schatten-p functional with p < 1, often promoting
sparsity in a transform domain as well. Methods combining
motion estimation and compensation with other priors are also
used widely for dMRI, e.g., [50], [51], [52], [53].

A different approach in dMRI decomposes the object into
the sum of low-rank and sparse components, with the low-
rankness encouraged implicitly using nuclear or a Schatten-p
functional [54], [55], [56], [57]. A recent related fast method [58]
decomposes the object representation into the sum of three
components: the mean signal; a low-rank PSM; and a residual
sparse in the Fourier domain. Although benchmark competing
methods are either faster or more accurate on some of the diverse
data sets used for the comparison in [58], the method provides the
lowest reconstruction error and runtimes when these quantities
are averaged over these data sets.

Recent approaches to dMRI reconstruction have used deep
neural networks (DNNs). A majority of these methods, such
as [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69],
[70], [71], [72], are supervised, requiring a large set of high-
resolution artifact-free images for network training. However,
acquiring such training data can be difficult for some dMRI
applications, and may be impossible for many other dynamic
imaging applications, where clinicial dMRI strategies for freez-
ing motion such as ECG synchronization and breath-hold by a
cooperative patient, are not available.

The need for a training data set is overcome by recent object-
domain deep image prior (DIP)-based DNN algorithms for
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dMRI [14], [73], which are unsupervised. Providing impressive
results, DIP-based algorithms such as [14] suffer from over-
fitting and usually require handcrafted early stopping criteria
during the optimization of generator network parameters. To
overcome these drawbacks, [73] includes regularization con-
straining the geodesic distances between generated objects.
However, this requires the computation of the Jacobian of the
generator network at each iteration of the update of the weights,
significantly increasing the computation and run time.

A different unsupervised approach [74] combines factorized
low rank (i.e., partially separable) with generative models. Al-
though it combines the PSM with the recent DIP framework, this
method has the following limitations: i) The spatial generator is
an artifact removal network taking the full-sized spatial basis
functions as input. Since this prevents a patch-based imple-
mentation, it may be computationally problematic for high-
resolution 3D+temporal settings; ii) The CNN structural prior
for natural images that is used in the spatial generator may not
be useful as a prior for the individual spatial basis functions,
since the least-squares optimal spatial basis functions are the left
singular vectors of the complete object, and as such may not have
the structure of natural images; iii) As with the other DIP-based
methods, if the additional penalties on the generator parameters
are insufficient, this method can be prone to overfitting. These
various limitations are overcome by the proposed approach.

2) Dynamic Tomography (dCT): CT is faster than MRI,
thanks to acquiring an entire projection at one view angle at once.
However, because of the angular scanning required in almost all
systems, in spite of significant advances in hardware, dCT is still
a relatively slow modality. It is also the problem that motivated
much of our work reported in this paper.

In perhaps the earliest algorithmic approaches to dCT, the
time-sequential sampling problem in d-CT was formulated and
studied in [75], and [76], [77] provided a solution using time-
sequential sampling of bandlimited spatio-temporal signals in-
cluding an optimal view angle order for the scan and theoretical
guarantees for unique and stable reconstruction. However, the
approach is limited by its bandlimitedness assumptions.

A class of algorithms for dCT are based on modeling the
time variation by a motion field, and motion-compensated re-
construction. Many of these algorithms, e.g., [78], [79], [80],
[81] alternate between estimating the motion field and the time-
varying object. Some algorithms, e.g., [82] use the optical flow
(mass continuity) PDE. A different method [83] estimates the
motion field separately by evolving a linear elastic deformation
by the Navier-Cauchy PDE, assuming known boundary evo-
lution of the object and initial density distribution. However,
these methods assume the total mass or density to be preserved
over time, which may be limiting assumptions. For instance,
flow of a contrast agent into the imaged volume, or imaging a
fixed slice of a 3D time-varying object under compression with
cross-slice motion may violate either of these assumptions. As
a hardware-based, problem-specific approach, optical tracking
of fiducial marks has been used for motion correction [84].

Various methods approach dCT reconstruction as Bayesian
estimation. These include methods [85], [86], [87], [88] that
employ a state-space formulation and use Kalman filter tech-
niques to approximate an MMSE estimate. A different Bayesian
method [89] incorporates a spatiotemporal Markov random field
object prior, and models measurement imperfections. An itera-
tive algorithm is used to compute a MAP estimate. An interlaced
projection acquisition scheme is also proposed.

Several dCT methods motivated by compressed sensing use
a total-variation penalty along both spatial and temporal co-
ordinates as in [90], while other methods, e.g., [91] propose
efficient sparse representations for the dynamic object. Incor-
porating low-rank modeling [92] decomposes the object into
low-rank+sparse components, promoting the low rankness im-
plicitly using the nuclear norm. The method relies on the object
being approximately static for groups of projections, enabling
an approximate reconstruction from each such group.

The PSM model has been introduced into dynamic tomog-
raphy [93], [94] by carrying the PSM to the projection domain
using the harmonic representation of projections, and estimating
the spatial and temporal basis functions jointly. The work pro-
vides a theoretical analysis of uniqueness and stability and the
choice of time-sequential angular scan scheme for the problem.
Despite the advantages of this approach, its performance is still
limited by the null space of the measurement operator.

To help address the underdetermined problem, the method
of [95] improves over [93], [94] by combining a PSM with
basic spatial regularization by total variation. Like [93], [94]
this method too estimates the temporal and spatial PSM com-
ponents jointly. This makes it applicable to the time-sequential
acquisition scenario considered in this paper, where only a single
projection is available per time frame. It imposes low rankness
as a soft constraint, using a hybrid biconvex objective with a
data fidelity term and a TV regularizer expressed in terms of the
unfactorized object, and a penalty for object-PSM mismatch.
It uses [93], [94] for fast initialization. The method [95] can
be considered a precursor to the method of this paper, which
combines a hard rank constrained PSM with a sophisticated
learned spatial regularizer, and provides theoretical convergence
analysis.

Recent methods [96], [97], [98], [99] introduce deep learning
into dCT. These methods require an initial reconstruction from
the subsets of data from which the motion can be estimated
accurately. However, without a periodicity assumption, this is
not applicable to the scenarios in this paper, where only a single
projection is available at a time. Another method [100] for
cone-beam dCT proposes a multi-agent consensus equilib-
rium [101]-based technique using separate deep denoisers for
axial, sagittal, and coronal slices of the object.

A deep-learning-based method [102] for dynamic photoa-
coustic tomography (PACT) introduced a neural field (NF) to
represent the dynamic object with fewer parameters, combining
it with a simple total variation (TV)-based regularizer. Despite
providing an efficient representation for the dynamic object, the
method outperforms its comparison benchmarks only in some
of the projection-per-frame settings.

C. Contributions

1) To the best of our knowledge, RED-PSM is the first
PSM-based approach to dynamic imaging that incorporates a
particular (RED-based [13]) spatial prior that is learned and
pre-trained.

