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Learning-Based Approaches for Reconstructions
With Inexact Operators in nanoCT Applications
Tom Lütjen , Fabian Schönfeld , Alice Oberacker , Johannes Leuschner , Maximilian Schmidt ,

Anne Wald , and Tobias Kluth

Abstract—Imaging problems such as the one in nanoCT require
the solution of an inverse problem, where it is often taken for
granted that the forward operator, i.e., the underlying physical
model, is properly known. In the present work we address the
problem where the forward model is inexact due to stochastic
or deterministic deviations during the measurement process. We
particularly investigate the performance of non-learned iterative
reconstruction methods dealing with inexactness and learned re-
construction schemes, which are based on U-Nets and conditional
invertible neural networks. The latter also provide the opportunity
for uncertainty quantification. A synthetic large data set in line
with a typical nanoCT setting is provided and extensive numerical
experiments are conducted evaluating the proposed methods.

Index Terms—Conditional invertible neural networks, inexact
forward operator, learned post-processing, nanoCT, sequential
subspace optimization.

I. INTRODUCTION

TOMOGRAPHIC X-ray imaging on small scales such as on
the nano scale - in short: nanoCT - is an important imaging

technique that allows a visualization of the inner structure of
small objects in the micro- or nanometer range with a suitable
resolution. In contrast to computerized X-ray tomography on
larger scales, for example in medical imaging, small vibrations

Manuscript received 1 September 2023; revised 9 February 2024; accepted 9
March 2024. Date of publication 21 March 2024; date of current version 4 April
2024. The work of Johannes Leuschner and Maximilian Schmidt was supported
by the German Research Foundation under Grant DFG; GRK 2224/1. The work
of Johannes Leuschner and Tobias Kluth was supported by the DELETO project
funded by the German Federal Ministry of Education and Research Bundesmin-
isterium für Bildung und Forschung, BMBF, under Project 05M20LBB. The
work of Alice Oberacker and Anne Wald was supported in part by the German
Federal Ministry of Education and Research (BMBF) under Grant 05M20TSA
(DELETO) and in part by Hermann und Dr. Charlotte Deutsch-Stiftung. The
work of Anne Wald was supported by the German Research Foundation under
DFG; Project-ID 432680300 – SFB 1456. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Alejandro
F. Frangi. (Corresponding author: Johannes Leuschner.)

Tom Lütjen, Fabian Schönfeld, Johannes Leuschner, Maximilian Schmidt,
and Tobias Kluth are with the Center for Industrial Mathematics, Univer-
sity of Bremen, 28359 Bremen, Germany (e-mail: tom.luetjen@uni-bremen.
de; fabsch@uni-bremen.de; jleuschn@uni-bremen.de; maximilian.schmidt@
uni-bremen.de; tkluth@uni-bremen.de).

Alice Oberacker is with the Saarland University, 66123 Saarbrucken, Ger-
many (e-mail: alice.oberacker@num.uni-sb.de).

Anne Wald is with the Institute for Numerical and Applied Mathemat-
ics, University of Göttingen, 37073 Gottingen, Germany (e-mail: a.wald@
math.uni-goettingen.de).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCI.2024.3380319, provided by the authors.

Digital Object Identifier 10.1109/TCI.2024.3380319

that are transferred from the environment as well as manufactur-
ing tolerances make a significant impact on the data: the resulting
relative motion between object and scanner lead to motion
artifacts when classical reconstruction techniques such as the
filtered backprojection are applied. In this sense, nanoCT is an
intrinsically dynamic inverse problem, i.e., an inverse problem
that is heavily underdetermined since only one projection per
state of the object is available. Hence, the unknown dynamic,
resp. inaccuracy in the forward map, needs to be taken into
account.

Solving inverse problems typically relies on a proper formula-
tion of the forward operator. But often and as mentioned before
the forward map/model is not known with sufficient accuracy.
Typical examples can be found in several imaging applications
such as magnetic particle imaging [1] and also in CT applica-
tions [2], [3] as addressed in the present manuscript. Different
directions taking into account the model’s inexactness explicitly
and/or implicitly have been considered in the past. An explicit
treatment is, for example, the total least squares approach [4]
explicitly taking into account a deviation on the operator when
solving the original linear problem. This has also been extended
and investigated with respect to regularization properties for
general bilinear operators [5], [6] and also for a combination of
model- and data-based prior information [6]. The original total
least squares approach can also be equivalently formulated by
a problem taking the inexactness implicitly into account. While
this approach relies on the minimization of a certain type of
functional, there also exists a class of iterative regularization
methods taking into account the inexactness implicitly. In [7],
an iterative reconstruction technique is proposed that relies on
sequentially projecting iterates onto suitably defined subsets of
the solution space, which are designed in such a way that the
solution set is included in each of these sets and measurement
noise as well as modeling errors are reflected in the design of
the subsets. In the case of moving objects in CT, the unknown
motion is interpreted as an inexactness with respect to a simpler
model such as the (standard) Radon transform. This approach
has been shown to yield promising results, at least for simulated
data.

More recently, a learning-based approach has been proposed
to explicitly correct an inexact operator for the purpose of
parameter reconstruction [8], which still relies on the knowledge
of the exact forward operator. An integration of calibration steps,
which minimize the discrepancy term w.r.t. unknown parameters
of the CT operator, into a regularization-by-denoising (RED)
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scheme (using a learned denoising model) has been presented for
joint reconstruction and calibration of CT acquisition angles [9].
Two approaches to adapt learned reconstruction networks to a
changed forward operator have been proposed in [10], which
can also identify unknown forward operator parameters: i) a
fine-tuning similar to deep image prior [11], initialized to and
regularized by the learned network parameters and simulta-
neously optimizing forward operator parameters, and ii) an
unrolled RED scheme employing the learned reconstruction
network, in which the forward operator parameters are optimized
to fit the output to the data (optionally also fine-tuning network
parameters). Instead of adapting a network trained with a fixed
forward operator, we include forward operator perturbations in
the training data, on which our networks are trained supervisedly.
More generally, several supervised learning-based approaches
such as, for example, unrolled iteration schemes [12], [13],
[14] can be interpreted as methods taking into account operator
inexactness implicitly. Typically, the modeled and potentially
inexact operator information is somehow incorporated into the
structure of the trainable reconstruction method and the training
is then performed with data pairs obtained from the true operator.
However, these methods have mostly been studied in settings
where the true operator is fixed and known rather accurately.
In contrast, we consider a problem in which the true operator
deviates notably and changes between acquisitions.

