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A Theoretical Framework for Self-Supervised MR
Image Reconstruction Using Sub-Sampling via

Variable Density Noisier2Noise
Charles Millard and Mark Chiew

Abstract—In recent years, there has been attention on leveraging
the statistical modeling capabilities of neural networks for recon-
structing sub-sampled Magnetic Resonance Imaging (MRI) data.
Most proposed methods assume the existence of a representative
fully-sampled dataset and use fully-supervised training. However,
for many applications, fully sampled training data is not available,
and may be highly impractical to acquire. The development and
understanding of self-supervised methods, which use only sub-
sampled data for training, are therefore highly desirable. This
work extends the Noisier2Noise framework, which was originally
constructed for self-supervised denoising tasks, to variable density
sub-sampled MRI data. We use the Noisier2Noise framework to
analytically explain the performance of Self-Supervised Learning
via Data Undersampling (SSDU), a recently proposed method that
performs well in practice but until now lacked theoretical justifica-
tion. Further, we propose two modifications of SSDU that arise as
a consequence of the theoretical developments. Firstly, we propose
partitioning the sampling set so that the subsets have the same
type of distribution as the original sampling mask. Secondly, we
propose a loss weighting that compensates for the sampling and
partitioning densities. On the fastMRI dataset we show that these
changes significantly improve SSDU’s image restoration quality
and robustness to the partitioning parameters.

Index Terms—Deep learning, image reconstruction, magnetic
resonance imaging.

I. INTRODUCTION

THE data acquisition process in Magnetic Resonance Imag-
ing (MRI) consists of traversing a sequence of smooth

Manuscript received 7 June 2022; revised 19 December 2022, 25 April 2023,
21 June 2023, and 29 June 2023; accepted 14 July 2023. Date of publication
26 July 2023; date of current version 9 August 2023. This work was supported
in part by Engineering and Physical Sciences Research Council under Grant
EP/T013133/1, in part by the Royal Academy of Engineering under Grant
RF201617/16/23, in part by Wellcome Trust under Grant 203139/Z/16/Z, and
in part by Canada Research Chairs Program. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Se Young
Chun. (Corresponding author: Charles Millard.)

Charles Millard is with the Wellcome Centre for Integrative Neuroimaging,
FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford,
OX3 9DU Oxford, U.K. (e-mail: charles.millard@ndcn.ox.ac.uk).

Mark Chiew is with the Wellcome Centre for Integrative Neuroimaging,
FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford,
OX3 9DU Oxford, U.K., and with the Department of Medical Biophysics,
University of Toronto, Toronto, ON M5S 1A1, Canada, and also with the Canada
and Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5,
Canada (e-mail: mark.chiew@utoronto.ca).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCI.2023.3299212, provided by the authors.

Digital Object Identifier 10.1109/TCI.2023.3299212

paths through the Fourier representation of the image, referred
to as “k-space”, which is inherently time-consuming. Images
can be reconstructed from accelerated, sub-sampled acquisitions
by leveraging the non-uniformity of receiver coil sensitivities,
referred to as “parallel imaging” [1], [2], [3], [4]. Compressed
sensing [5], [6], which uses sparse models to reconstruct inco-
herently sampled data, has also been widely applied to MRI [7],
[8], [9].

There has been significant research attention in recent years
on methods that reconstruct sub-sampled MRI data with neural
networks [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24]. The majority of these works
use fully-supervised training. To train a network in a fully-
supervised manner, there must be a dataset comprised of fully
sampled k-space data y0,t ∈ CN , where N is the dimension
of k-space multiplied by the number of coils, and paired sub-
sampled data yt = MΩt

y0,t. Here, t indexes the training set and
MΩt

∈ RN×N is a sub-sampling mask with sampling set Ωt, so
that the jth diagonal of MΩt

is 1 if j ∈ Ωt and zero otherwise.
Then a network fθ with parameters θ is trained by seeking a
minimum of a non-convex loss function:

θ̂ = argmin
θ

∑
t

L(fθ(yt), y0,t), (1)

which could be, for example, an �p norm in the image domain
after coil combination [25]. The network fθ̂ estimates the ground
truth in the image domain or k-space depending on the choice
of loss function. For a k-space to k-space network, y0,s can be
estimated with ŷs = fθ̂(ys), where s indexes the test set.

Given sufficient representative training data, fully-supervised
networks can yield substantial reconstruction quality gains over
sparsity-based compressed sensing methods. There are a number
of large datasets available for fully supervised training, such
as the fastMRI knee and brain data [25]. However, for many
contrasts, orientations, or anatomical regions of interest, fully
sampled datasets are not publicly available. Fully sampled data
is rarely acquired as part of a normal scanning protocol, so ac-
quiring sufficient training data for a specific application is highly
resource intensive. In some cases, it may not even be technically
feasible to acquire such data [26], [27], [28]. Therefore, for MRI
reconstruction with deep learning to be applicable to datasets
acquired using only standard protocols, a training method that
uses solely sub-sampled data is required.
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There have been several attempts to train networks with
only sub-sampled MRI data [29], [30], [31], [32], [33], [34],
[35], [36], [37], some of which are based on methods from the
denoising literature [38], [39], [40], [41], [42], [43], [44]. One
such approach is Noise2Noise [38]. Rather than mapping yt
to y0,t, Noise2Noise trains a network to map yt to another
sub-sampled k-space yT = MΩT

y0,T where ΩT and Ωt are
independent and y0,T = y0,t when t = T [31]. A limitation
of Noise2Noise is that it requires paired data, so the dataset
must contain two independently sampled scans of the same
k-space [14], which is not part of standard protocols. Further, un-
less compensated for [45], any motion and phase drifts between
scans would cause the paired data to be inconsistent, violating
the central assumption that underlies the method.