2) We are not aware of any prior work that uses RED with
an explicit low-rankness constraint. In RED-PSM we achieve
parsimonious representation for the dynamic object using PSM,
and reduce the data requirements further by incorporating the
RED prior.

3) Unlike supervised learning-based methods for spatio-
temporal imaging [59], [60], [61], [62], [63], [64], [65], [66],
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Fig. 1. Imaging geometry for time-varying tomography of the object ft with
single measurement gt at each time instant for t ∈ {0, 1, 2}.

[67], [68], [69], [70], [71], [72], [103], [104], [105] that learn a
spatio-temporal model from training data, RED-PSM does not
require ground-truth spatio-temporal training data, which is of-
ten not available or expensive to acquire. Thus RED-PSM offers
the best of both worlds: a learned spatial model using readily
available static training data, and unsupervised single-instance
adaptation to the spatio-temporal measurement.

4) A novel and effective ADMM algorithm for the resulting
new minimization problem enforces PSM as a hard constraint
and incorporates the learned RED spatial regularizer.

5) The method is supported by theoretical analysis: we show
convergence of the proposed PSM-based objective to a station-
ary point, and do so for a highly non-trivial learned regular-
izer. To date, the convergence of RED has been analyzed in
the nonlinear measurement setting only for the phase retrieval
problem [19]. Our analysis of RED-PSM is the first convergence
result of RED in the bilinear (bi-convex), non-convex scenario.
This convergence guarantee is of practical importance. First, it
provides a mathematical justification to terminate the algorithm
after sufficiently many iterations. Second, it eliminates concerns
about the solution degrading after too many iterations as in the
case of DIP-based methods.

6) Compared to a recent DIP-based [14] algorithm, RED-PSM
achieves better reconstruction accuracy with orders of magni-
tude faster run times.

7) To improve and speed up the empirical convergence of
RED-PSM, we use a particular fast projection-domain PSM
initialization scheme [93], [94] for the spatial and temporal basis
functions. The accelerated and reliable convergence with this
initialization scheme is important for applications that require
fast turn-around between acquisition and reconstruction.

8) A version of the approach with a patch-based regularizer
is shown to provide almost equivalent reconstruction accuracy.
This makes the proposed method conveniently scalable to high-
resolution 3D or 4D settings.

An earlier and partial version of this work, missing, among
other things, the detailed discussion of previous work, con-
vergence analysis, and some of the experimental results, was
presented at a conference [106].

II. PROBLEM STATEMENT

In a 2D setting, illustrated in Fig. 1, the goal in the dynamic
tomography problem is to reconstruct a time-varying object
f(x, t), x ∈ R2 vanishing outside a disc of diameterD, from its
projections

g(·, θ, t) = Rθ{f(x, t)}

obtained using the Radon transform operatorRθ at angle θ. Con-
sidering time-sequential sampling, in which only one projection
is acquired at each time instant, and sampling uniform in time,
the acquired measurements are

{g(s, θp, tp)}P−1
p=0 , ∀s, tp = pΔt, (1)

where s is the offset of the line of integration from the origin (i.e.,
detector position), and P is the total number of projections (and
temporal samples) acquired. The sampling of the s variable is as-
sumed fine enough and is suppressed in the notation. The angular
sampling scheme, the sequence {θp}P−1

p=0 , with θp ∈ [0, 2π], is a
free design parameter.

Our objective in dynamic tomography is to reconstruct
the underlying dynamic object {f(x, tp)}P−1

p=0 from the time-
sequential projections in (1). The challenge is that because each
projection belongs to a different object, the projections in (1)
are inconsistent. Therefore, a conventional, e.g., filtered back-
projection (FBP) reconstruction as for a static object results in
significant reconstruction artifacts. This is to be expected, as the
problem is severely ill-posed: an image with aD-pixels diameter
requires more thanD projections for artifact-free reconstruction,
whereas only one projection is available per time-frame in the
time-sequential acquisition (1). Several dynamic tomography
methods [79], [89], [100] group temporally neighboring pro-
jections and assume the object is static during their acquisition.
However, this reduces the temporal resolution, and any violation
of this assumption (as in the case of time-sequential sampling)
leads to mismodeling in the data fidelity terms.

III. PARTIALLY SEPARABLE MODELS (PSM)

For spatio-temporal inverse problems such as dynamic MRI
and tomography, the underlying object can be accurately rep-
resented using a partially-separable model (PSM), which effec-
tively introduces a factorized low-rank prior to the problem.
For dynamic tomography, a PSM can represent the imaged
object f , or its full set of projections g. In this paper we use
an object-domain PSM.

The representation of a dynamic object f(x, t) by a K-th
order partially separable model (PSM) is the series expansion

f(x, t) =

K−1∑
k=0

Λk(x)ψk(t). (2)

This model facilitates interpretability by separating the spatial
structure from the temporal dynamics. Empirically, modest val-
ues of K provide high accuracy in applications to MR cardiac
imaging [10], [107], [108]. Theoretical analysis [94] shows that
for a spatially bandlimited object undergoing a time-varying
affine transformation (i.e, combination of time-varying transla-
tion, scaling, and rotation) of bounded magnitude, a low order
PSM provides a good approximation.

As detailed later, as a standard choice in modeling temporal
functions, we use a d-dimensional representation with d� P .
A similar idea was used in [11] to represent the low temporal
bandwidth of cardiac motion in dMRI. Together with the PSM
for the object this leads to a significant reduction in the number
of representation parameters for a spatio-temporal object with
a D-pixel diameter and P temporal samples: from ≈ PD2 to
≈ KD2 +Kd, withK � P . Becaused� D, this corresponds
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Fig. 2. The RED-PSM framework. The deep denoiser Dφ is trained on slices
of static objects similar to the object of interest, and the learned spatial prior is
used at inference time.

to a factor of P/K � 1 compression of the representation, pro-
viding an effective parsimonious model for the spatio-temporal
object f .

Also, by propagating the PSM object model to the projection
domain, it enables quantitative analysis [94] of the choice of
optimal sequential projection angular schedule.

IV. PROPOSED METHOD: RED-PSM

The overall RED-PSM framework for recovering dynamic
objects explained in this section is illustrated in Fig. 2.

A. Variational Formulation

We use a discretized version of the PSM (2) for the dy-
namic object, with the object f(·, t) at each time instant t =
0, 1, . . . , P − 1, represented by a N ×N -pixel image (a “time
frame”, or “snapshot”). Vectorizing these images to vectors
ft ∈ RN2

, the entire dynamic object is the N2 × P matrix
f = [f0 . . . fP−1]. It will also be useful to extract individual time
frames from f . Denoting the t-th column of the P × P identity
matrix by et, we havefet = ft, i.e., et extracts the t-th column of
f . Applying the PSM model, we assume f = ΛΨT ∈ RN2×P ,
where the columns Λk and Ψk of Λ ∈ RN2×K and Ψ ∈ RP×K

are the discretized spatial and temporal basis functions for the
PSM representation, respectively.