In the present work we address the problem of image recon-
struction with an inexact operator in the framework of nanoCT
applications. On the algorithmic side we consider sequential al-
gorithms which take the inexactness of the operator into account
and which still suffer from artifacts due to the inexactness. These
methods are then extended by a learned post-processing scheme
to obtain improved reconstructions less prone to the operator
inexactness. In this context we use classical post-processing
schemes via a UNet and we further develop new approaches
based on conditional invertible neural networks, which allow
for additional feature extraction for the purpose of uncertainty
quantification. Furthermore, in order to evaluate the proposed
methods a large synthetic dataset adapted to the nanoCT problem
is generated.

The work is structured as follows: In Section II the general
setting and the problem is specified. Section III then provides
a detailed description of the non-learned sequential algorithms
taking into account the operator inexactness, the learned post-
processing schemes via neural networks with a particular fo-
cus on conditional invertible neural networks, and the data set
generation. The methodological part is followed by extensive
numerical experiments in Section IV and we conclude with a
discussion in Section V.

II. PROBLEM DESCRIPTION AND SETTING

NanoCT refers to the tomographic imaging of an object’s
density in the nanometer and lower micrometer range. The
object is illuminated by an X-ray beam with intensity I0. During
the propagation through the object, which we assume to be
along straight lines, the radiation is partly absorbed – the higher
the material density, the higher the intensity loss. The reduced

intensity I1 is measured for each ray after passing the object.
We obtain the relation

−log

(
I1(s, ϕ)

I0

)
=

∫
L(s,ϕ)

x(r) dr

between the data y(s, ϕ) := −log
(

I1(s,ϕ)
I0

)
an the unknown

targetx. The beam path is parameterized by the detector position
s and the angle of the tomograph ϕ, see Supplementary Material
C (Fig. 9) for an illustration. The mapping

Rx(s, ϕ) :=

∫
L(s,ϕ)

x(r) dr for all s, ϕ (1)

is called the Radon transform ofx and yields the (linear) forward
operator for our mathematical setting. Depending on the scanner
geometry, the parametrization of the lines may differ from the
one used above, but this does not affect our methods and results.
In fact, most nanoCT scanners operate with a single X-ray
source, which emits a fan of X-radiation. In this case, we speak of
a fan beam geometry in two dimensional imaging (see again Sup-
plementary Material C, Fig. 9). Details can be found in [15], [16].
The small scale of the object means that even small disturbances
during the measuring process have a relatively large impact on
the scanning geometry and can lead to inconsistent data. This
means that the position of the object undergoes changes during
data acquisition due to the resulting unavoidable relative motion
between object and tomograph. For example, the X-radiation
used in the scanner is generated by the interaction of an electron
beam with a tungsten needle. Both the electron beam and the
position of the needle may vary slightly. However, the largest
impact on the relative motion is caused by the environment, when
vibrations are transmitted to the tomograph, or by manufacturing
tolerances in the tomograph itself, such as a thermal drift or an
imprecise motion of the rotating stage on which the object is
placed [17], [18]. Additionally, the rotation axis may be tilted and
the detector is skewed. For the mathematical model this means
that the objectx in (1) is not just depending on the spatial variable
r, but also on time t. In order to prevent reconstructions from
being impaired by strong artifacts due to the relative motion and
geometry deviations, this inconsistency has to be compensated
in the reconstruction process.

We use the following notation to outline our methods and
results: The unknown density function of the tested object (i.e.,
the ground truth) is denoted by x ∈ X , the measurable data by
y ∈ Y , where X and Y are suitable vector spaces, e.g., spaces
of scalar functions X ⊂ {x : Ω ⊂ R

2 → R} or X = R
n×n rep-

resenting an image. The model describing the relation between
density and data is denoted byA, and we refer to it as the forward
operator. Hence, we consider the underlying inverse problem as
an operator equation

Ax = y, A : X → Y. (2)

Noisy data yδ := y + ξ with an additive noise vector ξ is sup-
posed to have a noise level δ, such that ‖yδ − y‖Y ≤ δ. If we use
an inexact forward operator Aη , we assume that the respective
error in the model is given by η ∈ [0,∞) with

‖Aηx−Ax‖Y ≤ η,
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Fig. 1. General overview of reconstruction schemes with and without learned post-processing approaches exploiting different neural networks (NNs). → denotes
a forward path and ↔ denotes an invertible path.

i.e., A0 = A on the range. The main goal is now to reconstruct
an approximation xreco of x from (2) for unknown A and y but
for given inexact Aη and potentially noisy yδ, i.e., from the
perspective of the given Aη we have access to the corrupted
measurement

yδ = Aηx︸︷︷︸
=:yη

+ (A−Aη)x+ ξ︸ ︷︷ ︸
=:ε(x)

(3)

only, where yη would be a true measurement obtained from the
given Aη . With regard to this problem setting the total additive
noise comprises the model error contribution (A−Aη)x and
the measurement noise contribution ξ. This provides the general
setting for reconstruction from inexact operator and noisy mea-
surements. In the present manuscript we provide the method-
ology for the general setting and particularly consider the case
ξ = 0, yδ = y, to study the influence of operator inexactness in
an isolated way in the numerical experiments.

