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Differentiable Uncalibrated Imaging
Sidharth Gupta , Konik Kothari, Valentin Debarnot , and Ivan Dokmanić

Abstract—We propose a differentiable imaging framework to
address uncertainty in measurement coordinates such as sensor
locations and projection angles. We formulate the problem as
measurement interpolation at unknown nodes supervised through
the forward operator. To solve it we apply implicit neural networks,
also known as neural fields, which are naturally differentiable with
respect to the input coordinates. We also develop differentiable
spline interpolators which perform as well as neural networks,
require less time to optimize and have well-understood properties.
Differentiability is key as it allows us to jointly fit a measurement
representation, optimize over the uncertain measurement coordi-
nates, and perform image reconstruction which in turn ensures con-
sistent calibration. We apply our approach to 2D and 3D computed
tomography, and show that it produces improved reconstructions
compared to baselines that do not account for the lack of calibra-
tion. The flexibility of the proposed framework makes it easy to
extend to almost arbitrary imaging problems.

Index Terms—Differentiable imaging, differentiable splines,
implicit neural representations, operator uncertainty, uncalibrated
imaging.

I. INTRODUCTION

IN COMPUTATIONAL imaging, a physical process,A, such
as 2D computed tomography (CT) relates the object we want

to image, x, to an observable field, y. Both x and y are naturally
functions of continuous coordinates: x could be a density over
2D spatial coordinates (e.g., [0, 1]2), and y a sinogram over
angles and 1D projection coordinates (e.g., [0, π)× [−1, 1]).

In practice, however, we have finite sensors. Denoting the
space of continuous measurement coordinates by Ω, the sensors
sample the field y at μ̃ = (μ̃1, . . . , μ̃M ) ∈ ΩM , such that the
observed measurements y ∈ R

M follow

y = Aμ̃(x) + η, (1)

where

y
def
= y(μ̃)

def
= [y (μ̃1) , . . . , y (μ̃M )]� , (2)
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and η ∈ R
M is the measurement noise. The discrete forward

operator Aμ̃ parameterized by μ̃ samples the output of A. In
computational imaging we work with a discretization or some
other finite-dimensional approximation of x denoted by x ∈
R

N . Hereafter we let Aμ̃ act on x rather than on x.
In this paper we address the scenario where the true measure-

ment coordinates μ̃ are only approximately known: the imaging
system is out of calibration. Consequently, the true operator Aμ̃

is unknown, and we work with an operator Aμ for measurement
coordinates μ = (μ1, . . . , μM ), which would be correct if the
system was calibrated. The assumed measurement coordinates
μ are related to the unknown true measurement coordinates μ̃
by small perturbations.

Not accounting for the mismatch between μ̃ and μ can lead
to a poor reconstruction. The gist of our method is to learn a
representation of the measurement space that can be evaluated
and differentiated at arbitrary measurement coordinates μ. This
gives us measurements y(μ) that are then well-suited for a
reconstruction method that uses μ. Our proposed framework
enables us to

1) Jointly reconstruct the imagex and learn the true unknown
measurement coordinates μ̃ by using gradient-based op-
timization.

2) Learn continuous measurement representations that take
measurement coordinates as input. These representations
can be evaluated at μ and are in essence interpolations
of the discrete measurements with unknown interpolation
knots.

3) Leverage standard differentiable image reconstruction
methods that exist for the assumed μ even though the
observations correspond to unknown μ̃. This helps learn
consistent measurement representations.

A strength of our approach is that we can use any continu-
ous interpolation method that admits backpropagation to input
coordinates. To showcase this, we use implicit neural networks
(neural fields) but also develop fully-differentiable variable-knot
splines which allow us to optimize spline control points and
control point weights. We show that splines perform as well as
implicit neural networks while being faster to fit and simpler to
interpret. A key property of both these representation types is that
we can perform automatic differentiation with respect to their
input coordinates and recover μ̃ by gradient-based optimization.

A. Example: Computed Tomography

We illustrate our framework with 2D CT, where we measure
parallel beam projections of an image at different view angles in
a detector plane. LetΩ = [0, π)× R, x ∈ L2([−1, 1]2), and y ∈
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Fig. 1. Visualization of the parameter mismatch between µ̃ and µ in 2D CT imaging that is described in Section I-A. A mismatch in the view angles between µ
and µ̃ can produce a significant drop in reconstruction quality.

L2(Ω).1 The measured projections y are obtained from a finite
set of discrete view angles Θ̃ = (θ̃1, . . . , θ̃J ), and are sampled
at a finite set of discrete detector locations T̃ = (t̃1, . . . , t̃K).
The true set of unknown measurement coordinates are then
(μ̃m)Mm=1 = Θ̃× T̃ withM = J ·K. Furthermore,Aμ̃ is given
by the discrete Radon transform for view angles Θ̃ and detector
locations T̃ . Many other computational imaging applications
such as electron cryotomography (CryoET), magnetic resonance
imaging and optical microscopy can be parameterized similarly.

The parameter mismatch between μ̃ and μ and its severe
impact is illustrated in Fig. 1. We use a state-of-the-art re-
construction method that computes a filtered backprojection
estimate with μ and feeds it into a UNet deep neural network
to obtain a reconstruction of x [1], [2]. The neural network is
trained in a supervised manner using training data that is also
generated using μ. When there is parameter mismatch, the true
view angles differ from the assumed view angles and therefore
μ̃ �= μ. Fig. 1 shows that in this case, the reconstruction method
produces a degraded reconstruction from both a visual and SNR
evaluation. Fig. 2 shows this for another ground truth image and
number of view angles. The last column of Fig. 2 also shows
that when there is no parameter mismatch (μ̃ = μ), the same
reconstruction method performs strongly.

