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Joint Denoising and HDR for RAW Image Sequences

A. Buades ™, O. Martorell

Abstract—We propose a patch-based method for the simulta-
neous denoising and fusion of a sequence of multi-exposed RAW
images. A spatio-temporal criterion is used to select similar patches
along the sequence, and a weighted principal component analy-
sis (WPCA) simultaneously denoises and fuses the multi-exposed
data. The overall strategy permits to denoise and fuse the set of
images without the need to recover each denoised image in the
multi-exposure set, leading to a very efficient procedure. Moreover,
ghosting removal is included naturally as part of the method by
the way patches are selected and the weighted principal compo-
nent analysis. Several experiments show that the proposed method
obtains state-of-the-art fusion results with real RAW data. The
method is very flexible, it can be easily adapted to other kinds of
noise and extended to video HDR and denoising.

Index Terms—Digital photograph, high dynamic range, image
denoising, image fusion, image restoration, image sequences,
principal component analysis.

1. INTRODUCTION

HIGH Dynamic Range (HDR) image has a larger than
A usual range of luminosity between its brightest and darkest
areas. High Dynamic Range imaging refers to the set of methods
and techniques that permit to increase the dynamic range of
images and videos. We will deal with the combination of several
Low Dynamic Range (LDR) images of the same scene acquired
with different exposure times, in order to create an HDR image.

HDR methods combine radiance values, obtained from the
8 b color image by inverting the camera response function
(CRF). The CRF has to be estimated, generally using the method
proposed by Devebec and Malik [21].

For static sequences, many classical methods combine the
set of images using a per-pixel weighted average of radiance
values. The weights are designed to diminish the contribution
of under- and overexposed pixels, e.g. Devebec and Malik [21],
Mitsunaga and Nayar [53] or Mann and Picard [50]. In the case
of scenes with moving objects or camera motion, methods have
to be adapted in order to avoid introducing ghosting effects [35],
[39], [42].
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While the application of the inverse CRF allows to combine
values acquired with different exposure times, it is not adequate
for taking care of noise. Most common cameras use a CCD
or CMOS sensor device measuring a single colour per pixel.
The selected configuration of the sensor usually follows the
Bayer colour filter array (CFA) [9]: out of a group of four
pixels, two are green, one is red and one is blue, forming a
quincunx pattern [7]. We call this the RAW image. At this
stage, noise values at neighboring pixels are uncorrelated. De-
mosaicking is usually performed by combining close values
from the same channel or the other two. As a result, the noise
gets colour and spatially correlated. The rest of the imaging
chain, used to produce an image ready for visualization, con-
sists mainly in colour and gamma corrections and compres-
sion. This process enhances the noise in the dark parts of the
image, leading to contrasted coloured spots of several pixels.
The inversion of the CRF cannot revert all noise correlating
stages.

On the other hand, pixel intensities in the RAW domain
depend linearly with the number of photons received by the
camera sensor, and their noise can be assumed to be spatially
uncorrelated. This fact gives rise to two consequences. First,
working in the RAW domain can be beneficial for denoising.
Second, frames in a burst or sequence of RAW images taken
with different exposure times follow the same linear relation
between their pixel values and exposure time (up to saturation).
Although the radiance values obtained after applying the inverse
CRF to an already processed image follow the same relation, in-
accuracies on the CRF estimation may introduce inaccuracies in
this correspondence. For these reasons, we will directly perform
denoising and HDR fusion in the RAW domain, without having
the need to estimate a CRF.

We propose a joint denoising and HDR method for remov-
ing noise and building an HDR image free of ghosting arti-
facts. We are inspired by classical video denoising [12] and
HDR methods. Video denoising methods take into account a
spatio-temporal neighbourhood of each pixel under considera-
tion improving the noise reduction capabilities. The use of patch
based methods permits to adapt to the motion avoiding ghosting
artifacts. The use of robust estimation techniques, namely PCA,
further prevents ghosting and increases the texture and detail
reconstruction.

The main novelties of the proposed approach are:

¢ The joint denoising and fusion without the need of recov-
ering each denoised exposure.

e The removal of ghosting artifacts as a natural part of the
algorithm with the use of patch comparison and robust
statistical techniques.

¢ The use of weighted PCA for recovering texture.
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® The flexibility of the method, which can be easily adapted
to other kinds of noise or images, and directly extended to
video HDR and denoising.

The remaining sections of the paper are organized as follows.
Section II describes the existing literature on HDR and denoising
methods. In Section III we describe the complete method. In
Section IV, we discuss the implementation of the method and
compare with state-of-the-art algorithms. Finally, we draw some
conclusions in Section V.

II. RELATED WORK
A. White Noise Removal in Image Sequences

Local average methods, such as the bilateral filter [68], or
patch-based methods like NL-means [11], BM3D [19] and
NLBayes [44] and sparse coding algorithms [46] can be easily
adapted to image sequences just by extending the neighbouring
area to adjacent frames. However, the performance of these
methods is improved by introducing motion compensation.
These compensated filters estimate explicitly the motion in the
sequence and use it to compensate the neighbourhoods, yielding
stationary data. The BM3D extension, VBM4D [49], exploits
the mutual similarity between 3-D spatio-temporal volumes
constructed by tracking blocks along trajectories defined by
the motion vectors. In [12], the authors propose combining
optical flow estimation and patch-based methods for denoising.
The algorithm compensates the failure of these requirements by
introducing spatio-temporal patch comparison and denoising in
an adapted PCA-based transform.