Those desired general reconstruction methods for the inverse
problem (2) are denoted by T : Y → X in the remainder. Here,
classical methods are combined with learning-based compo-
nents in terms of neural network schemes Fθ : X → X with
network parameters θ. An overview of the general reconstruction
schemes being considered is illustrated in Fig. 1. Here, we
consider the classical reconstruction as well as learned-post-
processing strategies including feed-forward NNs and sampling
strategies via conditional invertible NNs.

III. MATERIALS AND METHODS

Classical reconstruction methods for CT include analytical
inversion formulas, such as the standard filtered back-projection
(FBP), as well as iterative reconstruction algorithms [19]. How-
ever, these methods do not take into account potential inexact-
ness of the forward operator as occurring for nanoCT. One clas-
sical iterative scheme is given by the Kaczmarz algorithm [20],

which in the context of CT is known as the algebraic recon-
struction technique (ART) [21]. The Kaczmarz algorithm forms
the basis for both non learning-based algorithms described in
the following Section III-A, which extend it in different ways
in order to handle operator inexactness. Then we consider the
learning-based extension in Section III-B.

A. Sequential Algorithms Explicitly Taking Into Account
Inexactness

1) Dremel: An approach for explicit geometry correction
during the Kaczmarz algorithm was described in [17], which we
will refer to as the Dremel method. It interleaves the iterations
of Kaczmarz with correction steps that adapt the previously
assumed geometry by maximizing the cross-correlation between
the measured data and the forward-projection of the intermediate
reconstruction over the plane of possible detector shifts. We
focus on the case in which shifts are identified for each angle
independently. While the correction step in the Dremel method
naturally determines shifts in the detector plane, it can also be
used to estimate object shifts (or source shifts) as they can be
approximately translated into each other as described in [17].
We use the Dremel method to estimate the object shifts while
reconstructing from the perturbed data as we consider data
sets featuring random object shifts (Section III-C). The full
algorithm for the Dremel method is specified in the Supplemen-
tary Material A (Algorithm 1), and an implementation is made
available under https://gitlab.informatik.uni-bremen.de/inn4ip/
cond-inn4nanoct.

2) Resesop-Kaczmarz: The combination of regularizing se-
quential subspace optimization (RESESOP) as introduced
in [22], and Kaczmarz’ method, in short RESESOP-Kaczmarz,
was first introduced in [7] for linear semi-discrete inverse prob-
lems. For a mathematical analysis of this method we refer to [7].
In short, RESESOP is a rather flexible iterative regularization

https://gitlab.informatik.uni-bremen.de/inn4ip/cond-inn4nanoct
https://gitlab.informatik.uni-bremen.de/inn4ip/cond-inn4nanoct
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method for quite general inverse problems, where a sequence of
projections onto suitable convex subsets of the source space X
is calculated to obtain a decent approximation of the solution.
Kaczmarz method, on the other hand, is predominantly designed
to deal with semi-discrete linear inverse problems, i.e., problems
that consist of a system of subproblems for the unknown target
and are evaluated in a combined manner. RESESOP-Kaczmarz
is thus a subspace optimization method that deals with the multi-
ple subproblems similarly as the Kaczmarz iteration. The general
idea of the method is outlined in the following. The respective
algorithm in the version used for this work can be found in the
Supplementary Material B (Algorithm 2). Within the present
manuscript we write RESESOP to refer to RESESOP-Kaczmarz.

We need to preface a few necessary concepts. Let us first
define a set of linear mappings Ak,l : X → Yk,l. In the context
of (nano-)CT for a static object, these are given by the Radon
transform, see also (1), where k ∈ K := {0, . . . ,K − 1} and
l ∈ L := {0, . . . , L− 1} are the index sets of scanner angles
and detector points of a CT image. Ak,l with k ∈ K and l ∈ L
describes an X-ray of one scanner angle k and one sensor l on
the detector plane. By A∗ we denote the adjoint of an operator
A. The semi-discrete inverse problem reads

Ak,lx = yk,l, k ∈ K, l ∈ L, (4)

and the solution set can be defined as

MA,y := {x ∈ X : Ak,lx = yk,l for all k ∈ K, l ∈ L}. (5)

Let u ∈ X \ {0} and α, ξ ∈ R. A hyperplane is given by

H(u, α) := {x ∈ X : 〈u, x〉 = α} (6)

and a stripe is defined by

H(u, α, ξ) := {x ∈ X : |〈u, x〉 − α| � ξ}. (7)

The algorithm then includes multiple concepts:
SESOP component: Sequential subspace optimization

(SESOP) is an iterative method which can apply several search
directions in each iteration step. The full iteration step for
SESOP is given by

xn+1 = xn −
∑
i∈In

t̃n,iA∗wn,i, (8)

with a chosen finite index set In, wn,i ∈ Y , search directions
A∗wn,i, and t̃n,i, i ∈ In, minimizing the function

hn(t) :=
1

2

∥∥∥∥x−
∑
i∈In

tiui

∥∥∥∥2 +∑
i∈In

tiαi. (9)

This procedure is equivalent to calculating the metric projec-
tion PH(xn) =: xn+1 of the current iterate xn onto the intersec-
tion of hyperplanes H :=

⋂
i∈In H(ui, αi) with ui = A∗wn,i

and αi = 〈wn,i, y〉. These hyperplanes are defined such that
they contain the solution set MA,y , independent of the choice
of wn,i ∈ Y: For x ∈ MA,y , we have〈

A∗wn,i, x
〉
=
〈
wn,i,Ax

〉
=
〈
wn,i, y

〉
= αi.

By projecting sequentially onto intersections of such hyper-
planes, we iteratively approximate a solution x ∈ MA,y if we

choose wn,i ∈ Y adequately. Here we set wn,i := Axi − y,
i ∈ In := {n− 1, n}, see also [7]. In the case of noisy data
and inexact forward operators, we replace the hyperplanes by
suitable stripes, see (11), and obtain a regularization method.
Note that the regularizing properties of RESESOP are a conse-
quence of an adequate stopping rule (see (12)) for the iteration
in (8). The functional hn in (9) can be seen as a tool to compute
metric projections, but it does not play the role of a variational
regularizer.