B. Related Work

Many of the state-of-the-art methods for solving imaging
inverse problems are based on deep learning [3], [4]. Popular
supervised approaches use the forward operator to obtain an
initial estimate which is then enhanced by a neural network
(reconstruction method in Fig. 2 for example) [2], [5], [6], [7].
Unrolling iterative methods or replacing optimization compo-
nents with deep networks is another established approach [8],
[9], [10], [11], [12], [13]. A different direction involves requiring
the inverse problem solution to lie in the range of a generative
neural network [14], [15], [16]. In general all these methods
utilize a forward operator in some way but do not account for

1We denote by L2(M) the space of square integrable functions on M.

Fig. 2. 2D CT reconstructions with 90 and 120 view angle. The SNRs (in
dB) are written in the bottom-left corners. When there is parameter mismatch
because the true and assumed view angles differ, the reconstruction method
performs poorly and there is a clear degradation.

measurement coordinate uncertainty. This can severely impact
the reconstruction as shown in Fig. 2. In this paper we propose
to address this problem by reevaluating the measurements at the
measurement coordinates that deep neural network reconstruc-
tion methods are designed for.

While much less common, there are some recent deep learning
approaches which address measurement coordinate uncertainty.
Gilton et al. explored fine-tuning a neural network that was
trained with measurements sampled at μ to work well with
test measurements sampled at unknown μ̃ [17]. Our method
is different: we reevaluate the measurements via a measure-
ment representation for a single example so we do not need
to fine-tune. Another appealing approach is to train a neural
network on a family of operators with different parameteriza-
tions [18]. These methods always induce a tradeoff between
the reconstruction quality and the variety of forward maps they
are trained on, and they only work well for the distribution of
perturbations seen at training time. There is also the challenge
of dataset generation, especially in compute-intensive problems.
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We mitigate this tradeoff by using consistency to identify the true
measurement coordinates.

Continuous representations have been used to solve a variety
of science and engineering problems. To the best of our knowl-
edge no prior work has used them for imaging with measurement
coordinate uncertainty. Splines have long been used to model
surfaces and curves in geometry [19], [20], [21], [22]. More-
over, differentiable splines with parameters that can be fitted
using automatic differentiation have also been developed [23].
Recently deep learning methods called neural fields or implicit
neural networks have proven to be extremely good and efficient
continuous representations [24]. They have been employed in
a broad spectrum of applications ranging from representing ge-
ometry via signed distance functions [25], [26] to solving partial
differential equations [27]. Implicit neural networks have also
been used to solve tomographic imaging inverse problems [28],
[29]. In particular, Sun et al. also used them to represent 2D CT
measurements [30]. Rather than for calibration, they use implicit
networks to upsample measurements for downstream recon-
struction by a deep neural network. While upsampling may also
be performed by traditional tools such as splines, our framework
relies on the differentiability of the used representations—both
neural and spline-based—with respect to the input coordinates.

In this paper, we learn forward model parameters and con-
tinuous measurement representations through a differentiable
imaging framework [31]. We use automatic differentiation to
optimize the parameters and inputs of implicit neural network
and differentiable spline representations. Prior differentiable
imaging works for microscopy [32], holography, ptychography
and ptychographic tomography [33] also learn forward model
parameters via automatic differentiation. However, these works
do not learn a continuous measurement representation, and so
do not reevaluate measurements for use with state-of-the-art
reconstruction methods that assume different parameters.

There are alternative approaches for handling uncertainty in
measurement coordinates. Bundle adjustment is an example
from computer vision where scene coordinates, camera co-
ordinates and system coordinates are jointly optimized [34].
Similar to our framework, bundle adjustment uses a good starting
estimate to optimize the coordinates. However, a key difference
is that we obtain a final solution by reevaluating measurements at
the assumed measurement coordinates, and use a reconstruction
method designed for the assumed measurement coordinates.
Imaging approaches based on alternating minimization opti-
mization [35], and designing handcrafted regularizers to manage
ill-posedness [36], [37] have also been employed when there is
miscalibration. In this work we jointly minimize our objective
function. Furthermore, we use a consistency loss which can
be interpreted as a regularizer when learning the measurement
representation.

Our work is related to the broader theme of inverse problems
with “noisy” forward operators. On one end of the spectrum there
are inverse problems where the operator (and μ̃) is perfectly
known, and at the other extreme there are blind inverse problems
where the operator and μ̃ are completely unknown. Related
blind imaging problems are tomography with unknown view
angles [38], [39] and cryo-electron microscopy with unknown

projection angles [40]. In between the extremes, there are semi-
blind inverse problems where the operator and μ̃ are approx-
imately known. Total least squares approaches that perturb an
assumed operator [41], [42], [43] and our proposed measurement
coordinate-based framework fall under this category.

C. Paper Organization

In Section II we present the optimization problem which mod-
els joint calibration and image reconstruction. We first model
measurements as continuous functions and then show how to
learn these measurement representations. We show how implicit
neural networks and splines can both be used as representations.
Section III numerically verifies that when there is measurement
coordinate uncertainty, our proposed method yields significantly
improved reconstructions. The simulated experiments are per-
formed on 2D CT in the main paper and 3D CT in Appendix B.
We conclude the paper and motivate future work directions in
Section IV.

II. DIFFERENTIABLE FRAMEWORK

We wish to learn a continuous representation of the measure-
ment space so that we can sample it at specific measurement
coordinates and obtain the corresponding measurements. We
model the measurement representations as continuous functions
rϕ(·) that take measurement coordinates as input and map them
to the corresponding sampled measurements. The learnable
parameters, ϕ ∈ Φ where Φ is the space of feasible parameters,
are optimized so that

rϕ(ω) ≈ y(ω) (3)

where ω ∈ Ω is a measurement coordinate and y(ω) ∈ R is the
sample from the measurement space at measurement coordi-
nate ω. For convenience we also denote a batch evaluation of
rϕ(·) as

Rϕ(ω)
def
= [rϕ (ω1) , . . . , rϕ (ωQ)]

�

≈ [y (ω1) , . . . ,y (ωQ)]
� (4)

where ω = (ω1, . . . , ωQ) ∈ ΩQ and Rϕ(ω) ∈ R
Q. We also re-

quire rϕ(·) to be differentiable with respect to ϕ and its input so
that we can use gradient-based optimization to estimate ϕ and
the unknown measurement coordinates.