Assuming that the x-ray detector hasN bins, the projection of
the object at time t is gt = g(·, θt, t) = Rθtft ∈ RN , where the
measurement matrix Rθt ∈ RN×N2

computes the projection at
view angle θt.

We formulate the recovery of f as the solution f̂ = Λ̂Ψ̂T to
the following variational problem

(Λ̂, Ψ̂) = argmin
Λ,Ψ

P−1∑
t=0

(∥∥RθtΛΨ
T et − gt

∥∥2
2
+ λρ(ΛΨT et)

)

+ ξ‖Ψ‖2F + ξ‖Λ‖2F where Ψ = UZ. (3)

The first term is the data fidelity term measuring the fit
between available undersampled measurements gt of the true
object and the measurements obtained from the estimated object
f = ΛΨT ∈ RN2×P . The second term with weight λ > 0 is a
spatial regularizer injecting relevant spatial prior to the problem.
It is applied to the PSM ΛΨT column by column, that is,
to individual temporal image frames. The last two terms with

weight ξ > 0 prevent the bilinear factors from growing without
limit.1

Finally, the identity Ψ = UZ is an implicit temporal reg-
ularizer that restricts the temporal basis functions Ψ to a d-
dimensional subspace of RP spanned by a fixed basisU ∈ RP×d

where d ≥ K. The action of U on columns of Z may be
interpreted as interpolation from d samples to the P -sample
temporal basis functions. In practice, we incorporate this identity
by explicit substitution (reparametrization of Ψ in terms of
the free variable Z ∈ Zd×K) into the objective, and the min-
imization in (3) over Ψ is thus replaced by minimization over
Z. This reduces the number of degrees of freedom in Ψ to a
fixed number dK, independent of the number P of temporal
sampling instants. For notational conciseness, we do not display
this constraint/reparametrization in the sequel, but it is used
throughout.

B. Incorporating Regularization by Denoising

For the spatial regularizer ρ(·)we consider “Regularization by
Denoising (RED)” [13]. RED proposes a recovery method using
a denoising operatorD : RN2 → RN2

in an explicit regularizer
of the form

ρ(ft) =
1

2
fTt (ft −D(ft)). (4)

Recent studies using this regularizer provide impressive perfor-
mances for various static image reconstruction tasks including
high-dimensional cases [109] and phase retrieval [110]. This
regularizer was also combined with a DIP-based fidelity term
in [111]. However, we avoid this due to disadvantages related to
speed, overfitting, and convergence guarantees.

While it provides significant flexibility for the type of denois-
ers that can be used, RED still requires D to be differentiable
and locally homogeneous, and to satisfy the passivity condition
‖D(ft)‖ ≤ ‖ft‖, for the theoretical analysis of RED to apply.2

Next, we consider the optimization in (3). For the conventional
variational formulation

f̂t = argmin
ft

‖Rθtft − gt‖22 + λρ(ft),

an efficient choice are iterative algorithms [13] that use the
standard “early termination” approach [112], and only require a
single use of the denoiser per iteration. However, the regularized
PSM objective in (3) does not allow to propagate the RED
updates on f to the respective basis functions efficiently. To
overcome this difficulty, we perform a bilinear variable splitting
f = ΛΨT and obtain our final formulation

min
f,Λ,Ψ

H(f,Λ,Ψ) s.t. f = ΛΨT (5)

where H(f,Λ,Ψ) =

P−1∑
t=0

(∥∥∥RθtΛΨ
T et − gt

∥∥∥2
2
+ λρ(fet)

)

1Inclusion of these Frobenius norm terms also happens to lead to connections
with nuclear norm, but, as discussed in detail in Section V, our problem
formulation (even if the RED regularizer is disregarded) is not equivalent to
a formulation encouraging a low-rank solution by a nuclear norm or other
Schatten norm penalty such as used in [44], [46], [47]. Instead, the factorized
form f = ΛΨT (as in other PSM-based matrix recovery works such as [10],
[11]) introduces this rank constraint explicitly.

2While many powerful denoisers have been demonstrated to satisfy these
conditions in [13], recent work [20] provides another framework to explain the
good performance of RED with denoisers not satisfying them.
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Algorithm 1: RED-PSM.

input: Λ(0), Ψ(0), γ(0), f (0) = Λ(0)Ψ(0)T , β > 0, λ > 0,
ξ > 0

1: for i ∈ {1, . . . , I} do
2: Λ(i) = argminΛ{

∑
t ‖RθtΛΨ

(i−1)T et − gt‖22
+β

2 ‖ΛΨ(i−1)T − f (i−1) + γ(i−1)‖2F + ξ‖Λ‖2F }
3: Ψ(i) = argminΨ{

∑
t ‖RθtΛ

(i)ΨT et − gt‖22
+β

2 ‖Λ(i)ΨT + γ(i−1) − f (i−1)‖2F + ξ‖Ψ‖2F }
4: ∀t : f (i)t = argminft{λρ(ft)

+β
2 ‖(Λ(i)Ψ(i)T + γ(i−1))et − ft‖22}

5: γ(i) = γ(i−1) + Λ(i)Ψ(i)T − f (i)

6: end for

Algorithm 2: RED-PSM With Efficient f step.
Notes: Inputs, and Lines 1–3 and 5–6 are the same as
Algorithm 1. The f step is applied ∀t.

4: ∀t : f (i)t = λ
λ+βDφ(f

(i−1)
t )+ β

λ+β (Λ
(i)Ψ(i)T + γ(i−1))et

+ ξ‖Λ‖2F + ξ‖Ψ‖2F . (6)

Since the PSM is enforced as a hard constraint, the estimated
object f is constrained to have rank(f) ≤ K. Problem (5) is
non-convex even if ρ is convex, because of the product between
unknowns Λ and Ψ.

We propose an algorithm based on ADMM to solve (5).
To this end, we form the augmented Lagrangian in the scaled
form, [113], [114]

Lβ [Λ,Ψ, f ; γ] =
∑
t

(∥∥∥RθtΛΨ
T et − gt

∥∥∥2
2
+ λρ(fet)

)

+ ξ‖Ψ‖2F + ξ‖Λ‖2F − β

2
‖γ‖2F +

β

2
‖ΛΨT − f + γ‖2F ,

(7)

whereγ ∈ RP×N2
represents the scaled dual variable associated

with the constraintf = ΛΨT andβ > 0 is the penalty parameter.
Then, ADMM can be used to solve (7) as in Algorithm 1.
Line 4 in Algorithm 1 then corresponds to the variational

denoising for all t of the “pseudo image frame” (Λ(i)Ψ(i)T +
γ(i−1))et with regularization λρ(ft). Instead of solving this
denoising problem by running an iterative algorithm to conver-
gence, we follow the RED approach [13], [20], and for each t
replace the ft update in Step 4 by a single fixed-point iteration
step using the approach of early stopping [112] (Sec. 4.3.2),
taking advantage of the gradient rule

∇ρ(ft) = ft −Dφ(ft) (8)

where Dφ is the denoiser. This results in Algorithm 2, which
requires only a single use of the denoiser per iteration of ADMM.
Furthermore, as in Algorithm 1, the modified Line 4 in Algo-
rithm 2 can be performed in parallel for all t.