Kaczmarz component: SESOP alone does not take into ac-
count the nature of a semi-discrete problem Aqx = yq, q =
0, . . ., Q− 1, (e.g., here q = (l, k), Q = K · L) since it is not
defined for different realizations Aq of the forward mapping A.
Kaczmarz’ method, however, requires such a discretized setting,
and it works by iteratively projecting onto the solution set of one
realization Aq of A. The iteration step can then be written as

xn+1 = PMA[n],y[n]
(xn) (10)

where [i] = i mod Q. Kaczmarz’ method thus makes it possible
to merge subproblems in RESESOP-Kaczmarz.

Regularization: The advantage of combining the SESOP algo-
rithm with Kaczmarz’ method is that the iteration can be adapted
easily to regularizing semi-discrete inverse problems with mod-
eling errors and noise levels depending on the subproblem. For
inverse problems with inexact forward operator Aη and noisy
data yδ, it is important to introduce a form of regularization. As
has been described in [7], SESOP-Kaczmarz can be regularized
by replacing the hyperplanes H by stripes with a width defined
by η and δ. Such a stripe is defined by

Hδ,η := H
(
(Aη)∗w, 〈w, yδ〉, (δ + η) ‖w‖

)
= {x ∈ X :

∥∥〈(Aη)∗w, x〉 − 〈w, yδ〉
∥∥

� (δ + η) ‖w‖}, (11)

for a directionw ∈ Y . In the semi-discretized setting the method
then terminates if a discrete version of the discrepancy principle
is satisfied, i.e., for all k, l∥∥∥Aη

k,lxn − yk,l

∥∥∥ � τk,l(δk,l + ηk,l), (12)

with constants τk,l > 1 and noise and inexactness levels δk,l,
ηk,l given for any semi-discrete subproblem. Our approach to
nanoCT is to interpret the unknown motion of the object x as an
inexactness in our model. By consequence, we are working with
the standard Radon transform as our inexact forward operator
such thatAη := R from (1). Note that η depends on the objectx,
which can be treated more explicitly (see [7]), but is avoided here
for the sake of simplicity. The full algorithm for the RESESOP
method is specified in the Supplementary Material B (Algorithm
2). The code for this method is made available under https://
gitlab.gwdg.de/alice.oberacker/resesop.

B. Post-Processing via Neural Networks

Neural networks Fθ are finding increasing applications in the
field of CT [23], [24]. These include both detection and recon-
struction tasks [25], [26], [27]. A common approach for the latter
is to post-process CT reconstructions of established methods T ,

https://gitlab.gwdg.de/alice.oberacker/resesop
https://gitlab.gwdg.de/alice.oberacker/resesop
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such as filtered backprojection, using neural networks [28], [29],
[30], [31], [32], e.g.,

xreco = Fθ ◦ TFBP(y
δ) (13)

where Fθ : X → X . The idea is to correct artifacts and noise
in the image using learned techniques. The post-processing net-
works are trained in a supervised way with (simulated) ground
truth data from idealized scanning conditions, e.g., with a higher
dose, more scan angles, or less motion of the scanned object.
These scan settings result in superior image quality but may not
be feasible in practical use due to time or security constraints.

The post-processing approaches have the advantage of work-
ing mainly in the space of images X . Thus, convolutional neural
networks, like the U-Net [33] architecture are suitable for this
application. In addition, both the classic and the post-processed
reconstruction are available to the user. This can increase the
acceptance of data-driven approaches among users who already
have years of experience evaluating images from a particular
method. Another network type, so called invertible neural net-
works, also allows for image post-processing and it addition-
ally allows for an uncertainty quantification. Compared to the
U-Net architecture, the concept of conditional invertible neural
networks, which are considered in this work, is less standard
such that we highlight the important differences in architecture
design, training, and reconstruction in the following.

Conditional invertible neural networks: For our application
in nanoCT, the uncertainties due to the inaccuracy of the forward
model must be taken into account. To this end, it is helpful to
switch to the statistical view of inverse problems [34], [35]. Here,
instead of creating a single reconstruction, we are interested
in recovering the whole conditional distribution px|y(x|yδ),
respectively px|x̃(x|x̃) with x̃ = T (yδ) in the post-processing
setting of the present work. The idea is to approximate this dis-
tribution via a generative method, called conditional invertible
neural network (iNN) [36], [37], [38] which have been applied
to CT reconstruction [39], [40] from exact operators so far.

Architectures: Conditional invertible network architectures
are typically given as mappings Gθ : X × X → Z with latent
space Z . The conditioning is encoded in the second input
variable and invertibility is then given with respect to the first
variable, i.e., G̃θ,x̃ := Gθ(·, x̃) : X → Z is an invertible map-
ping for any x̃ ∈ X . In the remainder we consider two specific
architectures:
� CiNN: A typical choice is a multi-scale architecture, based

on NICE [41] and RealNVP [42]. We use additive cou-
pling blocks, the learned invertible downsampling pro-
posed in [43], and a ResNet conditioning network pro-
cessing the conditioning input before feeding it into the
coupling blocks. The conditioning ResNet does not need
to be invertible.

� CiUNet: We also consider a conditional variant of the
invertible U-Net proposed in [43], which has been studied
in [40]. We again use additive coupling blocks, and the
conditioning network is implemented as a (non-invertible)
U-Net, which is connected to the coupling blocks of the
invertible U-Net at each respective scale.

Further details and illustrations of the architectures are pro-
vided in the Supplementary Material D.