A. Joint Optimization Objective

We want rϕ(·) to accurately produce samples from the space
of measurements. Since we only observe measurements y at
measurement coordinates μ̃ in (1), we require

Rϕ (μ̃) ≈ y (5)

However, since μ̃ is unknown we cannot use it to verify the accu-
racy of rϕ(·). This motivates us to jointly learn the representation
parameters ϕ and the unknown measurement coordinates μ̃ by
minimizing a measurement fitting loss,

Lfitting (ν,ϕ)
def
= ‖y −Rϕ (ν)‖22 , (6)
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with respect to the input ν ∈ ΩM and ϕ. Recall y ∈ R
M is

defined by (1).
Learning rϕ(·) by minimizing only Lfitting(ν,ϕ) with respect

to both the representation’s parameters and input would not
in general result in an accurate measurement representation
because there are too many degrees of freedom. Therefore we
regularize and controlϕ by enforcing rϕ(·) to be consistent with
reconstructions that could be obtained by using its output. This
is done by minimizing a consistency loss with respect to ϕ,

Lconsistency (ϕ)
def
= ‖Rϕ (μ)−AμGμ (Rϕ (μ))‖22 , (7)

where Gμ : RM → R
N is a differentiable reconstruction

method that was designed using measurement coordinates μ.
Putting everything together, our complete joint optimization
objective is

μ̂, ϕ̂ = arg min
ν∈ΩM ,ϕ∈Φ

Lfitting (ν,ϕ) + λLconsistency (ϕ) (8)

where λ ∈ R≥0 is a tunable weight that controls the relative
importance of the consistency and fitting losses. As the assumed
coordinates μ are close to the true unknown coordinates μ̃, we
initialize ν to μ. After completing the optimization (8), the
learned coordinates μ̂ are close to μ̃ (verified in Section III),
and the final reconstruction and estimate of x ∈ R

N is given by

x̂ = Gμ(Rϕ(μ)). (9)

One of the advantages of the objective (8) is that the same
operator, Aμ in (7), is used in each optimization iteration. A
formulation that uses the continually updating learned measure-
ment coordinates ν in (7), would require the operator to be
rebuilt after each optimization iteration. If there is no efficient
implementation to change the measurement coordinates due
to the complexity of the forward process, and if the operator
is large, this can be severely time consuming and resource
intensive.

B. Leveraging Reconstruction Methods

A key aspect of our framework is that consistency and the
final reconstruction are obtained by using reconstruction method
Gμ(·) that was designed using measurement coordinates μ even
though the observations in (1) are sampled at measurement
coordinates μ̃. This provides significant flexibility and allows
us to incorporate a variety of reconstruction methods. For ex-
ample, the reconstruction method may be a relatively straight-
forward adjoint or pseudoinverse operation. Alternatively, it can
be a more complex neural network that provides state-of-the-
art reconstructions with measurements from μ (reconstruction
method in Fig. 2 is one example). Our framework is particularly
advantageous in this case because it may be cumbersome to
retrain a neural network for different measurement coordinates.

C. Measurement Representations

In order to better understand how to use the framework to solve
real imaging problems, we now pick implicit neural networks
and splines and explain how they are suitable measurement
representations. While we consider these, we emphasize that our

framework is general and is not restricted to these representation
types.

1) Implicit Neural Representations: Implicit neural repre-
sentations are deep feedforward neural networks that represent
discrete signals as continuous functions. When used as the
measurement representation rϕ(·) in (3), ϕ are the trainable
network parameters. The input to the network are measurement
coordinates and the output are the corresponding measurements.
Implicit neural networks have previously been used to represent
measurements when there is no measurement uncertainty [30].
In this case the network input was not optimized and consistency
(7) was not enforced.

As implicit neural representations are neural networks, we
can use automatic differentiation to calculate their gradients with
respect toϕ and their input coordinates to solve (8). In this paper
we use an architecture comprising a Fourier feature mapping
layer followed by standard fully-connected layers [26], [30].

2) Differentiable Splines: Splines use locally supported basis
functions to represent signals as a continuous surface. In this pa-
per we focus on Non-uniform Rational Basis Splines (NURBS)
because of their ability to model complex surfaces [21], [44],
[45]. To aid understanding, we explain NURBS using the 2D CT
imaging example that was introduced in Section I-A. The mea-
surement coordinates μ are the Cartesian product of assumed
view angles and assumed detector locations, Θ× T where
Θ = (θ1, . . . , θJ ) and T = (t1, . . . , tK). The NURBS surface
sϕ(·) with parameters ϕ evaluated at measurement coordinate
μ′ = [θ′, t′]� ∈ [0, π]× R is then

sϕ(μ
′) =

J−1∑
j=0

K−1∑
k=0

bj,k(μ
′)pj,k (10)

where bj,k(·) ∈ R are scalar-valued rational basis functions
with local support and pj,k ∈ R

3 are control point vectors.
The NURBS are parameterized by weight parameters wj,k ∈ R

of the rational basis functions, and the control point vectors.
This givesϕ = {wj,k}J−1,K−1

j=0, k=0 ∪ {pj,k}J−1,K−1
j=0, k=0 . Note that the

control point vectors are three-dimensional because for each
two-dimensional measurement coordinate μ′, there is a corre-
sponding scalar measurement. Consequently, according to (10),
sϕ(μ

′) is also three-dimensional. We then establish the follow-
ing relationship between NURBS surfaces and our measurement
representations (3) to get a spline measurement representation,

rϕ(ω) = s�ϕ(ω), (11)

where s�ϕ(·) denotes the value of the measurement dimension of
sϕ(·).

It has recently been shown that automatic differentiation can
be used to learn spline parameters [23]. Hence, we develop
differentiable spline representations and use gradient-based op-
timization to learn the NURBS parameters ϕ and their input
measurement coordinates. These differentiable splines fit into
our framework straightforwardly as measurement representa-
tions (11), and we can use them to solve (8).