Recently, neural network methods have appeared making use
of motion compensation [65], patch-based processing [20], [71]
or being applied recursively in groups of three consecutive
frames [66]. Self-supervised methods have also been proposed
by using warped neighbouring frames to define the loss func-
tion [22].

B. HDR and Deghosting

Many of the early HDR methods applied classical pixel
fusion algorithms with different weight and CRF estimation
strategies. The most well-known ones were proposed by Mann
and Picard [50], Devebec and Malik [21], Khan et al. [42] and
Mitsunaga and Nayar [53].

Later HDR methods have devoted their resources to removing
ghosting artifacts due to the motion of the camera or the objects
in the scene. Global alignment algorithms aim at detecting dif-
ferent global motion models: translation [5], [74], rotation [15],
affinity [36] or homography [51], [69]. There exist a variety of
methods for estimating the desired motion model: Rad et al. [61]
and Yao [78] propose registering the images by translating the
problem to the Fourier domain; Mann et al. [51] and Cando-
cia [14] use the comparametric equations to find the desired
global transformation; Tomaszewska and Mantiuk [69] and
Gevrekci and Gunturk [26] find the transformation by matching
image descriptors, such as SIFT [48] or CIFT. Moving object
removal algorithms replace selected regions by an estimation
of the static background. These methods may fail in presence
of dynamic backgrounds, moving objects with occlusions or
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insufficient number of exposures [29], [42], [57], [64]. Moving
object selection methods detect the presence of moving regions
and substitute those pixels by corresponding areas from other
images [30], [37], [62]. Moving object registration methods
remove the majority of artifacts by computing motion between a
reference frame and the other images of the stack. The methods
in this family can also be classified in two subclasses: optical
flow methods [24], [33], [80] or patch-based methods [34], [63].
The methods in the first group aim at finding a pixel-wise motion
between images, while the ones in the latter use patch-based
strategies to register images and remove artifacts. See Tursun
et al. [70] for a detailed review of HDR deghosting algorithms.

More recent methods have begun using deep learning tech-
niques to remove ghosting artifacts. The first method using a
convolutional neural network is credited to Kalantari et al. [39],
which performs a pixel-wise merging. Wu et al. [75] propose
a non-flow-based approach for HDR. Peng et al. [58] propose
an improvement of [39] by using a state-of-the-art optical flow
method and a more accurate merging network. Yan et al. handle
motion between images by an attention module [76] and also
propose a non-local network [77]. Niu et al. [55] propose HDR-
GAN, a GAN-based model with a novel generator network.
Liu et al. [47] align the dynamic frames with a deformable
alignment module. Prabhakar et al. [60] propose to use recur-
rent neural networks to obtain deghosted HDR images. See
Wang et al. [72] for a detailed review on learning based methods.

C. Joint HDR and Noise Removal

Sequential filtering and HDR: Min et al. [52] filter the set
of images by spatio-temporal motion-compensated anisotropic
filters prior to HDR reconstruction. Lee et al. [45] use a sub-band
architecture for fusion, with a weighted combination using a
motion indicator function to avoid ghosting effects. The low fre-
quency bands are filtered with a multi-resolution bilateral filter
while the high frequency bands are filtered by soft thresholding.

Joint HDR and denoising on sRGB data: Akyuz et al. [6]
denoise each frame before fusion, by averaging a subset of
frames in the radiance domain. Tico et al. [67] combine an initial
fusion with the image of the sequence with the shortest exposure
in the luminance domain. This combination is performed in
the wavelet domain and coefficient attenuation is applied to the
coefficients of the difference of luminances.

Ahmad et al. [4] identify noisy pixels and reduce their weight
during image fusion. Goossens et al. [27] propose a realistic
noise model for HDR imaging that takes into account an accurate
noise model of image capture. With that, they modify the HDR
weights to improve the PSNR.

On RAW data: Kronander et al. [43] propose a unified frame-
work for HDR reconstruction from raw CFA data. The proposed
method is based on an adaptive spatial and cross-sensor filtering
using polynomial approximation. During reconstruction, they
perform CFA interpolation, resampling and HDR assembly in a
single operation.

Aguerrebere et al. [2] propose a filter based on NL-means [11]
to jointly denoise and perform HDR on a set of multi-exposed
frames. For each patch on a reference image, similar patches are
selected using a Chi-square distance function and the method by
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Granados et al. [28] is applied to the center pixel of these patches.
The fusion method by Granados et al. takes into account the
estimated noise model. The selection of similar patches permits
to deal with ghosting artifacts.

Deep learning: Chaudhari et al. [16] propose a deep learning
method for HDR from raw CFA data. The proposed network
is capable of performing demosacking, alignment and fusion
of the input images to obtain a deghosted HDR image. Aguer-
rebere et al. [1] propose a robust framework enabling the use
of Gaussian local priors on image patches for solving a useful
family of restoration problems by drawing on a hierarchical
Bayesian approach. The advantage of the proposed framework
is its ability to deal with signal dependent noise, therefore
making it suitable for realistic digital photography applications.
In particular, it permits to denoise and reconstruct an HDR image
from a single view.