Training: The goal of the conditional iNN during training
is to minimize the Kullback-Leibler (KL) divergence to the
conditional distribution. Equivalently, for any x̃ this can be done
using the negative log-likelihood

min
θ

DKL[p(x|x̃)||qθ(x|x̃)] ⇔ min
θ

−Ex|x̃[log qθ(x|x̃)]

where qθ is parameterized via the conditional iNN Gθ and an
assumed distribution pz, which allows for easy sampling, for a
variable z defined on Z . Those are linked by the relation x|x̃ =
G̃−1

θ,x̃(z)|x̃, i.e., by the change-of-variables formula,

qθ(x|x̃) = pz(G̃θ,x̃(x))| det JG̃θ,x̃
(x)| (14)

where z|x̃ ∼ pz for any x̃. Joint training for all x̃ in terms of
expectation minimization and applying change of variables thus
results in the considered training loss

	(θ) = −Ex̃Ex|x̃[log qθ(x|x̃)] = −E(x,x̃)[log qθ(x|x̃)]

= −E(x,x̃)

[
log pz(G̃θ,x̃(x)) + log | det JG̃θ,x̃

(x)|
]

≈ − 1

N

N∑
i=1

[
log pz(Gθ(x

(i), x̃(i)))

+ log

∣∣∣∣det ∂

∂x
Gθ(x

(i), x̃(i))

∣∣∣∣
]

for a given data set of tuples (x(i), x̃(i)) including ground truth
and reconstruction from a predefined methodT . In the remainder
we distinguish two variants of training for the conditional iNNs.
First, we consider ground truth images x as the input variable
or alternatively we consider the residual Δx = x̃− x as input
variable for the invertible path of the network. The latter case
is denoted by the suffix Res in the present work (i.e., CiNNRes,
CiUNetRes) as for given latent variable z the reconstruction can
be interpreted as a ResNet with respect to x̃, i.e.,

xreco = x̃− G̃−1
θ,x̃(z). (15)

Reconstruction and uncertainty quantification: After training
the conditional iNNs we can derive reconstructions and standard
deviations from samples drawn from pz, i.e., given M samples
z(m) ∈ Z and a x̃ = T (yδ), we obtain the final reconstruction
xreco via

xreco =
1

M

M∑
m=1

G̃−1
θ,x̃(z

(m)) =: Fθ(x̃) (16)

which defines our learned post-processing routine Fθ. In addi-
tion this approach allows for an uncertainty quantification, e.g.,
in terms of pixel-wise standard deviation, i.e.,

σreco =

(
1

M

M∑
m=1

(G̃−1
θ,x̃(z

(m))− xreco)
2

) 1
2

. (17)
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Fig. 2. Three sample phantoms with 255 × 255 pixels included in the gener-
ated test data set.

Fig. 3. Randomly generated perturbations for the data set generation with
respect to scanner positions φ.

The Res case (here, G̃−1
θ,x̃(z

(m)) = Δx(k)) works analogously
with minor adaptation, i.e.,

xreco = x̃− 1

M

M∑
m=1

G̃−1
θ,x̃(z

(m)) =: Fθ(x̃) (18)

σreco =

(
1

M

M∑
m=1

(G̃−1
θ,x̃(z

(m))− (x̃− xreco))
2

) 1
2

. (19)

C. Data Set Generation

In order to train the methods described in Section III, it
is necessary to simulate tomographic imaging data including
inexactness in the operator. The generated dataset is composed
of 32 095 samples split into 30 490 (95%) for training, 1 284
(4%) for validation and 321 (1%) for testing.

Phantoms x(i) were generated for a field of view of 255 ×
255 pixels corresponding to spatial positions r ∈ R

2 and are
constructed from randomly generated rectangles and ellipses
which overlay each other and have different levels of density
ranging from 0 to 1, 0 being no density. One phantom has a
main shape and up to 3 subshapes within (see Fig. 2), which
is inspired by common experimental settings in nanoCT [17],
[44], [45].

The objective in the considered problem setting is to simulate
distortions in the measurements caused by small vibrations near
the CT scanner during the scanning process. As a result, this is
incorporated as movements of the entire phantom with respect
to the scanner position/scanning angle φ, where an example
of randomly generated movements is illustrated in Fig. 3. The
vibrations have been mimicked by overlapping dampened sinus
waves ε(φ) (38 for parallel and 9 for fan beam) with different

Fig. 4. Non-perturbed (top) and perturbed (bottom) sinograms of the phantoms
in Fig. 2 resulting from the perturbations like illustrated in Fig. 3. Scanner
positions φ are on the horizontal axis and detector positions are on the vertical
axis.

TABLE I
PARALLEL AND FAN BEAM GEOMETRY

starting points during the scanning process. The starting points
and parameters for the sinus waves are randomly generated for
each sample, but limited to a maximum r1- and r2-direction
shift distance from the center. Further details are provided in the
Supplementary Materials C.

In addition to the before mentioned sinus oscillations ε(φ),
which is a deterministic function with respect to φ randomly
differing for each phantom x, there is a small random noise
ξr−dir := (ξr1−dir, ξr2−dir)

t and ξφ−dir taken normal distribution
with randomly drawn standard deviation for each angle and
applied to r1-, r2-direction shifts and rotations, each drawn
for any angle φ. Here, the standard deviations are drawn from
N (0.127, 0.02542). In summary, this can be formalized as con-
sidering the randomly moved phantomxnon−perturbed(r) for the
particular scan angle φ as (r ∈ R

2)

xperturbed(φ)(r) = xnon−perturbed(d(φ, r))

with distortion

d(φ, r) = R(ξφ−dir(φ))r + ξr−dir(φ) + ε(φ) (20)

where R is the corresponding rotation matrix in R
2.

The generated phantoms and perturbations were then used to
calculate the sinograms yη and yδ for the non-perturbed and
the perturbed phantoms (see Fig. 4) for a parallel- and a fan-
beam geometry. The sinograms were created using Operator
Discretization Library (ODL) [46] and ASTRA Toolbox [47]
and the respective geometry parameters from Table I.