C. Regularization Denoiser

The regularization denoiser Dφ has a deep neural network
CNN (DnCNN) [115] architecture and is trained in a supervised
manner on a training set of 2D slices fi ∈ RN2

, i = 1, . . . N

TABLE I
TIME AND SPACE COMPLEXITIES FOR TWO VARIANTS OF THE RED-PSM
ALGORITHM FOR A SINGLE OUTER ITERATION OF THE BILINEAR ADMM

of one or more static objects similar to the object of interest,
assuming that such data will be available in the settings of
interest. Thus, the RED steps are agnostic to the specific motion
type. The training objective for the denoiser is

min
φ

∑
i

‖fi −Dφ(f̃i)‖2F s.t. f̃i = fi + ηi, ∀i, (9)

where the injected noise ηi ∼ N (0, σ2
i I) has noise level σi ∼

U [0, σmax] spanning a range of values, so that the denoiser learns
to denoise data with various noise levels.

D. Computational Cost

Space (memory requirements) and time (operation count)
complexities for two variants of the RED-PSM bilinear ADMM
algorithm are shown in Table I. The operation counts are for a
single outer iteration. As the number of outer iterations typically
has a weak dependence on the size of the problem, the scaling
shown tends to determine the run time. Furthermore, thanks to
its structure, the algorithm also offers many opportunities for
easy parallelization, so that actual runtime can be proportionally
reduced by allocating greater computational resources. See the
Supplementary Material Section VII-B for the detailed analysis
of computational requirements.

The complexities for the proposed Algorithm 2 are given in
the first column of Table I. Space complexity is dominated by the
storage of Λ, and scales proportionally to image cross-section
size in pixels N2, and the order K of the PSM. The time
complexity is dominated by the computations of the gradient
with respect to Λ, and scales proportionally to the size N2P of
the spatio-temporal object, PSM orderK, and the numberMi of
inner iterations used to solve optimization subproblems (Lines
2 and 3 in Algorithm 2).

Finally, in the second column of Table I, we investigate the
patch-based version of the proposed algorithm described in
Section VI-D6. Given a patch sizeNB � N and stride s ≤ NB ,
this alternative increases the operation count by (NB

s )2 since it
operates on overlapping patches. For example, for the settings
in our experiments, s = NB

2 , increasing the operation count by a
factor of 4. This is a modest price to pay, because this alternative
also reduces the space complexity by a factor of (NB

N )2. For
example, for NB=8 and N=128 as used in our experiments,
this corresponds to a reduction by a factor of 144 in space
complexity. Thus, this variant of RED-PSM enables scaling for
high-dimensional and high-resolution settings.

V. CONVERGENCE ANALYSIS

In this section, we follow an approach similar to recent work
on ADMM for a bilinear model [116] to analyze convergence.
We show that under mild technical conditions, the objective in
Algorithm 1 is guaranteed to converge (with increasing number
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I of iterations) to a value corresponding to a stationary point of
the Lagrangian, that is, satisfying the necessary conditions for
first order optimality.

In practice, Algorithm 2 with the efficient f step version,
which we implemented and used in the experiments reported
in Section VI, has better run times, and rapid empirical conver-
gence. However, its analysis requires additional steps, which are
not particularly illuminating. Therefore we focus on the analysis
of the nominal Algorithm 1.

In spite of the similarity, at a high level, to the problem and
analysis in [116], our problem formulation and algorithm differ
in several aspects, which require modifications in the analysis
and proof. In particular, different to [116], where the bilinear
form only appears in the constraint, the bilinear form appears
both in our objective function and constraint. To satisfy strong
convexity for the respective subproblems, our objective also
uses the Frobenius norm terms for the PSM factors, instead
of the interim proximal terms in [116]. Moreover, to allow
the efficient f -step in Algorithm 2, we use a different order
of updates than [116]. Importantly, we account for the explicit
RED regularization and its required properties in the proof of
convergence. Our analysis includes a proof (similar to [117]) of
the boundedness of the iterates to justify the existence of points
of accumulation of the iterate sequence, which appears to have
been inadvertently left out in [116]. However, different to [117],
which has objectives with linear constraints, our objective (3)
has a bilinear constraint.

To simplify the notation, we replace the separate computation
of the projections of time t-frames in the data fidelity term
by using the operator R̄ : RN2×P → RN×P that computes the
entire set of P projections at view angles θt of the image
frames at times t, t = 1, . . . , P of dynamic image f , i.e, of
each of its columns indexed by t, producing g = R̄f ∈ RN×P .
When applied to the PSM, R̄ performs RθtΛΨ

T et for each
t. We also aggregate the contribution of the RED regularizer
into ρ̄(f) �

∑P−1
t=0 ρ(ft) : RN2×P → R, and the denoiser into

D̄ : RN2×P → RN2×P , which performs D for each column of
f indexed by t. Then, the Lagrangian function with dual variable
γ can be rewritten as

L[Λ,Ψ, f ; γ] = ‖R̄ΛΨT − g‖2F + λρ̄(f)

+ξ‖Λ‖2F +ξ‖Ψ‖2F +β〈γ, (ΛΨT −f)〉, (10)

where the inner product is defined as 〈A,B〉 = Tr(ATB).
The corresponding augmented Lagrangian is

Lβ [Λ,Ψ, f ; γ] = ‖R̄ΛΨT − g‖2F + λρ̄(f)

+ ξ‖Λ‖2F + ξ‖Ψ‖2F + β〈γ, (ΛΨT − f)〉+ β

2
‖ΛΨT − f‖2F .

(11)

Then, we can state the subproblems with respect to each
primal variable in Algorithm 1 as

SΛ = ‖R̄ΛΨ(i−1)T − g‖2F + ξ‖Λ‖2F
+
β

2
‖ΛΨ(i−1)T − f (i−1) + γ(i−1)‖2F (12)

SΨ = ‖R̄Λ(i)ΨT − g‖2F + ξ‖Ψ‖2F
+
β

2
‖Λ(i)ΨT − f (i−1) + γ(i−1)‖2F , and (13)

Sf = λρ̄(f) +
β

2
‖Λ(i)Ψ(i)T − f + γ(i−1)‖2F . (14)

Algorithm 1 will be shown in Theorem 1 to converge to a
stationary point of Problem (5), which is defined below.