III. JOINT HDR AND NOISE REMOVAL

The proposed algorithm performs a joint denoising and HDR
of a reference RAW image given a series of—not necessarily
static—accompanying images taken under a variety of expo-
sure times. We denote the set Z = {I1,Is,..., Iy} as a se-
quence of noisy RAW images with corresponding exposure
times {71, 72,...,7n} and assumed to be taken with the same
ISO value.

A. Noise Model With Different Exposure Times

The primary sources of noise in a camera sensor are shot
noise and read noise. They can be modeled, respectively, with
a Poisson and a Gaussian distribution. The sensor, moreover,
adds a constant positive offset O to the values it reads in order
to avoid the presence of negative values due to noise. By using
the normal approximation of the Poisson distribution, the noise
model of a read pixel xeaq 1S thus usually described as

Lread ™~ N (xtrue + 0, aZ e + b) , (D

where e is the true pixel value, and @ and b depend on the
sensor characteristics and on the ISO value used to capture the
image [25], [32].

We will perfom an estimation of the noise distribution on the
input set of images Z to be used later on the denoising and fusion
step. We first pack each one of these images into a 4-channel
image of half the width and height of the original RAW image,
containing the red, blue and two green values, denoted as R, B,
Gy and G, respectively. For simplicity, we still denote these
imagesas I;, i =1,2,..., N.

We estimate the level of noise that is present in each one
of the four channels of the images I; separately. To do so, we
use the same approach as in [13], which adapts the method
proposed by Colom et al. [18] and Ponomarenko [59]. Note
that, since all images are taken with the same sensor and ISO
value, their noise curves for each colour channel are identical.
This way, we compute only one curve o(x), which contains
the noise standard deviation at pixel intensity = for the images
in the sequence. The noise curve is estimated independently
for each of the four channels, so in fact we have o(x) =

(O-R(x)a el (33),0'@2 (x)’ O-B(l‘))‘
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B. Normalization and Variance Stabilization

Let I..f € Z be chosen as the reference image of the sequence,
which we choose to be the middle-exposed one. Since each
frame in Z is in the RAW domain, we can assume that pixel
intensities scale linearly with their exposure time. We perform
an initial normalization step by equalizing the exposure of each
image to the reference one. This is accomplished by removing
the constant black offset O, scaling the resulting image, and
adding O back

L=0+2 (- 0). 2)
Ti
We use ZA to refer to the set of these images. Another set of
images J is built as

J; = min {o+“ef(1i—0),vm}, 3)
7

where V, denotes the saturation value of the sensor. The images
in J will be used for registration and patch selection, while those
in Z will be combined in order to obtain the HDR image. This is
due to the fact that areas that are saturated in the reference image
might have considerably larger pixel values in the normalized
images with darker exposures. The difference in intensities can
mislead the optical flow computation, so we solve the problem
by re-saturating those bright values. Similarly, saturated areas
in the long exposure images will have, once normalized, smaller
values than the reference non-saturated ones. Altough these may
lead to erroneuos optical flow estimation, in Section III-C we
will make sure that these areas are not taken into account in
the subsequent fusion process by carefully choosing an HDR
weighting function depending on the original values in Z.

At this point, we want to apply a transformation to each image
inZ and 7 such that all intensity values in the same image have
the same noise variance. Such transformation f.(z) is known as
variance stabilization transform (VST) and is written as

Todt

being ¢ € {R, G1, G2, B} the image channel of the packed CFA
and z the intensity value to be transformed [13]. When assuming
a linear variance model (1), this stabilization is known as the
Anscombe transform [8]. We apply such a VST to each one of
the normalized images in 7 and J using the same estimated
noise curve o(z). It can be proved that, if the noise variance is
approximated linearly, the uniform variance of the ith stabilized
image, 6?, equals Tr/7;. Note that this variance does not hold
for saturated pixels; this is not a problem for us, since these
pixels are not used when performing denoising and HDR.

C. Joint Denoising and HDR

From now on, we assume that every frame I i € 7 and J} S j
has a uniform noise standard deviation &;, while any mention of
I; € T refers to the original, pre-normalization image using the
RGGB space.

We use a colour transformation from RGGB to a decorrelated
colour space, which we denote by YUVW, as proposed in [13].
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Assuming that noise values at the sensor data are uncorrelated
for different colour channels and pixel locations, since the matrix
in [13] is an orthonormal matrix, its application to I; and J;
foralli € {1,..., N} conserves the decorrelation and uniform
standard deviation properties. Moreover, its inverse transform is
given by its transpose.

Once we have applied the YUVW transformation, we com-
pute the optical flow between the middle-exposed frame jref and
every other J; € J on the brightness channel Y using the total
variation approach in [79]. Moreover, we check the consistency
of the obtained values by also computing the inverse flows and
making sure that they are approximately reciprocal. Pixels that
do not verify this condition are either occluded or in violation
of the optical flow’s colour constancy assumption, so we mark
them as invalid for the rest of the algorithm.

For every overlapping  x r patch P in the chosen reference,
we denote by P its motion compensated extension to the tem-
poral dimension, that is, a 3D volumetric patch. We consider
the patch’s values J (P) and select the set of its K" most similar
extended patches in the clipped images J. Invalid points are not
considered in this search.