Note that the perturbed phantom xperturbed(φ), which is rep-
resented as a sequence of images with respect to φ, is assigned
to the exact but unknown operator A case and that the non-
perturbed phantom xnon−perturbed is assigned to the inexact
but known operator Aη case. Here we use Aη = R which is
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TABLE II
QUANTITATIVE EVALUATION ON THE PARALLEL BEAM TEST DATA FOR

MEASUREMENTS FROM UNPERTURBED PHANTOMS

chosen as the operator without phantom perturbation in any
case, i.e., measurement from exact unknown operator are y with
y(φ, s) = (Rxperturbed(φ))(φ, s) (s being the detector position)
and hypothetical measurement from inexact known operator
yη = Rxnon−perturbed. In the present work emphasis is given on
the operator inexactness such that the additive noise ξ = 0 is cho-
sen in any case, i.e., yδ = y and δ = 0. The data set includes the
tuples (x(i), y(i))wherex(i) = x

(i)
non−perturbed and y(i) = yδ,(i).

In addition yη,(i) is also available in the data set. The dataset is
made available under https://doi.org/10.5281/zenodo.8123498.
The code for the dataset generation is made available under
https://gitlab.gwdg.de/alice.oberacker/generate-data-4-nanoct.

IV. NUMERICAL EXPERIMENTS AND RESULTS

We conducted numerical experiments on the simulated phan-
tom data set described in Section III-C. For this we proceed as
follows:

First, we evaluate each non-trained reconstruction method
T on the respective data sets {(x(i), y(i))}i for parallel and
fan-beam geometry to obtain the reconstructions x̃

(i)
T from

reconstruction method T using Aη = R with R being either
a standard parallel or fan beam setting. Here, for T we used
FBP, Dremel (see Section III-A1), and RESESOP (see Section
III-A2).

For the RESESOP method an estimate of η needs to be
obtained prior the reconstruction. Here, we assume that a conser-
vative estimate of ηk,l for any semi-discrete subproblem is given
in terms of the maximum deviation over all detector positions for
each angle, i.e., ηk,l = max�∈L(‖yk,� − yηk,�‖) for any l ∈ L. In
the numerical experiments we also include the cases of ±20%
over- and underestimation.

The Dremel method includes some algorithmic options,
which were selected by evaluation on validation samples (see
Supplementary Materials A).

Second, we train a learned post-processing routine Fθ using
the data tuples (x(i), x̃

(i)
T ), individually for each T . For the

UNet architecture Fθ, the loss is given by the Euclidean norm,
i.e., minimize

∑
i ‖Fθ(x̃

(i)
T )− x(i)‖2 with respect to network

parameters θ. The invertible network architectures are trained
according to the descriptions in Section III-B using a standard

TABLE III
QUANTITATIVE EVALUATION ON THE PARALLEL BEAM TEST DATA FOR

MEASUREMENTS FROM PERTURBED PHANTOMS

Gaussian density pz. Here, we use a CiNN and a CiUNet as
outlined in Section III-B. All trainings are performed using the
Adam optimizer, and the checkpoint with minimum validation
loss is selected.

Third (for iNNs only), the iNNs serve as an uncertainty esti-
mator in terms of an estimate for pixel-wise standard deviation.

Finally, the resulting reconstruction schemes are then evalu-
ated quantitatively (PSNR, SSIM) and qualitatively on the test
set of the respective data set for parallel- and fan-beam geometry.

Further algorithmic details are provided in the
Supplementary Materials A, B, and D. The code for the
learned post-processing schemes via UNet and conditional
iNNs is made available under https://gitlab.informatik.uni-
bremen.de/inn4ip/cond-inn4nanoct.

A. Architecture Specifications

The UNet architecture used in the present work is an adapted
standard U-Net architecture with 5 scales and 32 to 128 channels

https://doi.org/10.5281/zenodo.8123498
https://gitlab.gwdg.de/alice.oberacker/generate-data-4-nanoct
https://gitlab.informatik.uni-bremen.de/inn4ip/cond-inn4nanoct
https://gitlab.informatik.uni-bremen.de/inn4ip/cond-inn4nanoct
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TABLE IV
QUANTITATIVE EVALUATION ON THE FAN BEAM TEST DATA FOR

MEASUREMENTS FROM PERTURBED PHANTOMS

using strided convolution downsampling, bilinear upsampling,
skip connections and a sigmoid output activation. A detailed
illustration of the used UNet can be found in the Supplementary
Material D (Fig. 10).

The CiNN architecture has 6 scales and uses learned invertible
downsampling, splitting, additive conditional coupling blocks,
and a ResNet conditioning network. In each downsampling the
number of channels naturally is multiplied by 4, after which half
of the channels are split off to form a part of the latent output
z (except after the first downsampling). The other half of the
channels is further processed by a conditional coupling block,
followed by the next downsampling, until the coarsest scale with
128 channels is reached. A small part of this signal is finally
processed by random permutation and a conditional coupling
block, before concatenating all parts of the latent output z. See
the Supplementary Material D (Fig. 11) for an illustration.

The CiUNet architecture is based on the iUNet architec-
ture [43] using 5 scales, learned invertible down- and upsam-
pling, additive conditional coupling blocks, and skip connec-
tions forwarding half of the channels at each scale from the
encoder to the decoder. A non-invertible U-Net is used for the
conditioning, connected to the conditional coupling blocks at
the respective scales in reversed order, i.e., U-Net’s decoder
activations are connected to CiUNet’s encoder coupling blocks.
After the downsampling in the encoder to the coarsest resolution,
at which 32 channels are used, the features are upsampled back
to the original resolution by the decoder, while concatenating
with the forwarded channels from the skip connections. The
decoder output then forms the latent output z (via reshaping).
A sequence of four additional layers, namely activation normal-
ization, downsampling, conditional coupling and upsampling, is

inserted at the beginning before the encoder. An illustration can
be found in the Supplementary Material D (Fig. 12).