In our numerical experiments, we carefully initialize the
spline parameters ϕ and then learn them: wj,k is initialized
to one and control point vectors pj,k are initialized using the
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assumed measurement coordinates and their corresponding ob-
served measurements, pj,k = [θj , tk,y([θ̃j , t̃k]

�)]� ∈ R
3. Ad-

ditionally, in our simulated experiments we also extend (10) to
higher dimensional measurement coordinates (see Appendix B).
Further details on NURBS and their implementation are pro-
vided in Appendices C and D.

III. NUMERICAL VERIFICATION WITH 2D CT IMAGING

We experimentally verify our framework by solving 2D CT
imaging problems in the main paper. Further simulation results
for 3D CT imaging are provided in Appendix B. The imaging
forward operators are implemented using the Operator Dis-
cretization Library (ODL) [46]. These simulated experiments
demonstrate that our framework can be used to solve imaging
problems with different measurement coordinate dimensions.
Furthermore, we exhibit the flexibility of our method by using
implicit neural networks and splines as measurement represen-
tations.2

We use SNR (in dB) to quantify the measurement noise and
measurement coordinate uncertainty. SNR is calculated by

SNR(c, d) = −20 log10

(
‖c− d‖2
‖d‖2

)
. (12)

If we let y ∈ R
M denote the observed measurements as in (1)

and let ỹ denote the unobserved noiseless measurements, the
measurement noise level is SNR(y, ỹ). The measurement noise
is simulated with zero-mean iid Gaussian noise with variance
adjusted to achieve a target SNR level.

Due to their state-of-the art performance when there is no
measurement coordinate uncertainty, we use deep neural net-
works for the reconstruction method, Gμ(·), in (8). For 2D CT
we use a 2D Unet [2], and for 3D CT in Appendix B, we use
a 3D Unet [47]. Following standard practice, a preprocessing
step applies the pseudoinverse of the imaging operator to the
measurements to produce an initial image estimate [2]. These
networks are then trained in a supervised manner to map the
initial estimates to ground truth images. The training data gen-
eration and preprocessing step are done with the assumed mea-
surement coordinates μ. The measurements in the training data
are noisy and in each experiment we use a Unet whose training
measurement noise level matches the measurement noise level
of the obtained measurements.

As mentioned in Section II, the solution, x̂, is given by (9).
We use SNR to evaluate the solution quality, SNR(x̂, x). We
compare x̂ against baseline reconstructions that are obtained by
directly using the obtained measurements with the reconstruc-
tion Unets,

xbaseline = Gμ(y). (13)

Recall, the obtained measurements correspond to measurement
coordinates μ̃. Appendix D contains further hyperparameter and
implementation details.

In 2D CT imaging, one-dimensional projections of a two-
dimensional object at different view angles are collected by an

2Code available at https://github.com/swing-research/differentiable_
uncalibrated_imaging.

Fig. 3. SNR improvement (dB) when solving (8) for 2D CT imaging. There are
different combinations of measurement noise SNR and view angle uncertainty
SNR. We consider 90 and 120 view angles.

array of detectors. Our goal is to reconstruct an image of the
object from these projections when there is uncertainty in only
the view angles, only the detector locations, or in both the view
angles and the detector locations at the same time.

For these simulated experiments, the assumed view angles
are uniformly spaced on the interval [0, π], and the true view
angles can have an unknown perturbation from these assumed
view angles to simulate experimental incertitude. We keep the
view angle measurement coordinate uncertainty level the same
for each view angle—each true view angle is independently
perturbed from the assumed view angle by zero-mean Gaussian
noise with variance adjusted to obtain a target SNR level. If we
let μ̃m ∈ R and μm ∈ R denote the mth true and assumed view
angles, the view angle measurement coordinate uncertainty level
is SNR(μ̃m, μm).

Similarly, the assumed detector locations are uniformly
spaced on the normalized interval [0, 1] and the true detector
locations can have an unknown perturbation from the assumed
detector locations. To simulate detector uncertainty, we first
independently perturb the first and last detectors from their
assumed locations with a uniform perturbation scaled so that
their location uncertainty meets a target SNR. The remaining de-
tectors are then perturbed so that that the final true unknown de-
tector array is uniformly spaced between the perturbed first and
last detectors. Unlike the view angle measurement coordinate
uncertainty model, this detector location coordinate uncertainty
model is not iid. This enables us to evaluate the performance of
our framework when there are non-iid measurement coordinate
uncertainties.

https://github.com/swing-research/differentiable_uncalibrated_imaging
https://github.com/swing-research/differentiable_uncalibrated_imaging


6 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024

Fig. 4. Example reconstructions for different measurement noise SNR and view angle uncertainty SNR combinations for 2D CT imaging. There are 90 view
angles. The reconstruction SNRs are shown for each reconstruction.

Combining these spaces gives the measurement coordinates
space as Ω = [0, π]× [0, 1]. We explore the performance of our
method compared to the baseline which does not account for
measurement coordinate uncertainty. We use images from the
the LoDoPaB-CT tomography dataset resized to 128× 128 [48].
From this dataset, 35,000 samples were used to train the image
reconstruction 2D Unet Gμ(·). Test images from this dataset are
used in this section to verify our framework.

A. View Angle Uncertainty

In the first group of experiments we consider the case where
there is only view angle uncertainty and no uncertainty in the
detector locations. As there is only uncertainty in the view
angle dimension and not in the detector location dimension, we
only optimize the view angle dimension of the measurement
coordinates in (8).

1) Combinations of Measurement Noise and View Angle Er-
ror: To determine how our framework performs under different
settings, we consider different combinations of measurement
noise and view angle measurement coordinate uncertainty. We
do trials over 25 different test images, and in each trial, different
measurement noise and view angle perturbations are used.