Now, we consider all the K - N 2D patches taking part in
the selected spatio-temporal blocks, {Q j}, and their associ-
ated values {jk] (Qj;)}, for each j € {1,...,N - K}, where
k; € {1,..., N} refers to the index of the image containing the
jth patch. For each of these patches, we compute its associated
weight
(Q])) -wipr (Ik; (Q5)) . (5)

Wj = Wsim ( ref( )
where

|| Jer(P) = Ji, (@)

Wi (et (P), i, (Q4)) = exp ( =

(6)
so that patches that are too dissimilar to P lose influence on the
filtering step (depending on a parameter /), and wpr ({x, (Q;))
is any HDR weighting function adapted to the RAW range of
intensities, evaluated on the original RGGB image I, where
(; is located. In particular, this HDR weighting will dlscard the
use of any saturated patch independently of its colour value after
exposure normalization.

Let X be the matrix whose j-th row is composed of the
flattened pixel values of the 2D patch (Q; evaluated on the
image I, k,- Bach column i € {1,... ,r?} of that matrix contains
the values of a particular position inside the selected patches.
Similarly to traditional HDR methods, we compute a weighted
average of the pixel intensities of each one of these positions
using the weights {w,} as a measure of confidence. A vector
encoding those averages is given by the barycenter

Z Zwa], (7)

_]Ow?jO

where xj is the jth row vector of X.

Since X has been constructed using similar patches, we expect
the values of each column to be strongly correlated. That is,
the information of the image is highly redundant, and we can
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expect to find a low-dimensional subspace that captures most
of the variance of the data. At the same time, not every patch
is equally reliable due to possible saturation and dissimilarities
with the reference patch being processed. For these reasons,
we carry out a Weighted Principal Component Analysis on X,
which generalizes the standard PCA by taking into account the
patch weights {w;}.

We start by centering X column-wise by subtracting the vector
b to each of its rows:

X =X—-1gnxb". (8)

Then, we consider the eigendecomposition of the weighted
covariance matrix

%

—  XTWX =VAVT 9
V-1, ; &)

where W = diag(wy, ..., wkn), and V5 and V5 are the sum
of the weights and the sum of their squares, respectively. If
we compute the Singular Value Decomposition of the weighted
centered matrix

WX = USV7, (10)
it holds that 82 = Y& BT Y2 A and that V is the same orthogonal
matrlx in both (9) and (10). Furthermore, the matrlx UsSs =
W2 XV contains the principal components of W2 X. The first
few eigenvalues in A (and, thus, singular values {s;} in S) in
decreasing order concentrate most of the variability of the group
of patches. This has a double implication: first, singular values
from a certain point onwards are mostly noise; second, those up
to that aforementioned point hold much more information on the
structure of X than the weighted average b does. Hence, we filter
X by discarding the principal components whose associated
singular values are lower than a carefully chosen threshold §2.
More formally, let D be the diagonal matrix whose entries are

eV,
P — 1 if Vlzszslz > 2,
1 .
0 otherwise,
so that S = SD is a hard-thresholded version of S. With it, we
can approximate the weighted centered matrix as

(1)

W:X = USDVT = W:XVDVT. (12)
The W 2 factor in (12) cannot be directly removed on both sides
of the equality because the matrix is not generally invertible due
to the existence of saturated patches. However, we only need the
reconstruction of the reference patch P to be correct. Thus, if P
is not saturated, we reconstruct an approximation of the fused,

noise-free patch group as

X = XVDV? 4 14n,b7, (13)

where the last term re-centers the data around the original
intensity values. When P is saturated in Iy, the step from (12)
to (13) is invalid, so we simply take b as the reconstructed
pixel values of the patch. This still performs the fusion using
the information from the correctly exposed patches.

The aforementioned process is done independently for each
channel and each patch on the reference frame. We keep the
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reconstructed values of each patch, and we aggregate them to
form the fused image. Lastly, we apply the colour space con-
version back from YUVW to RGGB and we undo the variance
stabilization transform to obtain the resulting image.

We note that, for noise-free images, using a window size
of r =1 and setting wg, = 1 with a full cancelation of the
principal components—that is, keeping only the barycenter
b—is equivalent to a classic HDR procedure with weights
wypr- Indeed, the computation of the vector b is a spatio-
temporal generalization of the classic HDR averaging with
additional noise removal when using all the weight factors.
The weight wsim(jref(P)7 ij (Q;)) permits the noise removal
but also avoids creating ghosting artifacts. While the barycenter
estimation would be enough to remove noise, increase dynamic
range and avoid ghosting effects, texture and details might be
over-smoothed. The use of PCA avoids such a detail smoothing
and improves the deghosting capabilities of the method.

D. Imaging Chain

The denoised and HDR image that results from the procedure
still has the structure of a 4-channel packed CFA. For that
reason, we must unpack it and interpolate the missing red,
green and blue values. We accomplish this by demosaicking the
image, for which we can use any standard method, such as [23,
Section II].

After demosaicking, the signal strengths of the three colours
can be somewhat unbalanced due to how the camera sensors read
different types of light. Therefore, to conform them to a more
realistic hue, a white balancing step is performed by multiplying
each channel by a different value—chosen depending on the
processed image. Moreover, to be able to visualize the image on
a standard display, we apply a linear transformation to turn the
camera RGB values into coordinates in the SRGB colour space.