Definition 1: (Stationary solution for Problem (5)). The
point W ∗ = (Λ∗,Ψ∗, f ∗, γ∗) is a stationary solution of the
problem (5) if it satisfies the stationarity and primal feasibility
conditions for the variables of the Lagrangian in (10):

∇fL(Λ∗,Ψ∗, f ∗; γ∗) = λ∇ρ̄(f ∗)− βγ∗ = 0; (15a)

∇ΛL(Λ∗,Ψ∗, f ∗; γ∗) = (2R̄T (R̄Λ∗Ψ∗T − g) + βγ∗)Ψ∗

+ 2ξΛ∗ = 0; (15b)

∇ΨL(Λ∗,Ψ∗, f ∗; γ∗) = (2R̄T (R̄Λ∗Ψ∗T − g) + βγ∗)TΛ∗

+ 2ξΨ∗ = 0; (15c)

f ∗ = (ΛΨT )(∗). (15d)

By its definition, a stationary solution of (5) satisfies the
necessary first-order conditions for optimality.

To state Theorem 1, we need to introduce some additional
definitions pertaining to the denoiser D used in RED.

Definition 2: (Strong Passivity [13]). A function D is
strongly passive if ‖D(f)‖ ≤ ‖f‖.

Moreover, we assume the gradient rule of RED (8). This is
shown to hold true when the denoiser D is assumed locally
homogeneous (LH) [13] and Jacobian symmetric (JS) [20]. It
was shown [13] that several popular denoisers are practically
LH, and that for (8) to hold for the explicit regularizer ρ in (4),
JS is necessary [20].

In our analysis, we only require the gradient rule (8) to hold,
rather than the explicit form (4) of the regularizer. Even for
denoisers without LH and JS, the gradient rule can be used to
define the fixed point iteration in the algorithm [20], and, more
recent works on using denoisers for regularization [118], [119],
[120], [121], [122] (in particular [120]) shows how to learn a
denoiser jointly with the gradient so that the gradient rule is
satisfied.

Finally, we will also assume Lipschitz continuity of the
denoiser with some Lipschitz constant LD, i,e., ‖Dφ(f1)−
Dφ(f2)‖2 ≤ LD‖f1 − f2‖2 for all images f1, f2 ∈ RN2

. This
means that the denoiser has some finite gain LD, which is
satisfied by any reasonable denoiser.

Our main convergence result is the following.
Theorem 1: Suppose that the denoiserDφ satisfies the gradi-

ent rule in (8), and is Lipschitz continuous with some Lipschitz
constant LD, and strongly passive.

Then, if β > 2L where L � λ(1 + LD), Algorithm 1 con-
verges globally (i.e., regardless of initialization) to a stationary
solution (f ∗,Λ∗,Ψ∗) of (5) in the following sense:

i) The sequence of values of the objective H converges to a
limit H∗ = H(f ∗,Λ∗,Ψ∗); and

ii) The iterates generated by Algorithm 1 converge subse-
quentially to a stationary solution (f ∗,Λ∗,Ψ∗, γ∗) of (5),
that is, any accumulation point (of which there is at least
one) of the sequence (f (i),Λ(i),Ψ(i), γ(i)) is a stationary
solution of (5).

The proof of Theorem 1 is provided in the supplementary
material Section D.



ISKENDER et al.: RED-PSM: REGULARIZATION BY DENOISING OF FACTORIZED LOW RANK MODELS FOR DYNAMIC IMAGING 839

Regarding convergence to the globally optimal solution, more
can be said. Problem (3) is non-convex even if ρ̄ is convex,
because of the product between unknowns Λ and Ψ. However,
similar to Theorem 7.1 of [123] (which generalizes arguments
in [124], [125]), thanks to the inclusion of the Frobenius norms
of the factors Λ and Ψ in the bilinear form, when ρ̄ is convex
(i.e., when the gradient rule (8) is assumed to hold), the global
minimum f̂ = Λ̂Ψ̂T of (3) can be shown to coincide with the
global minimum in

f̂ = argmin
f

P−1∑
t=0

‖Rθtft − gt‖22 + λρ̄(f) + 2ξ‖f‖∗

s.t. rank(f) ≤ K, (16)

where the penalty weight ξ > 0 is identical to the Frobenius
norm penalty in our RED-PSM objective (5).

Importantly, Problem (16) is non-convex too, because of
the rank constraint. In other words, it is not equivalent to a
conventional nuclear norm penalized problem. Hence, although
the Frobenius norm penalties on the PSM factors in our problem
formulation (3) lead to a connection to nuclear norm, Problem
(3) is not equivalent to a formulation encouraging a low-rank
solution by a nuclear norm penalty.

However, returning to the question of determining global
optimality of a candidate solution to (16), consider the convex
version of Problem (16), without the rank constraint, and denote
its solution by f̂Convex. If it so happens that rank(f̂Convex) ≤ K,
then the low-rank constraint in Problem (16) is not active, and
f̂Convex = f̂ . It then follows [123] that the optimality conditions
of the convex problem (without the rank constraint) can be used
to assess the global optimality of a candidate solution f̂ = Λ̂Ψ̂T

produced by the algorithm solving (3).

VI. EXPERIMENTS

A. Datasets

Three categories of data sets are used in this work.
Walnut Dataset: We use the CT reconstructions of two differ-

ent (static) walnut objects from the publicly available 3D walnut
CT dataset [126]. We create a dynamic test object by syntheti-
cally warping the central axial slice of one of the walnut objects
using a sinusoidal piecewise-affine time-varying warp [127].
To be precise, the image is divided into a N ×N uniformly
spaced rectangular grid, and the following vertical displacement
is applied on each row separately to drive the temporally varying
warpΔn,t = −C(t) sin(3πn/N), n ∈ {0, . . . , N − 1},where
C(t) is a linearly increasing function of t and C(0) = 0. Static
axial, coronal, and sagittal slices of the other walnut object are
used to train the denoiser Dφ.

Compressed Object Dataset: The compressed object data set
is obtained from a materials science experiment [128] with a
sequence of nine increasing compression (loading) steps applied
to an object, with a full set of radiographic projections collected
(using Carl Zeiss Xradia 520 Versa) and reconstructed by the in-
strument’s software at each step. Using this quasi-static data set,
a fixed axial slice is extracted from each of the 9 reconstructions.
These nine extracted slices corresponding to nine time points are
interpolated toP time frames using a recent deep learning-based
video interpolation algorithm [129]. The denoiser Dφ for our
experiments on this data set was trained using the axial slices

Fig. 3. Ground-truth frames uniformly sampled in time for P = 4, for the
time-varying walnut (top) and compressed object (bottom).

of the static pre-compression and post-compression versions of
the object, which would be available in actual dynamic loading
experiments of this type.

In a conference submission [130] citing this work, the method
has been applied to additional tomographic scenarios of materi-
als compressed under load, further confirming the advantage of
the proposed method and algorithm over the compared methods.

We note that all algorithms compared in this paper are agnostic
to both the synthetic warp applied on the static walnut slice and
to the data-driven interpolation method used for the compressed
object.