We evaluate the performance of our framework relative to
the baseline by calculating the average reconstruction SNR
improvement over the baseline. Fig. 3(a) shows the performance
for 90 view angles. The performance trends are similar for
both implicit neural and spline measurement representations.
For a given measurement noise SNR, our method shows in-
creasing improvements as the view angle SNR decreases (mea-
surement coordinate uncertainty increases). This shows that
our method handles measurement coordinate uncertainty well,
especially when the uncertainties begin to dominate over mea-
surement noise. We can also see that for a fixed angle SNR, the
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performance gains decrease as measurement SNR decreases and
measurement errors becomes more dominant. Fig. 3(b) shows
that the same trends hold when there are 120 view angles.
The slight SNR drops seen with splines in Fig. 3(a), when the
measurement SNR is 30 dB and 35 dB, do not appear in Fig. 3(b).
This is because there are more view angles which makes the
imaging problem less ill-posed.

In Fig. 4, we show some randomly chosen example ground
truth, pseudoinverse filtered backprojection (FBP) and baseline
reconstructions with their SNRs when there are 90 view angles.
The reconstructions using our framework with implicit neural
and spline measurement representations are also shown. Com-
pared to the baseline, solutions obtained using our framework
have fewer artifacts. Note that Fig. 4 shows specific examples,
and that the average performance for different combinations
of measurement noise and view angle uncertainty is shown in
Fig. 3(a). Fig. 11 in the Appendix shows these same reconstruc-
tions when there are 120 view angles instead.

2) Learned View Angles Accuracy: In the next numerical
experiment we verify that the learned measurement coordinates,
μ̂ in (8), are close to the true unknown measurement coordinates
μ̃. As the detector locations have no error, we verify the learned
view angles only. We denote the set of true unknown view angles
and learned view angles as Θ̃ and Θ̂. We quantitatively measure
the average angle error in degrees as

Average angle error =
1

J
‖Θ̃− Θ̂‖1, (14)

where J is the number of view angles.
Fig. 5 shows how the average angle error changes as the

optimization iterations of (8) progress. This is shown for one
of the test images with different combinations of measurement
noise and view angle uncertainty when there are 90 view angles.
The solid lines are for implicit neural representations and the
dashed lines are for spline representations. For both representa-
tion types, the angle error reduces as (8) is solved which confirms
that our framework learns measurement coordinates that are
more accurate than the assumed measurement coordinates which
they were initialized with. The average angle error when using
the assumed measurement coordinates for reconstruction, as is
done in the baseline, is the initial point on the plots. In some
instances, the average angle error may increase slightly as the
optimization of (8) progresses. This behavior can be explained
as overfitting of the measurement representations. Fig. 12 in the
Appendix shows that the same trends hold when when there are
120 view angles.

3) Reconstruction With More Measurements: Next we inves-
tigate a variant of the main problem considered in this paper: in
addition to theM true measurement coordinates being unknown,
the reconstruction method Gμ(·) is now designed for M ′ mea-
surements where M ′ ≥ M . In this case μ̃ = (μ̃1, . . . , μ̃M ) as
before and now μ = (μ1, . . . , μM ′). As the measurement repre-
sentation rϕ(·) can be evaluated at any measurement coordinate,
we can evaluate (7) at M ′ measurement coordinates.

In this simulated experiment we obtain measurements from
90 view angles. As in the previous experiments, the true view
angles are unknown and we initialize the angles of measurements

Fig. 5. Average angle error for one test image with different combinations of
measurement noise and view angle uncertainty when there are 90 2D CT view
angles. The solid lines are for implicit neural representations and the dashed
lines are for spline representations.

coordinates ν in (6) to be 90 uniformly spaced view angles in
the interval [0, π]. The detector locations have no uncertainty.
We consider different values of M ′ by varying the number of
view angles J ′. The number of detectors K are not varied which
gives M ′ = J ′ ·K. Again, to obtain the strongest performance,
we use state-of-the-art reconstruction Unets. We try two different
reconstruction Unets: 1) GJ ′

μ (·) which was trained with training
data having J ′ view angles uniformly spaced on [0, π] and,
2) G90

μ (·) which was trained with training data having 90 view
angles uniformly spaced on [0, π].3

Table I shows the average reconstruction SNR over 25 test
images. There is 35 dB measurement noise and the unknown
true view angles are perturbed by 35 dB from 90 uniformly
spaced view angles. With Unet GJ ′

μ (·), the performance fluctu-
ates. The performance is stable with Unet G90

μ (·). With both
reconstruction methods, the best performance is seen when
J ′ = 90 (M ′ = M ) and evaluating more measurements does
not help. This is because the fitting loss (6) ensures that rϕ(·)
accurately represents theM obtained measurements which were

3The number of Unet training view angles and evaluated view anglesJ ′ can be
different. This is because the Unet input is computed by a filtered backprojection
for J ′ view angles which always results in an Unet input with the dimensions
of the image being reconstructed.
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TABLE I
AVERAGE 2D CT RECONSTRUCTION SNR WHEN RECONSTRUCTING WITH

MORE MEASUREMENTS

sampled from the measurement space at coordinates μ̃. Then
when M ′ = M , because the measurement coordinates used
for reconstruction, μ, are a small perturbation away from μ̃,
they are also represented accurately which results in good re-
constructions. Furthermore, when M ′ = M , there are enough
measurement coordinates that densely cover the measurement
space. The accuracy of the measurement coordinates for the
extra measurements whenM ′ > M is not enforced by the fitting
loss (6).

It has been shown that reconstruction with more measure-
ments can help when there is no measurement coordinate uncer-
tainty, and when the input to the reconstruction neural network
combines the observed measurements with the measurement
representation output [30]. When there is measurement coordi-
nate uncertainty, using the observed measurements in the input
to the reconstruction neural network can reduce performance as
shown by Fig. 2 and the baseline reconstructions in Fig. 4.