Finally, we adjust the contrast and brightness of the HDR
image and compress its range so that it fits in 8 bits per channel.
We use the local tone mapping algorithm in [56]. Local tone
mapping algorithms have the disadvantage that they magnify
image noise considerably; this is not a problem for us, given
that our images have already had their noise removed.

E. Implementation Details

The same parameters have been used in all experiments. We
keep a fixed window size of r =7, and a parameter h = 60
(fixed for 12 b RAW images). The HDR weighting function is

wpr (1;(P)) = minwe (1; (P)) (14)
with C = {R, G1, G2, B} and
I¢(P) - O ?

where O the black offset value, V, denotes the saturation value
of the sensor and I§(P) is the central value of channel ¢ in
patch I;(P). The weights in (15) are obtained by modifying
the weights from Khan et al. [42]. The resulting images are
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processed with Matlab’s 1ocaltonemap function, which im-
plements the tone mapping algorithm in [56].

The value of the threshold is estimated as 6> = k&2, where 52
is the average variance of the noise in the selected set of patches.

This 5% depends on the ratio of exposure times {71, 72, ..., 7n }
as
_ 1 N Trer

The value of  has been empirically set to kK = 2.

IV. RESULTS AND DISCUSSION

We compare the proposed method with state of the art meth-
ods with RAW data. We have used images taken by ourselves
(Fig. 1), images provided by Aguerrebere et al. [2] (Fig. 2)
along with the implementation of their method! and images
provided by Karajuzovic-Hadziabdic et al. [40], [41] (Fig. 3).
All the examples are non static, the scenes vary due to camera
motion or changes in object position. The dataset provided by
Karajuzovic-Hadziabdic et al. also contains a static set corre-
sponding to each sequence, from which a ground truth HDR
image can be estimated. We use it to perform a quantitative
evaluation of the proposed method by comparing our method’s
obtained result with the ground truth image. Although the HDR
and denoising process is applied in the RAW data, in all cases
we display the processed images by applying the processing
pipeline described in subsection III-D.

To assess the quality of our method, we compare it with
state-of-the-art methods for HDR in both a qualitative and quan-
titative manner. We set it side by side with the classic methods
from Sen et al. [63] and Aguerrebere et al. [2], and the recent
deep learning methods DeepHDR [75], HDR-GAN [55] and
HDRRNN [60]. We use the implementations provided by the
authors themselves2, 3, 4,5, 6. All compared methods take into
account the dynamic nature of the sequences and claim to avoid
any ghost artifact creation.

A. Ablation Study

We study the effect each separate type of weight has on the
HDR process. In particular, we notice that the introduction of
patch similarity weights helps against the presence of ghosting
that usually appears when applying HDR algorithms on moving
images. This strong point arises from the fact that a weighting
based solely on pixel intensities can mistakenly merge patches
that have been aligned inaccurately. Those patches give up their
influence when attaching an extra weight that compares them
to the reference patch. First, we keep none of the coefficients
of the weighted PCA, so that the method only centers the patch
to the weighted barycenter. Fig. 4 illustrates the deghosting effect

![Online]. Available: https:/perso.telecom-paristech.fr/gousseau/hdr_denoi
sing/

2[Online]. Available: https://web.ece.ucsb.edu/~psen/hdrvideo

3[Online]. Available: https:/perso.telecom-paristech.fr/gousseau/hdr_denoi
sing/

4[Online]. Available: https://github.com/elliottwu/DeepHDR

5[Online]. Available: https://github.com/nonul16/HDR-GAN

%[Online]. Available: https://github.com/Susmit-A/HDRRNN
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Fig. 1.

Our images, acquired with a Canon 100D. The camera is slightly moving, which causes an approximate global image translation.

Fig. 2.

Images provided by Aguerrebere et al. [2] used in our experiments. For the images in the first row, there is a significant gap in time, causing people and

cars to change positions or even disappear from the scene. For the second row, motion is mostly caused by the change of camera position, and people moving on

the bridge.

Fig. 3.

of the similarity weights: the small dots that appear in Fig. 4(b)
on top of the wooden object disappear when we include them
(Fig. 4(c)). Finally, adding the weighted PCA instead of the plain
barycenter centering removes the ghosting on both the bird and
the leopard.

Fig. 5 illustrates the impact that the exposure time of the
reference image has on the solution. In the example in the
first row, changing the reference produces the same results.
In the second one, however, we can observe some pink spots
appearing around originally saturated areas when using the im-
age with the longest exposure time as reference. Non-saturated
areas are unnaffected. This phenomenon occurs because of an

Images provided by Karajuzovic-Hadziabdic et al. [40], [41] used in our experiments. Both the camera and the objects are moving in the scene.

incorrect exposure equalization in saturated areas, which im-
pedes an accurate alignment and matching of patches with
optical flow. Indeed, this is the main limitation of our algorithm
and the reason we choose as reference the image with the middle
exposure.

Next, we test the denoising capabilities of the weighted PCA.
Fig. 6 demonstrates how its use (Fig. 6(b)) adds considerable
detail to the resulting image compared to the plain weighted
average (Fig. 6(c)).