Spatio-temporal projection data for each dataset is simu-
lated by a parallel-beam projection with N=128 detector bins
of the dynamic phantoms, a single projection at each of the
P time instants. The sequence of projection angles {θt}P−1

t=0
(a free experimental design parameter) was chosen to follow
the bit-reversed view angle sampling scheme, which has been
shown [93] to provide an especially favorable conditioning of the
recovery problem. The simulated measurements are corrupted
using AWGN with standard deviation σ = 5 · 10−3. This noise
level leads to the FBP (with Ram-Lak filter) of the full set of
P=512 projections at each time instant having a PSNR of
approximately 46 dB. When, in the actual experiments with
sequentially sampled data, only 1/P of this data is used, the
PSNR of the reconstruction may be expected to be lower.

Ground-truth frames for P = 4 are shown in Fig. 3.
Cardiac dMRI Dataset: For a more direct comparison with the

setting and data used in dMRI works, we also test RED-PSM on
the “retrospective” cardiac dMRI data in [14]. The data includes
23 distinct time frames for one cardiac cycle. Details of the data
and experiments are in Section VI-D4.

B. Comparison Benchmarks

PSM-TV: Similar to the proposed approach, this algorithm
also uses a PSM to represent the object, but instead of the RED
regularizer, the regularization penalizes the discrete 2D total
variation of the temporal frames of f at each time instant. To
this end, the constraint f = ΛΨT is implemented by substitution
into the objective in (5), and the definition of ρ is changed to
ρ(·) = TV(·), and the rest of the objective is kept the same.
We consider spatial (PSM-TV-S) and spatiotemporal (PSM-TV-
ST) alternatives of TV. The former computes TV only spatially
in a single frame at each t whereas the latter also computes
differences between temporally adjacent pixels at t− 1 and t+
1. The unconstrained problem is then solved for {Λ̂, Ψ̂} (using
Adam optimizer in Pytorch). Finally, the estimated object is
obtained as f̂ = Λ̂Ψ̂T .
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TD-DIP [14]: TD-DIP is a recent method based on the Deep
Image Prior (DIP) approach.3 It uses a mapping network Mα

and a generative model Nβ in cascade to obtain the estimated
object at each time instant ft from fixed and handcrafted latent
representationsχt. Because TD-DIP was originally proposed for
dynamic MRI, we modified the objective minimally for dynamic
tomography as

min
α,β

∑
t

∥∥gt −Rθ(t)((Nβ ◦Mα)(χt))
∥∥2. (17)

For the comparisons in this work, the mapping network and
generator architectures, latent representation dimensionality,
optimizer, learning rate, and decay schemes are are identical
to those in the available implementation [131]. The original
work focuses on the beating heart problem and thus proposes a
helix-shaped manifold for χt with number of cycles equal to the
number of heartbeats during measurement acquisition. Since we
do not have a repetition assumption for the motions of the walnut
and compressed object, we use a linear manifold as explained
in the original paper [14]. Thus, for clarity, in Section VI-D the
method is sometimes denoted as “TD-DIP (L)”.

C. Experimental Settings

All methods are run on a workstation with an Intel(R) Xeon(R)
Gold 5320 CPU and NVIDIA RTX A6000 GPU. In practice,
we used a minor variation of Algorithm 2, where we combined
the subproblems for Λ and Ψ, and minimized with respect to
both basis functions simultaneously using gradient descent with
Adam [132] optimizer.

Denoiser and training: Each convolutional layer in the de-
noiser network is followed by a ReLU nonlinearity except for
the final single-channel output layer. We tested both direct
and residual DnCNN denoisers, where the former predicts the
denoised image and the latter estimates the noise from the
input. We use the denoiser type that performs better for each
object, but the differences are minor. Further architectural details
for the denoisers in our experiments are in Table VII in the
Supplementary Material. We use three pre-trained denoisers,
one for each of the three object types. In each case, the same
pre-trained denoiser was used for all values of P .

The upper limit for noise level used in training the denoiser
was set to σmax = 5 · 10−2. For the dynamic walnut object, the
denoiser Dφ is trained on the central 200 axial, 200 sagittal,
and 200 coronal slices of another static walnut CT recon-
struction downsampled to size 128×128. For the compressed
object, axial slices of pre-compression and post-compression
static versions of the object, containing 462 slices in total, are
used to train Dφ. For the cardiac MRI setting, the denoiser
was trained on the static MRI training slices of the ACDC
dataset [133]. For all datasets, Dφ is trained for 500 epochs
using the Adam optimizer with a learning rate of 5 · 10−3. As
mentioned above, we evaluate both direct and residual DnCNN
denoisers.

Temporal Basis: In compressed material and cardiac dMRI
data experiments, we use the parametrization Ψ = UZ with a

3It would be interesting to include yet another comparison benchmark (also
developed for dMRI) – the DIP-based PSM approach [74]. However, as an
implementation of this method was unavailable, and due to potential issues
with replicating its performance and adapting to our CT problem (specific
initialization and framework that use other MRI algorithms), we were unable to
do so.

fixed basis U that corresponds to a cubic spline interpolator,
and for the warped walnut we use DCT-II, to interpolate the
low-dimensional temporal representation Z to Ψ.

Initialization: Unless stated otherwise, the spatial and tem-
poral basis functions are initialized using the SVD truncated to
the rank of the dynamic object estimate produced by a recent
projection-domain PSM-based method “ProSep” [94]. If the
ProSep estimate has rank smaller than K, the remaining basis
functions are initialized as 0. Otherwise, all spatial basis func-
tions are initialized as 0 and the temporal latent representations
zk are initialized randomly as zk ∼ N (0, I).

Tomographic Acquisition Scheme: All methods mentioned in
this paper use the bit-reversed angular sampling scheme, over
the range [0, π]. For time-sequential acquisition, the bit-reversed
scheme was shown [93], [94] to provide favorable results via
better conditioning of the forward model in comparison to al-
ternatives. In a standard CT scanner, the speed of rotation might
have to be significantly increased to implement this scheme,
possibly leading to greater motion blur. However, for several
scenarios this would not be much of an issue. These include
radial acquisition in MRI; a CT scanner with electronic beam
deflection [134]; and settings where the acquisition time is
dominated by the time to acquire each view rather than the
rotation time, e.g., micro-CT, or imaging of dense materials.

To help address the challenge in implementing the bit-
reversed scheme in other, more physically constrained settings,
the number of distinct view angles P̂ can be reduced and these
views can be repeated periodically without a performance drop
as also shown in Fig. 11. With a reduced P̂ , the bit-reversed
scheme can be implemented more conveniently, e.g., by multiple
source-detector pairs, or by carbon nanotube sources [135],
[136].

Run Times: For P = 256 and using the specified computa-
tional resources and parameter settings, to reach the peak PSNR
during optimization, RED-PSM with ProSep initialization re-
quires 50< iterations< 150 taking about 2 to 6 minutes whereas
TD-DIP with batch size P typically requires > 30 k steps,
taking about 3.5 hours to complete. Hence, RED-PSM provides
a speedup over TD-DIP by a factor of 35 to 105. Depending
on the parameter configuration, the speedup factor may vary.
However, the proposed method provides a significant run time
reduction in all cases.