B. Detector Location Uncertainty

The previous experiments demonstrate that our framework
improves over the baseline when there is uncertainty in the
view angles. Next we consider the case where there is only
uncertainty in the detector location and no uncertainty in the
view angles. In this set of experiments there are always 90
uniformly spaced view angles. As there is only uncertainty
in detector locations, we only optimize the detector location
dimension of the measurement coordinates in (8).

1) Combinations of Measurement Noise and Detector Lo-
cation Error: Similar to Section III-A1, we consider different
combinations of measurement noise and detector location uncer-
tainty. We do trials over the same 25 test images. In each trial,
different measurement noise and detector location perturbations
are used.

The average reconstruction SNR improvement over the base-
line is shown in Fig. 6. For a given measurement noise SNR,
our method shows increasing improvements as the detector
location SNR decreases (measurement coordinate uncertainty
increases). This is consistent with the previous results for view
angle measurement coordinate uncertainty shown in Fig. 3.
Our method handles measurement coordinate uncertainty well,
especially when the uncertainties begin to dominate over mea-
surement noise. Note that our framework does not assume a
specific uncertainty model—we have used different uncertainty
simulation models for view angle uncertainty in Fig. 3 and

Fig. 6. Average SNR improvement (dB) when solving (8) for 2D CT imaging.
There are different combinations of measurement noise SNR and detector
location uncertainty SNR. There are 90 view angles.

detector location uncertainty in Fig. 6. Compared to Fig. 3, the
curves in Fig. 6 for high measurement SNR and measurement
coordinate uncertainty SNR almost overlap at times because the
baseline SNR is higher and so the average SNR improvement
is lower.

In Fig. 7, we show randomly chosen example reconstructions
with their SNRs.

2) Learned Detector Locations Accuracy: Similar to
Section III-A2, in the next simulation we verify that the learned
detector locations are close to the true unknown detector
locations. We denote the set of true unknown detector locations
and learned detector locations as T̃ and T̂ . We measure the
average detector location error as

Average detector error =
1

K
‖T̃ − T̂ ‖1, (15)

where K is the number of detectors.
Fig. 8 shows how the average detector error changes as the

optimization progresses for different combinations of measure-
ment noise and detector location uncertainty. Again, the solid
lines are for implicit neural representations and the dashed lines
are for spline representations. Compared to the assumed detector
locations, for both representation types, the final learned detector
locations are closer to the true detector locations.

C. View Angle and Detector Location Uncertainty

The numerical experiments in Sections III-A and III-B
demonstrates that our proposed framework performs well when
there is view angle or detector location measurement coordinate
uncertainty. We now perform simulations when there is view
angle and detector location uncertainty at the same time. There
are 90 view angles in these experiments. As there is uncertainty
in both the view angles and the detector locations, we will
optimize both the view angle and detector location dimensions
of the measurement coordinates in (8).

1) Combinations of Measurement Noise and Measurement
Coordinate Error: Following the experiments of Figs. 3 and
6, we consider different combinations of measurement noise
and measurement coordinate uncertainty over the same 25 test
images. The view angle and detector location SNRs are the same
in these experiments.
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Fig. 7. Example reconstructions for 2D CT imaging. There are different measurement noise SNR and detector location uncertainty SNR combinations and 90
view angles. The reconstruction SNRs are shown for each reconstruction.

Fig. 8. Average detector error for one test image with different combinations
of measurement noise and measurement detector location uncertainty when per-
forming 2D CT imaging. The solid lines are for implicit neural representations
and the dashed lines are for spline representations.

Fig. 9. Average SNR improvement (dB) for 2D CT imaging when solving
(8) for different combinations of measurement noise SNR and measurement
coordinate uncertainty. There is uncertainty in both the view angles and detector
locations.

The average reconstruction SNR improvement over the base-
line is shown in Fig. 9. Consistent with previous experiments,
Fig. 9 shows that we are able to improve upon the baseline when
there is measurement coordinate uncertainty. In Fig. 10, we also
show randomly chosen example reconstructions with their SNRs
when there is measurement coordinate uncertainty in both the
view angles and the detector locations.
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Fig. 10. Example reconstructions for 2D CT imaging. There are different measurement noise SNR and measurement coordinate uncertainty SNR combinations.
There is uncertainty in both the view angles and detector locations. The reconstruction SNRs are shown for each reconstruction.

IV. CONCLUSION

We presented a differentiable imaging inverse problem frame-
work to jointly reconstruct the unknown image and learn un-
known measurement coordinates when they are approximately
known. There are two major elements in our proposed method.
Firstly, we learn continuous representations of the measurements
whose input are measurement coordinates and output are the
corresponding measurements. By optimizing with respect to
their parameters and their input, we jointly learn the measure-
ment representation parameters and the unknown measurement
coordinates. The second aspect of our method is that because
these representations can be evaluated at any input coordinate,
we can leverage reconstruction methods that are designed for
measurement coordinates that are different from the ones of the
observations. Our 2D and 3D CT imaging simulations show that
the benefit of using our framework increases with the level of
measurement coordinate uncertainty.

As our framework does not assume a particular measurement
representation, we use both implicit neural networks and splines
to represent measurements. Splines are generally viewed as
interpolation tools, however, our work demonstrates that they
can also be learnable differentiable representations that perform

comparably to implicit neural representations. Differentiable
splines may provide a viable solution for current research direc-
tions that have been focusing on using implicit neural networks
which can have significantly more parameters and complex-
ity [24].

A strength of our framework is that no extra training data is
required to learn the measurement representations. However, a
drawback is that it can be time consuming if there are multiple
test images because we have to learn separate measurement
representations and measurement coordinates for each new set
of observations. Therefore, extending our framework to jointly
recover a batch of images and the shared unknown measurement
coordinates is an important step towards helping practitioners
adopt our framework. Batch imaging also introduces robustness
which can help learn more accurate measurement representa-
tions.