Finally, we compare the use of a different wypr weighting
function, specifically Granados et al. [28]. This HDR function,
which is optimal in the estimation of the true HDR value [3], does
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(a)

Fig.4. Ghosting effects are corrected with the introduction of similarity weights and the weighted PCA. (a) Tone mapped reference noisy image. (b) HDR without
similarity weights (only barycenter centering). (c) HDR with similarity weights (only barycenter centering). (d) Final result with similarity weights and weighted
PCA.

(a) Under-exposed frame as reference (b) Middle-exposed frame as reference (c) Over-exposed frame as reference

(d) Under-exposed frame as reference (e) Middle-exposed frame as reference (f) Over-exposed frame as reference

Fig. 5. HDR fusion varying the reference frame.

!

(a) Reference image (b) HDR only with barycenter centering (c) HDR with WPCA

Fig. 6. Use of the weighted principal components permits to increase detail and texture preservation.
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(a) Granados et al. [28] weight term (b) Our weight term

Fig.7. Comparison of the proposed scheme with different wypr terms. Using
the weight in Granados et al., the bright words on the black book and the dark
words on the bright one are blurred because it does not vanish near saturation
values. Therefore, a classical HDR function avoiding the use of values near
saturation has been preferred.

not vanish near the saturation value. As a consequence, details
on a black or white saturated background tend to be blurred.
This is noticeable in Fig. 7.

B. Visual Comparison With State-of-The-Art

The methods by Sen et al. [63], DeepHDR [75], HDR-
GAN [55] and HDRRNN [60] do not take into account noise
removal. For this reason, to compare them with the rest of
methods, we denoise each of the RAW images before applying
the corresponding HDR algorithm. In order to be fair, we use the
same denoising process we propose, but applied to each image
of the set independently and neglecting the wypr weight. Fig. 8
displays the result of applying all the methods to the original
RAW images without the previous denoising. It is clear that
only Aguerrebere et al. [2] and our method are able to remove
the noise. Fig. 9 displays the HDR result applied to the denoised
exposures (Aguerrebere et al. and ours are applied to the original
images). The same colour, texture and HDR effect is reproduced,
but noise is removed.

Since deep learning methods take full colour images as input
and in order to obtain comparable results, we apply the proposed
imaging chain to the RAW images except for the tone mapping
step. By keeping floating point values, we can feed directly
these images to the networks as radiance data without intro-
ducing any quantization effect. Finally, all images are displayed
after being applied the same tone mapping function (Matlab’s
localtonemap).

Due to hardware limitations, we could not feed the full res-
olution images into the deep learning architectures. We used
cropped regions of size 2560 x 2560, which are the ones
displayed in the following figures.

Fig. 9 compares the methods in a case with no strong satura-
tion in any of the exposures. HDRRNN reconstructs an image
with a different colour than the rest. Aguerrebere et al. has
several artifacts and excessive blurring on the pen. Unlike the
other methods, where denoising is performed with our proposed
strategy, Aguerrebere et al. apply their own noise removal tech-
nique based on NLMeans [11], whose averaging strategy is less
accurate than the principal component analysis. This difference
causes that blurring effect to reoccur in challenging images. All
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the other methods, including the proposed one, produce a good
looking result without artifacts.

Fig. 10 displays a more complex example where both camera
and object motion appear. Only Aguerrebere et al. and the
proposed method are able to correctly reconstruct the image
in the saturated parts, while other methods produce non good
looking results on those areas. However, Aguerrebere et al.
excessively blurs some details on the boat. All the methods are
able to deal with ghosting artifacts except HDRRNN.

Fig. 11 illustrates how DeepHDR and HDRRNN have trouble
with saturated areas: the first one produces a pattern on those
areas and the second one outputs a blueish colour. Aguerre-
bere et al. correctly recovers saturated areas but removes much
texture in the dark areas. Our method seems to give the best
overall quality noise removal and HDR reconstruction.

Finally, Fig. 12 shows how DeepHDR, HDR-GAN and HDR-
RNN have ghosting artifacts. The first row of Fig. 3 shows that
the big wooden object moves along the shelf in the different
images, occluding other objects in the scene. A close look on
the object shows that the three aforementioned methods produce
different artifacts: HDR-GAN generates a ghosting shadow on
the background, HDRRNN produces strange colours and Deep-
HDR generates a wrong texture in the wooden surface. The other
three methods produce a good looking result.

C. Numerical Comparison With State-of-The-Art

We perform the quantitative comparison by comparing the
results obtained with sequences provided by Karajuzovic-
Hadziabdic et al. [40], [41] with the corresponding ground truth.
We use the Peak Signal-to-Noise Ratio (PSNR), SSIM [73],
and Perceptual Index (PI) [10] measures. As in [17], [38], we
apply the following tonemap transformation to the images before
computing the PSNR and SSIM

_log(1 4 pS)
 log(1+p)

being © = 0.01, S the fused and denoised image after the
demosaicking and white balance, 7" the tone mapping in which
the measures are computed. The PI measure compares the final
tone mapped images in SRGB 8-bit format, so we compute it
after the full imaging chain.