Evaluation Metrics: Four quantitative metrics were imple-
mented for comparing different method performances: i) the
peak signal-to-noise ratio (PSNR) in dB; ii) the structural sim-
ilarity index (SSIM) [137]; iii) the mean absolute error (MAE);
and iv) the high-frequency error norm (HFEN) [138]. The latter
is defined as HFEN(f, fr) = ‖LoG(f)− LoG(fr)‖2 where
LoG is a rotationally symmetric Laplacian of Gaussian filter
with a standard deviation of 1.5 pixels.

D. Results

1) Reconstruction Accuracies for Different P : RED-PSM is
compared in Fig. 4 and Table II with PSM-TV-S, PSM-TV-ST
and TD-DIP (using, for both a-periodic objects, a linear latent
representation). Parameter configurations for the experiments
are provided in Table V in Supplementary Material A. While
Fig. 4 facilitates the assessment and comparison of trends in
the metrics for different P for the various methods, Table II
provides the detail for a more precise quantitative comparison.
In fact, since the plotted range of metrics such as PSNR in Fig. 4
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Fig. 4. Reconstruction metrics for the time-varying walnut and compressed material vs.P using different methods. For TD-DIP, the metrics reported are assuming
a “stopping oracle” that stops the iterations at the best PSNR reconstruction. The minimum and maximum values over three different runs with different random
initial values are shown with bars, and the mean values are connected by dashed lines.

TABLE II
RECONSTRUCTION ACCURACIES FOR FOR DIFFERENT P

is very large due to varying P , Table II emphasizes important
differences between methods for the same P .

Remarks:
1) The scale differences in the MAE and HFEN between the

two objects are due to working with un-normalized densities.
2) In all TD-DIP experiments, optimization is stopped early

to achieve the best PSNR reconstructions, assuming such a
“stopping oracle” is available. In a more realistic setting, in
the absence of this oracle, TD-DIP optimization with continued
iterations suffers from overfitting, and produces in these exper-
iments degraded results. For instance, for the warped walnut
slice with 40 k iterations, PSNR, SSIM, and MAE degrade
significantly to 19.5 dB, 0.822, and 3.1 · 10−3 for P = 32,
and 24.1 dB, 0.824, and 2.1 · 10−3 for P = 64. Thanks to the
accurate spatial prior and the convergence properties, we do not
encounter such a problem for RED-PSM.

3) Because the performance of TD-DIP varies with initial-
ization, in each experiment we ran it three times, with different

random initialization, each time using a “stopping oracle” to
obtain the best PSNR for the given initialization. Table II reports
the average of the best PSNR reconstruction accuracies for TD-
DIP in these three runs. Fig. 4, complements this information,
by showing in addition to the average results, also the best and
worst of these runs (still using the stopping oracle to get the best
PSNR per run).

As expected, for all methods, the estimates improve with in-
creasing P . In terms of PSNR, the proposed algorithm performs
on par with or usually better than TD-DIP (for all but the lowest
P on the compressed material object), and consistently better
than PSM-TV-S and PSM-TV-ST. The PSNR improvement of
RED-PSM over TD-DIP enhances with increasing P , reaching
2.4 dB for the time-varying walnut withP = 256. Moreover, for
the other three metrics, SSIM, MAE, and HFEN, the improve-
ment of RED-PSM over other algorithms is more significant.
Specifically, the reduction in MAE reaches up to and exceeds
%50 for both objects for P = 256. These observations are valid
for both objects, however, RED-PSM provides slightly greater
improvement over TD-DIP in the walnut case.

We would like to emphasize the significance of these recon-
struction quality improvements by comparing them to some
representative examples. TD-DIP reports up to 3 dB PSNR
and 0.005 SSIM improvement with respect to an older dMRI
method in a single scenario. While providing comparable PSNR
improvements (2.4 dB), we are able to provide four times larger
SSIM (0.02) improvements relative to TD-DIP itself. Other re-
cent dMRI [73] and dynamic photo-acoustic tomography [102]
methods improve 1.5 dB, and at most 1 dB and often no improve-
ment over their respective benchmarks, again in single imaging
scenario for each method.

Also, based on the run-time improvement (∼3x) of [73] with
respect to TD-DIP, RED-PSM is still much (∼10x-30x) faster,
than [73], and more interpretable.

Fig. 5 compares the reconstructions for both objects at two
different values of t for P = 256. As expected, PSM-TV-S
performs the worst among the compared methods and provides,
for both objects, blurry reconstructions lacking finer details. The
TD-DIP reconstructions improve somewhat over PSM-TV-S
and PSM-TV-ST, but contain visible noise-like artifacts on the
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Fig. 5. Comparison of reconstructed object frames at two time instants using different methods for P = 256, and the corresponding normalized absolute
reconstruction errors for (a) the time-varying walnut, and (b) compressed object.

Fig. 6. Comparison of reconstructedx-t slices (top) and corresponding normalized absolute error (bottom) using different methods forP = 256. The cross-section
location is indicated on the static t = 0 object with a yellow line. The x-y-t coordinates are indicated in white text on the static object and bottom left absolute
error figure.

piecewise constant regions of the walnut object, which are
alleviated by RED-PSM. This is manifested also in the absolute
difference figures, with error for TD-DIP distributed throughout
the interior regions of the walnut. Also, around the shell of the
walnut, RED-PSM is further able to preserve sharper details. For
the compressed material, in comparison to TD-DIP, RED-PSM
shows reduced absolute error almost uniformly over the object.
This difference is more prominent around the highly dynamic
regions of the object, emphasizing the advantage of the proposed
method. For a better understanding of RED-PSM results, we also
display the reconstructed spatial and temporal basis Λ and Ψ for
the time-varying walnut scenario in Supplementary Material C.

Reconstructed x-t “slices” through the dynamic walnut are
compared in Fig. 6. The location of the x-t slice is highlighted
on the t = 0 static x-y frame by a yellow line. Consistent
with the comparison in Fig. 5, RED-PSM provides reduced
absolute error values throughout the respective x-t slice. Also,
as more apparent on the error figures, TD-DIP leads to higher
background errors.

Finally, a zoomed-in comparison of the time-varying walnut
object for another time instant forP = 256 is provided in Fig. 7.
The comparison shows the better performance of RED-PSM at
recovering the finer details clearly.