Another important endeavor is to adapt our framework to
account for operator uncertainties due to reasons other than
measurement coordinate uncertainty which this paper studied.
For example, there may be approximation uncertainties if the
true operator is approximated to enable faster computations
and facilitate analysis. Not accounting for the approximation
can lead to degraded solutions [49]. Another source of operator
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Fig. 11. Example reconstructions for different measurement noise and 2D CT view angle uncertainty. There are 120 view angles. The SNRs are shown for each
reconstruction.

uncertainty arises when the object being imaged is altered in an
unknown manner during the measurement acquisition process.
For example, in CryoET imaging, the sample can translate
and deform during imaging which needs to be taken into ac-
count [50], [51], [52].

APPENDIX A
2D CT SIMULATIONS WITH 120 VIEW ANGLES

In Fig. 11 we show 2D CT imaging sample reconstructions for
different combinations of measurement noise and measurement
coordinate uncertainty when there are 120 view angles. The
simulated experiment is performed as described in
Section III-A1. The reconstructions for when there are 90
view angles is shown in Fig. 4.

Fig. 12 shows average angle error plots for 2D CT imaging
when there are 120 view angles. The experimental details are in

Section III-A2 and the equivalent results for 90 view angles are
shown in Fig. 5.

APPENDIX B
THREE-DIMENSIONAL CT IMAGING

Similar to 2D CT imaging, in 3D CT imaging, two-
dimensional projections of a three-dimensional volume are
collected by tilting it at different tilt angles. The goal is to recon-
struct the volume from the the series of projections. Inspired by
CryoET imaging, we obtain projections at 60 tilt angles which
we assume to be uniformly spaced on the interval [−π/3, π/3].
The true unknown tilt angles are perturbed from these. This
setup is challenging because there is a ‘wedge’ of tilt angles for
which we do not have projections. The detectors are uniformly
spaced on a two-dimensional unit square [0, 1]2 and have no
uncertainty in these experiments. Combining these spaces gives
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Fig. 12. Average angle error for one test image with different measurement
noise and measurement coordinate uncertainty combinations when there are 120
2D CT view angles. The solid lines are for implicit neural representations and
the dashed lines are for spline representations.

the measurement coordinates space asΩ = [−π/3, π/3]× [0, 1]2.
The tilt angle uncertainty is simulated in the same way as the
2D CT imaging view angle uncertainty. Furthermore, we only
optimize the tilt angles dimension of the measurement coordi-
nates in (8) because the detector locations have no uncertainty
in these simulations.

To train the reconstruction 3D Unets, we use 3D volumes
from the 2019 Brain Tumor Segmentation (BraTS) Challenge
dataset [53], [54], [55]. The volumes are resized to be 64× 64×
64. We use 478 volumes for training and 15 separate volumes to
test and verify our framework.

A. Combinations of Measurement and Coordinate Error

We consider different combinations of measurement noise
and measurement coordinate uncertainty (in tilt angles) in the
same way as was done for 2D CT. The trials are done over
15 test volumes and the results are shown in Fig. 13. We see
that the performance trends for both implicit neural and spline
representations are similar. Furthermore, the performance is con-
sistent with what was seen for the 2D CT problem (Fig. 3)—as
measurement coordinate uncertainty increases, our framework
provides increasing gains.

Fig. 13. Average SNR improvement (dB) when using our framework (8)
for 3D CT. There are different combinations of measurement noise SNR and
measurement coordinate uncertainty SNR. There are 60 tilt angles on the interval
[−π/3, π/3].

Fig. 14 shows two-dimensional slices through some of the
test volumes. The ground truth, psuedoinverse, baseline and
our reconstructions are shown with the SNRs of the entire
volumes. Similarly, Fig. 15 shows 3D reconstructions of the
same test volumes. Two central orthogonal volume slices have
been plotted. Reconstructions using our framework are better
than the baseline at recovering the geometric structure of the
volumes and have fewer artifacts.

B. Learned Tilt Angles Accuracy

Next we verify that the learned measurement coordinates are
accurate. The uncertainty is only in the tilt angles and we follow
the same procedure as when verifying the learned 2D CT view
angles in Fig. 5. We use the metric defined in (14) and show the
results in Fig. 16 for one test volume with different measurement
noise and measurement coordinate uncertainty combinations.
Again, the solid lines are for the implicit neural representations,
and the dashed lines are for the spline representations. For
both representation types, the average tilt angle error reduces as
the optimization of (8) progresses. This demonstrates that our
framework learns tilt angles (measurement coordinates) that are
more accurate than the assumed ones.

APPENDIX C
ADDITIONAL SPLINE INFORMATION

We continue using 2D CT as an example and build on
Section II-C2 to provide further information on NURBS. Be-
sides the learnable weights and learnable control point vectors
explained in Section II-C2, there is a knot vector for each
dimension of the measurement coordinates that is not learn-
able. The NURBS surface also has degrees dΘ, dT ∈ Z

+ for
the view angle and detector location measurement coordinate
dimensions. The knot vector for the view angle dimension has
(J + dΘ + 1) elements which are arranged in ascending order.
We design its uth element, ku, to be zero when 0 ≤ u < dΘ + 1,
uniformly spaced between zero and one when dΘ + 1 ≤ u ≤ J ,
and one when J < u ≤ J + dΘ [23]. The knot vector for the
detector location dimension has (J + dT + 1) elements and is
made in a similar manner by using its degree dT .
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Fig. 14. Example reconstructions of slices of the 3D test volumes. Reconstructions for different measurement noise SNR and measurement coordinate uncertainty
SNR are shown. The reconstruction SNRs for each volume are stated.

The rational basis functions defined in (10) are

bj,k

(
[θ′, t′]

�
)
=

wj,k Qj,dΘ
(θ′) Qk,dT (t

′)∑J−1
u=0

∑K−1
v=0 wu,v Qu,dΘ

(θ′) Qv,dT (t
′)
.