Like it was done for the visual comparison, a preliminary
noise removal stage is applied image by image if the method
itself does not include it. The results of the different measure
are displayed in Tables I, II and IIT for PSNR, SSIM and PI,
respectively. The numerical results in PSNR and SSIM reaffirm
the conclusions drawn during the visual comparison: our method
produces on average the best results, with no ghosting artifacts
nor noise.

The PI measure attributes a superior performance to HDR-
RNN [60] despite some of its results not being visually pleasant.
In fact, the metric evaluates the final appearance of the image
based on traits such as sharpness and colour. The objective of Sen
et al., Aguerreberre et al., and our method is to fuse the images
in order to increase the dynamic range; the final degree of sharp-
ness and colour might be adjusted by the subsequent imaging

a7
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(a) HDR-GAN [55] (b) HDRRNN [60] (c) DeepHDR [75]

(d) Sen et al. [63] (e) Aguerrebere et al. [2] (f) Ours

Fig. 8. HDR results on an original image sequence. Only Aguerrebere et al. and ours are able to remove noise. For that reason, we denoise each frame before
applying the rest of HDR methods as displayed in Fig. 9.

-~

S

B
”/ 4

(a) HDR-GAN [55]

(b) HDRRNN [60]

——
(d) Sen et al. [63] (e) Aguerrebere et al. [2] (f) Ours

Fig. 9. HDR results on a denoised image sequence. Compare to Fig. 8.

TABLE 1
MEASURED PSNR ON THE SEQUENCES PROVIDED BY KARAJUZOVIC-HADZIABDIC ET AL. [40], [41], AS WELL AS THE MEAN VALUE OVER ALL THE DATA

HDR-GAN HDRRNN Deep HDR  Sen et al.  Aguerrebere et al. Ours

setupl complex 31.6416 21.4905 18.1983 44.2303 47.9788 48.1834
setupl occlusion 33.0574 23.1981 17.9995 48.9452 48.9463 49.6900
setup2 24.6789 17.3641 16.3514 43.6248 49.9234 50.3669
setup2 multiview 23.8690 14.8090 18.8549 38.7167 48.7816 49.3969
setup3 crop 1 29.7557 26.3483 20.2023 37.7122 43.0010 47.1868
setup3 crop 2 24.2645 21.4709 15.7963 31.0629 37.6382 48.4950
setup4 handheld 14.8426 10.2060 16.5914 39.3937 44.3254 44.1320
Mean 26.0157 19.2696 17.7134 40.5265 45.7992 48.2073

Methods HDR-GAN, HDRRNN, DeepHDR and Sen et al. are applied to the previously denoised raw sequences by a single image
version of the proposed denoising method. For each sequence, we mark in bold the method with a higher (better) value.
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(d) Sen et al. [63] (e) Aguerrebere et al. [2] (f) Ours

—

(b) HDRRNN [60]

Fig. 10. HDR results on a denoised image sequence provided by Aguerrebere et al. [2].
(c) DeepHDR [75]

= el o

(d) Sen et al. [63] (e) Aguerrebere et al. [2] (f) Ours

(a) HDR-GAN [55]

Fig. 11. HDR results on the denoised image sequence setup2 provided by Karajuzovic-Hadziabdic et al. [40], [41].

TABLE II
MEASURED SSIM [73] ON THE SEQUENCES PROVIDED BY KARAJUZOVIC-HADZIABDIC ET AL. [40], [41], AS WELL AS THE MEAN VALUE OVER ALL THE DATA

HDR-GAN  HDRRNN Deep HDR  Sen et al.  Aguerrebere et al. Ours

setupl complex 0.982157 0.908305 0.640575 0.999752 0.999894 0.999937
setupl occlusion 0.985632 0.936527 0.642013 0.999965 0.999917 0.999972
setup2 0.971500 0.881667 0.656106 0.999903 0.999911 0.999935
setup2 multiview 0.968366 0.722157 0.654697 0.999868 0.999811 0.999974
setup3 crop 1 0.963307 0.909900 0.615736 0.996364 0.997052 0.998036
setup3 crop 2 0.966712 0.916591 0.661117 0.995009 0.997364 0.999723
setup4 handheld 0.636871 0.395103 0.595764 0.998475 0.999565 0.999596
Mean 0.924935 0.810036 0.638001 0.998477 0.999073 0.999596

Methods HDR-GAN, HDRRNN, DeepHDR and Sen et al. are applied to the previously denoised raw sequences by a single image
version of the proposed denoising method. For each sequence, we mark in bold the method with a higher (better) value.
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(a) HDR-GAN [55]

(b) HDRRNN [60]

(c) DeepHDR [75]

(d) Sen et al. [63]

Fig. 12.

(e) Aguerrebere et al. [2]

(f) Ours

HDR results on the denoised image sequence setupl occlusion provided by Karajuzovic-Hadziabdic et al. [40], [41].