2) PSNR Vs. t Comparisons: To complement the cumula-
tive metrics in Fig. 4 and Table II and the “snapshot” quali-
tative comparisons in Fig. 5, we study how the reconstructed

Fig. 7. Zoomed-in walnut reconstruction comparison for P = 256.

image frame PSNRs vary over the reconstructed time interval.
The per frame PSNRs (in dB) of the walnut and compressed
object reconstructed with P = 256 by the different methods are
shown in Fig. 8 as a function of t. For TD-DIP, the best PSNR
obtained using a “stopping oracle” is reported, with the red
shading indicating, for each t, the interval between the highest
and lowest PSNR in three runs with different random initial
conditions. For the warped walnut object, RED-PSM provides
consistently better PSNR than the best-case TD-DIP for all t.
For the compressed object, the same is true at about 70% of t
points. Fig. 8 also shows transient effects at the beginning and
the end for both objects and all methods. In scenarios such as
the object compression experiment, in which the initial and final
state are static and could be measured using multiple projections,
such transients could be eliminated. Similarly, in quasi-periodic
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Fig. 8. Reconstruction PSNR vs. t for the (a) time-varying walnut, and (b)
compressed material for P = 256. The red shading for TD-DIP indicates, for
each t, the interval between the best and worst PSNR with the early stopping
oracle explained in Section VI-D1 in three runs with different random initial
conditions.

Fig. 9. Advantage of ProSep-based vs. random initialization of RED-PSM
(see Sec. VI-C). For random initialization, the area in blue between the best and
the worst PSNR for each iteration highlights the varying performances of five
different runs with different random initializations.

scenarios such as cardiac imaging the effect of such transients
would be minimal.

3) Effect of Initialization: The initialization of Λ, Ψ, and f
plays an important role in the performance and convergence
speed of RED-PSM. We observe significant speed-up when
rather than a random initialization, we initialize the algorithm
with ProSep [93] estimated reconstruction. Fig. 9 shows PSNR
vs. iterations comparison for different initialization techniques
for the dynamic walnut object with P = 256. The rest of the
parameters were selected identical to those indicated in Sup-
plementary Material Table V. This experiment highlights the
advantages of initializing with ProSep estimated basis functions:
eliminating the need for multiple runs for a best-case result; and
speeding up convergence considerably.

Combined also with the convergent algorithm eliminating
the need for an unrealistic stopping oracle and the theoretical
analysis, RED-PSM provides improved reliability which is of
practical significance.

4) Cardiac dMRI Data Experiments: In this setting, differ-
ent to previous experiments, we used 4 k-space radial lines
(“spokes”) per frame at the bit-reversed angles. We used 1.4 and
2.8 cardiac cycles, with 23 × 4 = 92 spokes/cycle, for a total of
P=128 and P=256 spokes. The problem is still severely under-
sampled compared to the experiment in [14] where 13 spokes are
used per frame for 13 cycles, for a total of13× 23× 13 = 3, 887
spokes.

Since the data is periodic, we also tested the helix latent
scheme (H) for TD-DIP.

The metrics in Table III and the qualitative comparison in
Fig. 10 with zoomed-in reconstructions and absolute error maps,
show that RED-PSM performs better than both versions of TD-
DIP.

In [73], the authors compare their method to an older version
of TD-DIP without the improved latent representation prior
scheme for cardiac dMRI and report 1.5 dB PSNR improvement.

TABLE III
RECONSTRUCTION ACCURACIES FOR RED-PSM AND TD-DIP FOR THE

RETROSPECTIVE DMRI DATA [14]

Fig. 10. Reconstructed frames for P = 256 for retrospective dMRI data [14]
with zoomed-in frames (middle row), and absolute reconstruction errors (last
row).

Fig. 11. Reconstruction PSNR and SSIM for the time-varying walnut vs. the
number of distinct view angles P̂ using RED-PSM with different total number
of views P .

In RED-PSM, we exceed this improvement on the latest version
of TD-DIP in multiple scenarios.

5) Acquisition With Smaller Number of Distinct View An-
gles: Since obtaining time-sequential projections from different
angles in a sufficiently short time period can be physically
challenging, we also test the performance of RED-PSM with
an acquisition scheme that may be easier to realize physically:
keeping the same total number of P projections, but taken at
a smaller number P̂ (called “period”) of distinct view angles,
which are also obtained using the bit-reversed angular sampling
scheme. The comparison in Fig. 11 shows that it is possible to
use up to 1/8-th of the distinct view angles without performance
loss for RED-PSM.

6) Patch-Based RED Denoiser: To improve the scalability
of the method to higher resolution and/or 3D dynamic object,
conveniently, the objective in (5) can be manipulated to operate
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TABLE IV
PERFORMANCE COMPARISON FOR DIFFERENT DENOISER TYPES FOR

RED-PSM

on the patches of temporal image frames of the time-varying
object. This circumvents the need to store the complete image
frame at a given time, and also enables the denoiserDφ to be both
trained and to operate on patches of image frames. To showcase
the potential of the suggested scheme, we replace the full-size
Dφ with a patch-based counterpart in the RED step and compare
the performance with the originally proposed method for 2D
dynamic objects.

The patch-based denoiser for RED updates is trained using

min
φ

∑
i

∑
l

‖Blfi −Dφ(Blf̃i)‖2F s.t. f̃i = fi + ηi, ∀i,

where ηi, σi are set as in (9), andBl, with l ∈ {0, . . . , L− 1}, is
the operator to extract the l-th patch of the image. The denoiser
Dφ operates separately on each patch.

To train the patch-based Dφ, uniformly random rotations
(multiples of π

2 ), and random horizontal/vertical flips, each with
1
2 probability, were used for data augmentation. The patch size
was chosen 8×8 with a stride of 2.

Table IV compares the results for the two denoiser types
for both objects, using the same denoiser training policy as in
Section VI-C, and experimental configurations of Table VI in the
Supplementary Material Section A. The results show little differ-
ence between the patch-based denoiser and full frame-based de-
noiser RED-PSM variants, thus verifying the effectiveness of the
patch-based version. The analysis of the computational require-
ments of the patch-based RED-PSM variant in Section IV-D
shows its potential for a highly scalable implementation.

We note that in a divergent beam scenario, the contribution of
a patch to a projection will be position-dependent and this would
require accurate bookkeeping. Details for doing so can be found
in tile-based methods for fan-beam [139] and cone-beam [140]
tomography. However, we leave such analysis for future studies.

VII. CONCLUSION

We proposed RED-PSM, the first PSM-based approach to
dynamic imaging using a pre-trained and learned (RED-based)
spatial prior. The objective in the proposed variational formula-
tion is optimized using a novel and effective bi-convex ADMM
algorithm, which enforces the PSM as a hard constraint. Unlike
existing PSM-based techniques, RED-PSM is supported by
theoretical analysis, with a convergence guarantee to a stationary
point of the objective. The results of the numerical experiments
show better reconstruction accuracy and considerably faster run
times compared to a recent DIP-based algorithm. A patch-based
regularizer version of RED-PSM provides almost equivalent
performance with a massive reduction of storage requirements,
indicating the potential of our framework for dynamic high-
resolution 2D or 3D settings.

Possible directions for future work include the application of
RED-PSM to different imaging scenarios other than tomography
and MRI, and robust denoiser training for RED framework since
the deep denoisers encounter varying artifact distributions dur-
ing optimization. This could also improve the generalizability
of the framework to different input types.
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