(16)

The functionQu,d(·) is the uth B-spline basis function of degree
d. If ku denotes the uth element of a knot vector, each basis func-
tion can be obtained using the Cox-de Boor recursion method,

Qu,0(k) =

{
1 if ku ≤ k ≤ ku+1

0 otherwise
(17)

Qu,d(k) =
k − ku

ku+d − ku
Qu,d−1(k)

+
ku+d+1 − k

ku+d+1 − ku+1
Qu+1,d−1(k). (18)

From (17), we can see that a degree zero NURBS is constructed
from piecewise constant basis functions. The recursion (18) is
then used to create higher degree basis functions with larger
support. If the denominator in any term of (18) is zero, that term
is taken to be zero.

The NURBS surface for two-dimensional measurement co-
ordinates in (10) is the tensor product of two one-dimensional
NURBS curves as shown in (16). To create NURBS surfaces for
D-dimensional measurement coordinates, we take the tensor
product of D one-dimensional NURBS curves. This is done for
D = 3 in Appendix B.

APPENDIX D
IMPLEMENTATION DETAILS

A. Framework Optimization

In this section we provide implementation details for solving
our optimization problem (8). All parameters were tuned on a
held out set of images for three randomly chosen measurement
and operator error combinations.

To implement NURBS, we modified and extended the Py-
Torch source code released by the NURBS-Diff module au-
thors [23]. The implicit neural representation and neural network
for Gμ(·) in (8) are also implemented in PyTorch. This enables
us to conveniently optimize the objective function (8) using
automatic differentiation and the Adam optimizer.

When implicit neural networks are used, the optimization is
run for at least 8,000 iterations and at most 20,000 iterations.
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Fig. 15. Example reconstructions for two of the orthogonal central slices of each of the 3D test volumes in Fig. 14 for 3D CT imaging. The SNRs for the entire
volume are stated.

Fig. 16. Average tilt angle error for one 3D CT test volume with different
measurement noise and measurement coordinate uncertainty combinations. The
solid lines are for implicit neural representations and the dashed lines are for
spline representations.

The optimization is terminated when the loss value between
successive iterations is below 1 × 10−10 for 2D CT imaging and
1 × 10−11 for 3D CT imaging. When splines are used and there
is any view angle or tilt angle uncertainty, the optimization runs
for at least 2,000 iterations and at most 5,000 iterations. If there
is only detector location uncertainty, the optimization runs for at
least 6,000 iterations and at most 15,000 iterations. Additionally,
when splines are used, the optimization for all imaging problems
is terminated when the loss value between successive iterations
is below 1 × 10−11.

1) 2D CT Imaging: When implicit neural representations are
used, λ = 0.1 in (8). The learning rate for both the neural network
parameters and the input coordinates is 5 × 10−4. When splines
are used, λ = 0.025 if there is only view angle uncertainty,
and λ = 0.25 if there is any detector location uncertainty. The
learning rate for the neural network parameters is 5 × 10−2 and
for the input coordinates is 2 × 10−4.

For the implicit neural representation, we use the cosine of the
view angle rather than the angle when creating the measurement
coordinate. This encodes the circular nature of angular data and
improves performance.

2) 3D CT Imaging: When implicit neural representations
are used, λ = 0.1. The learning rate for the neural network
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parameters is 1× 10−3 and for the input coordinates is 1× 10−4.
When splines are used, λ = 0.6. The learning rate for the neural
network parameters is 5 × 10−3 and for the input coordinates is
1 × 10−4.

B. Reconstruction Unet Training

In this section we describe the implementation details for the
Unet neural networks used for the reconstruction method Gμ(·)
in (8).

A mean-squared error loss function is minimized using Adam
during training. We train the Unets for 100 epochs where one
epoch is a full pass through the training dataset.

For the 2D Unet, a batch size of 128 and learning rate of 1
× 10−3 is used. For the 3D Unet, a batch size of 16 and learning
rate of 1 × 10−3 is used.

Publicly available Unet architectures were downloaded and
trained. Unless mentioned here, the default parameters from the
download sources were used. The 2D Unet model is from https://
github.com/mateuszbuda/brain-segmentation-pytorch [56]. We
used one input channel, one output channel, and 16 features
in the first layer. The 3D Unet model is from https://github.
com/ELEKTRONN/elektronn3. We used one input channel, one
output channel, 16 features in the first layer and a depth of four
blocks.

Due to the limited size of the 3D volume training dataset
for 3D CT imaging, we use a data augmentation strategy. We
perform random horizontal flips, random vertical flips, and
random rotations by 90, 180 or 270 degrees.

C. NURBS

1) 2D CT Imaging: For 2D CT imaging, the NURBS degree
along the measurement coordinate dimension being learned is
18. It is two in the measurement coordinate dimension that
is not being learned. Furthermore, where there is view angle
uncertainty, we create additional control points to ensure the
spline measurement representations satisfy the Radon transform
measurement consistency conditions [57]

rϕ

(
[θ + π, t]�

)
= rϕ

(
[θ,−t]�

)
, (19)

and

rϕ

(
[θ − π, t]�

)
= rϕ

(
[θ,−t]�

)
, (20)

where a detector location of −t refers to the tth last detector.
This gives the locally supported NURBS basis functions (16) a
sufficient number of control points around 0 and π radians and
ensures the NURBS is accurate in the interval [0, π] radians.
Specifically, if dΘ is the degree of the spline in the view angle
dimension, we use the consistency condition to create new
control points for (10)

pj+J−1,k =

[
θj + π, tk,y

([
θ̃j ,−t̃k

]�)]�
(21)

for 1 ≤ j ≤ dΘ and

pj−J−1,k =

[
θj − π, tk,y

([
θ̃j ,−t̃k

]�)]�
(22)

for J − dΘ < j ≤ J where J is the number of view angles in
the observed measurements. Essentially, if there areK detectors,
we create 2dΘK additional control points.

2) 3D CT Imaging: For 3D CT, the NURBS degree along
the tilt angle measurement coordinate dimension is 15. It is two
in the two detector location dimensions. Additionally, for this
imaging technique, we fix the basis function weights to one and
do not optimize them. This makes the NURBS surface a B-spline
surface.
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