Each network was trained for 500 epochs using ADAM with a
batch size of 256 on 1x NVIDIA RTX 2080 Ti. However, training
time varies greatly among the different architectures. While the
UNet finished training after ∼1 d, the CiNN took ∼2.5 days and
the CiUNet finished training after ∼8.5 days. Further training
details are specified in the Supplementary Material D.

Reconstructions and standard deviations are computed with
M = 100 samples from the latent space.

B. Non-Perturbed Phantom Case

As a sanity check and also as a reference, we also trained
and evaluated selected methods on unperturbed measurements,
i.e., those measurements generated by unperturbed phantoms
and R = Aη which is illustrated in Table II. All reconstruction
methods T without post-processing deliver accurate reconstruc-
tions as expected. The post-processing via UNet and the residual
iNNs (CiNNRes, CiUNetRes) result in the largest performance
improvements in terms of PSNR as well as in SSIM. Here, the
UNet provides the largest improvement in terms of PSNR. The
post-processing via non-residual invertible networks results in
at least similar or slightly improved performance in PSNR but
the SSIM is decreased compared to the respective non-post-
processed case. The image reconstructions of these methods are
illustrated in Supplementary Material E (Figs. 13 to 16) for the
phantoms in Fig. 2.

C. Perturbed Phantom Case

Quantitative results: The quantitative results on the perturbed
phantom test data set for parallel beam are summarized in
Table III. First, we can immediately observe that the non-learned
methods Dremel and RESESOP perform superior to FBP in
terms of PSNR as well as in SSIM which is due to the design
of those sequential reconstruction methods taking into account
the inexactness. Second, in the learned post-processing schemes
the UNet approach delivers the largest improvement when
compared to all other conditional iNN approaches. The largest
improvement can be observed for RESESOP when combined
with the UNet. Large improvements can even be observed for
over and underestimated η. But also FBP and Dremel can highly
benefit from the learned UNet post-processing particularly in
terms of SSIM. Third, the conditional iNNs show a more diverse
behavior. Dremel and RESESOP perform better when com-
bined with the residual approaches CiNNRes and CiUNetRes.
Interestingly, the non-residual approaches CiNN and CiUNet
reduce the performance (except for RESESOP and CiNN with
respect to PSNR. Also, the non-residual CiUNet for RESESOP
unexpectedly performs worse with the correct per-angle maxi-
mum error level η than with over- and underestimated η. These
results may indicate difficulties in the non-residual training of
the conditional iNNs, leading to sub-optimal results (in a rather
random way). For FBP the situation is slightly different. Here, all
iNNs are able to improve performance in terms of SSIM but for
PSNR this holds true for CiNN and CiNNRes only. In summary,
the UNet post-processing and in particular when combined with
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TABLE V
QUANTITATIVE EVALUATION (PSNR (TOP) AND SSIM (BOTTOM)) FOR MIXED TRAINING AND TESTING INPUTS TO THE POST-PROCESSING UNET EVALUATED ON

THE PERTURBED PARALLEL BEAM TEST DATA FOR MEASUREMENTS FROM PERTURBED PHANTOMS

RESESOP provides the best performance and among all condi-
tional iNNs the CiUNetRes provides the largest improvements.
The learned post-processing approaches are also evaluated on
the fan beam data set for Dremel and RESESOP resulting in
Table IV. Here, similar observations as in the parallel beam case
can be made with minor differences in the PSNR results. Finally,
we investigated the robustness of the trained post-processing
considering different reconstruction methods T for training and
testing. The results for the UNet are illustrated in Table V.
Networks trained on Dremel and FBP show similar or slightly
worse behavior for reconstructions from different algorithms.
In contrast, architectures trained with RESESOP reconstructions
perform worse with other reconstruction algorithms, particularly
in terms of PSNR. The RESESOP reconstructions might have
an inherent characteristic which is advantageous for the UNet
architecture. Further quantitative results are provided in the
Supplementary Materials H.

Qualitative results: Qualitatively, we can also observe differ-
ent characteristics in the remaining artifacts in the reconstruc-
tion. The outcome of the non-learned reconstruction methods
T which also serve as the input to the learned post-processing
schemes is illustrated in Fig. 5. All methods suffer from streaking
artifacts emerging mainly on edges and corners in the phantom.
The intensity of distortions decreases from FBP over Dremel to
RESESOP. For FBP and RESESOP we can also observe more
severe distortions within the objects. The post-processing via the
UNet is illustrated in Fig. 6. Qualitatively, the reconstructions in
Fig. 6 are superior to those provided solely by the methods T . In
all cases the streaking artifacts are removed, also in the objects
interior for FBP and RESESOP. Qualitative differences which
cause quantitative differences become apparent in the difference
images in Fig. 6. FBP+UNet and Dremel+UNet have more
severe deviations particularly at phantom edges. For RESESOP
these distortions are less distinct but in some cases other artifacts
appear in the reconstruction, e.g., in the reconstruction at the
bottom right in Fig. 6.

Qualitative results cond. iNNs: The CiUNetRes showed the
best performance among the iNNs such that we restrict the

Fig. 5. Image reconstructions using the non-trained reconstruction methods
T on perturbed parallel beam data for the phantoms in Fig. 2.

presented qualitative results to this particular network case.
Further image reconstructions of other methods and also for the
fan beam setting are provided in the Supplementary Materials F
and G. The post-processing via the CiUNetRes is illustrated in
Fig. 7. Here, we can observe that the CiUNetRes tends to provide
smoother reconstructions. In the FBP case we observe severe
smoothing which is most likely the reason for the quantitative
performance drop in PSNR. For Dremel and RESESOP
we observe much less smoothing and in the RESESOP case the
artifact in the interior of the right phantom disappeared. The
extent of smoothing becomes more apparent in the difference
images in Fig. 7. Here, the rectangular shapes show more severe
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Fig. 6. Image reconstructions xreco and differences to ground truth using the
non-trained reconstruction methods T combined with UNet post-processing on
perturbed parallel beam data for the phantoms in Fig. 2.

differences in the corners where these effects decrease from
FBP to RESESOP again. In any T case the CiUNetRes is able to
remove the streaking artifacts but the more severe these artifacts
have been the more smoothing is imposed which results in
oversmoothed image reconstructions with varying intensity.
Phantoms with smooth contours are likely to be advantageous for
the CiUNetRes due to the observed effect in the corners. In sum,
the CiUNetRes is able improve the reconstructions from Dremel
and RESESOP but the quantitative improvement is smaller when
compared with the UNet approach which is likely to be caused by

Fig. 7. Image reconstructions xreco differences to ground truth using the non-
trained reconstruction methods T combined with CiUNetRes post-processing
on perturbed parallel beam data for the phantoms in Fig. 2.

the imposed invertibility in the network and the sampling mean
which can also contribute to the observed smoothing effect.