TABLE III
PERCEPTUAL INDEX (PI) [10] MEASURED ON ALL SEQUENCES USED IN THE EXPERIMENTATION AS WELL AS THE MEAN VALUE OVER ALL THE EXAMPLES

Sequence HDR-GAN HDRRNN Deep HDR  Senetal. Aguerrebere et al.  Ours  Ours sharpened
example 1 2.89 2.64 2.86 2.88 3.08 284 2.99
example 2 3.61 2.99 2.92 2.87 350 361 3.12
pen crop 1 8.00 7.40 7.14 7.84 872  6.58 6.57
pen crop 2 7.08 6.53 6.24 6.84 755 644 6.42
setupl complex 5.71 5.12 4.94 5.74 576  5.67 5.23
setupl occlusion 5.16 5.18 4.54 5.15 521  5.06 4.61
setup2 5.31 4.53 4.96 5.25 523 515 4.71
setup2 multiview 6.14 4.47 5.58 6.02 587 590 5.36
setup3 crop 1 733 6.93 6.46 6.12 8.07  6.56 5.25
setup3 crop 2 7.81 6.69 6.05 7.60 7.79  7.74 7.21
setup4 handheld 5.67 3.57 5.37 5.83 586  5.88 5.36
Mean 5.88 5.10 5.19 5.65 6.06 5.8 517

Methods HDR-GAN, HDRRNN, DeepHDR and Sen et al. are applied to the previously denoised raw sequences by a single image version of the
proposed denoising method. For each sequence, we mark in bold the two methods with lowest (better) value.

pipeline. In order to illustrate this fact, we have included an extra
column where we compute the PI of a slightly sharpened version
of our result (see Fig. 13 to compare the original and sharpened
result). This slight post-processing considerably improves the PI
value, obtaining a comparable score to the best learning-based
method. This suggests that the Pl measure is possibly not the best
measure to evaluate the capability of an HDR fusion method.

D. Comparison With HDR+

We have tested our method with the HDR+ burst photography
dataset [31]. This dataset contains different noisy bursts of dark
scenes acquired with the same exposure. Indeed, the use of a
burst permits to reduce noise in dark noisy regions and thus
safely apply of a subsequent strong enhancement in these regions

(a) Without enhancement (b) With enhancement

Fig. 13. Comparison between the result of our method and after applying a
light sharpening. The one on the right has a lower (better) PI value.
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(a) Noisy reference

Fig. 14.

TABLE IV
COMPUTATION TIME BY EACH METHOD FOR THE DENOISING AND HDR OF
CROPS OF SIZE 2560 x 2560 OF THE SEQUENCES PROVIDED BY
KARAJUZOVIC-HADZIABDIC ET AL. [40], [41]

Denoise HDR Total

HDR-GAN 225,15s 87s 312,158
Deep HDR 225,155 38,33s  263,48s
HDRRNN 225,155 193,5s  418,65s
Sen et al. 225,15s  128,83s  353,98s
Aguerrebere et al. 56,96s 56,96s
Ours 241,16s 241,16s

without enhancing the noise. However, it does not permit to
increase the dynamic range. That is, very dark parts will appear
quantized after an extreme tonemapping even if the noise was
reduced and saturated areas in the very bright regions will remain
saturated.

We compare our method with the free implementation of
HDR+ given by Monod et al. [54]. Results are shown in Fig. 14.
The full burst of 9 images is used as input for both methods. We
have kept the same values for all the parameters in our method
despite the different nature of the fused data. We observe a
similar detail preservation by both methods, while our algorithm
is able to remove much more noise.

E. Computation Time Comparison

Table IV compares the average execution time of the differ-
ent methods for crops of size 2560 x 2560 of the sequences
provided by Karajuzovic-Hadziabdic [40], [41]. The measured
time includes the whole process, from reading input images to
writing the final tonemapped image.

For the methods which do not take into account noise removal,
we had to previously denoise each exposure with a single image
version of our algorithm. We indicate separately the time of
denoising and fusion for these methods. All the methods were
run on CPU.

(b) HDR+ [31]

(c) Ours

HDR results on a sequence of the HDR+ burst photography dataset [31].

The method by Aguerrebere et al. is the fastest one followed
by ours. This is due to the alignment step of our method, which
takes an important part of the computation time for images of
this size.

V. CONCLUSION

In this paper, we have proposed a patch-based method for the
joint denoising and fusion of sequences of RAW images captured
with different exposure times. We have used a spatio-temporal
criterion to select similar patches along the sequence, over which
a weighted PCA-based filtering. The proposed method is able to
denoise and fuse the multi-exposed images efficiently in a single
step, without the need of recovering each denoised image in
the multi-exposure set. Furthermore, the adaptive PCA filtering
is able to deal with ghosting artifacts that usually appear due
to motion in the scene, which is a common problem in multi-
exposed video sequences.

Using both a visual assessment and a numerical evaluation
of the results over different datasets, we have shown that the
proposed method obtains state-of-the-art fusion results with real
RAW data. The method recovers details correctly without over-
smoothing or blurring the image, and is capable of preserving
the naturalness of the scenes both in saturated and very dark
areas.

The current method would benefit from advances in the align-
ment of dark and noisy images, as well as in the alignment of
images of different exposures. The literature in these areas is
very scarce and it is in our future work plan.

Another line of research which could lead to progress in
this area is the joint application of HDR fusion, denoising,
demosaicking and tonemapping of image sequences. The final
quality of the processed image has been shown to depend greatly
on these stages of the imaging pipeline.

Lastly, we plan to extend the current approach to multi-
exposed video sequences, where it might not be possible to take
a reference image that is relatively well exposed, leading to an
increase of problems in saturated or under-exposed areas.
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