Uncertainty estimation cond. iNNs: But the invertibility and
the sampling also opens the door for extracting additional fea-
tures. For this we illustrate the pixel-wise standard deviation
in Fig. 8. In the FBP reconstruction the outer contour is only
extracted which gives limited information about the actual un-
certainty, e.g., when compared with the differences to ground
truth illustrated in Fig. 7. In case of Dremel and RESESOP we
observe a larger similarity to the actual differences to ground
truth. The standard deviations indicate an uncertainty in the
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Fig. 8. Standard deviation σreco according to Section III-B for the CiUNetRes
reconstructions in Fig. 7.

reconstructed location of the edges. But similar to the actual
reconstruction the uncertainty in non-smooth contours like the
vertices is not properly predicted. But on the other side the
standard deviation can also indicate differences in the amount
of uncertainty, e.g., being apparent in the middle phantom for
RESESOP where the left and right inclusions in the bigger
rectangle are more severely mis-located than the middle one.
This can also be observed in the standard deviation. On the
circular phantom at the left the standard deviation also predicts
less uncertainty in the horizontal edges compared to the vertical
edges which is in line with the difference to ground truth.

V. DISCUSSION AND CONCLUSION

In the present work we investigated different classical and
learning-based computational strategies to deal with inexactness
in the underlying forward operator motivated by nanoCT appli-
cations where the inexactness has a severe probabilistic charac-
teristic due to environmental influences. On the methodological
side sequential algorithms already taking into account that the
forward operator is inexact were combined with learning-based
components such as classic U-Nets and more novel network
architectures such as conditional invertible neural networks.
The latter class also allowed for additional feature extraction
for the purpose of uncertainty quantification. Overall, the non-
learned reconstructions can be further improved by a learned
post-processing network in most cases. In the proposed com-
putational pipeline the performance of the learned component
relies on the quality of the preliminary reconstruction, i.e., the
post-processing method only has access to the information from
the output of the previous process and not from the actual
measurement. Consequently, an initial reconstruction with too
little or too distorted information can only be improved to a
limited extent. For RESESOP the particular choice of the model
error level η can have an impact on the level of distortion and
thus need to be carefully chosen. Nevertheless, the numerical

results indicate that 20% over- or underestimation of η cause a
limited decrease in performance only. But the post-processing
with sub-optimal η still improves the preliminary reconstruction
from RESESOP. Nevertheless, the choice of η is an important
issue which has to be treated carefully as it can have a large
impact on the success of the method. Future works thus in-
clude learned estimators to predict appropriate η values from
the measurements and an extension of the conditional iNNs
taking into account a conditioning which depends on both ac-
tual measurement and preliminary reconstruction. When trained
with the actual measurement, the conditional iNNs can directly
approximate the conditional distribution px|y(x|yδ), not only
via px|x̃(x|x̃) with x̃ = T (yδ).

One particular focus of the work was the investigation of
conditional iNN approaches as learned post-processing tools for
reconstructions from inexact operators as they also provide the
opportunity to extract features to quantify the uncertainty. Here,
the kind of training has a larger impact on the result, i.e., training
with respect to the residual is superior. This might be related to
the complexity of the learned feature distributions. In the residual
case the error pattern of the preliminary reconstruction needs to
be learned solely, while in the full reconstruction case the error
pattern as well as the image class needs to be encoded in the
network somehow.

The overall reconstruction performance in particular for the
CiUNetRes has been only slightly worse compared to the classic
U-Net approach. We observed that this might be related to an
inherent smoothing effect in the iNNs’ reconstructions along
contours. Here, one needs to take into account that the underlying
architectures have a different structure in particular within the
invertible path of the iNN. The particular choice of invertible
network architecture is likely to be one of the origins of the
observed smoothing effect. In the present work we use coupling
layers which tend to result in universal approximators of dif-
feomorphisms [48], [49] which are compared to classic U-Nets
being composed of solely continuous and not necessarily differ-
entiable layers. Here, future works may relax this property in the
invertible path of the post-processing network using invertible
residual networks [50] which tend to approximate homeomor-
phisms only [51]. One advantage of using the conditional iNNs
is that additional uncertainty features can be computed. Here,
we investigated the standard deviation in every pixel and we
find that the uncertainty mainly concentrates at the edges of the
phantom. This might be related to the kind of operator inex-
actness used in the numerical experiments. The inexactness is
assumed to be caused by a movement of the phantom during the
scanning process which cause an uncertainty in the position of
the phantom’s edges. As a consequence one expects uncertainty
being concentrated at the edge of the phantom. Here, future
works include an investigation of the interplay between extent
of phantom movement and extent of uncertainty. In summary, the
conditional invertible networks for post-processing can provide
a powerful tool to further improve image reconstructions from
inexact forward operators and to simultaneously provide insights
into the remaining operator uncertainty.

Besides the previously mentioned possible extensions, future
research directions include the investigation of estimated higher
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order statistics, the application to measured nanoCT data, and
also the transfer to other imaging modalities suffering from
operator inexactness, e.g., such as magnetic particle imaging [1].
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