SSDU [33] is a recently proposed method for ground-truth
free training that does not require paired data. SSDU partitions
the sampling set Ωt into two disjoint sets: Ωt = At ∪Bt, where
At ∩Bt = ∅. Then the network is trained to recoverMAt

yt from
MBt

yt:

θ̂ = argmin
θ

∑
t

L(MAt
fθ(MBt

yt),MAt
yt). (2)

At inference, the estimate fθ̂(ys) is used. With a physics-guided
network architecture, SSDU was found to have a reconstruction
quality comparable with fully supervised training given certain
empirically selected choices of At and Bt. However, it was
presented without theoretical justification. Although SSDU has
similarities with Noise2Self [40], Noise2Self’s analysis has a
strong requirement on independent noise, so do not apply to
k-space sampling in general.

A. Contributions

This article considers the recently proposed Noisier2Noise
framework [41], which was originally constructed for denoising
problems. We modify Noisier2Noise so that it can be applied to
variable density sub-sampled MRI data. To our knowledge, this
is the first work that applies Noisier2Noise to image reconstruc-
tion. Like SSDU, the proposed modification of Noisier2Noise
does not require paired data, and involves training a network to
map from one subset of Ωt to another. While SSDU recovers
one disjoint set from the other, Noisier2Noise applies a second
sub-sampling mask to the data, ỹt = MΛt

yt = MΛt
MΩt

y0,t,
and the network is trained to recover yt from ỹt with an �2
loss. Then, at inference, the fully sampled data is estimated via
a correction term based on the distributions of Λt and Ωt that
ensures that the estimate is correct in expectation.

Despite their superficial differences, we show that, in fact,
SSDU and Noisier2Noise are closely related. Specifically, we
demonstrate that SSDU is a version of Noisier2Noise with a
particular loss function modification that removes the need for
the correction term at inference. The primary contribution of
this article is the use of Noisier2Noise to theoretically explain
SSDU’s excellent empirical performance. Specifically, we show
that SSDU with an �2 loss correctly estimates fully sampled
k-space in expectation: see Section II-D.

The second contribution of this article is the proposal of
two modifications of SSDU that significantly improve its re-
construction quality and robustness to the parameters of MΛt

,
both of which arise as a consequence of SSDU’s connection to
Noisier2Noise. Firstly, we use Noisier2Noise to inform SSDU’s
sampling set partition: we show that SSDU’s performance im-
proves when Bt has the same type of distribution as the orig-
inal mask Ωt, but not necessarily with the same parameters.
Secondly, we show that SSDU’s performance improves when
a particular weighting is employed in the loss function. This
non-trivial weighting, which arises as a consequence of the novel
theoretical analysis of SSDU, depends on the distributions of
Λt and Ωt and has minimal additional computational cost: see
Section II-F.

Although this paper focuses on MRI reconstruction, we em-
phasize that none of the theoretical developments are specific to
k-space. This framework is therefore applicable to any image
reconstruction problem with a forward model that involves
random sub-sampling, such as low dose x-ray computed tomog-
raphy [46] or astronomical imaging [47].

II. THEORY

This section describes how the Noisier2Noise framework can
be applied to sub-sampled data. Additive and multiplicative
noise versions of Noisier2Noise are proposed in [41]. Based
on the observation that a k-space sub-sampling mask can be
considered as multiplicative “noise”, we extend Noisier2Noise
to image reconstruction by modifying the latter. It is standard
practice in MRI to sub-sample k-space with variable density, so
that low frequencies, where the spectral density is larger, are
sampled with higher probability [7]. Since the multiplicative
noise version of standard Noisier2Noise assumes uniformity,
this requires a modification of the framework to variable density
sampling.

A. Variable Density Noisier2Noise for Reconstruction

The terms in the measurement model yt = MΩt
y0,t can

be considered as instances of random variables. We denote
Y = MΩY0, where Y , MΩ and Y0 are the random variables
corresponding to yt, MΩt

, and y0,t respectively. Now consider
the multiplication of Y by a second mask represented by the
random variable MΛ,

Ỹ = MΛY = MΛMΩY0,

so that Ỹ is a further sub-sampled random variable. The fol-
lowing result states how the expectation of Y0 can be computed
from Ỹ and Y . Here, and throughout this article, E[·] is used
to denote the expectation over all random variables within the
brackets.

Claim 1: When E[MΩ,jj ] = pj > 0 and E[MΛ,jj ] = p̃j < 1

for all j, the expectation of Y0 given Ỹ is

E[Y0|Ỹ ] = (1−K)−1(E[Y |Ỹ ]−KỸ ), (3)

where K is a diagonal matrix defined as

K = (1− P̃P )−1(1− P ) (4)

for P = E[MΩ] and P̃ = E[MΛ].
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Proof: See Section A of the Appendix, which is based on the
proof given in Section III.D of [41]. �

Equation (3) generalizes the version of Noisier2Noise pro-
posed for uniform, multiplicative noise in [41] to variable density
sampling. The difference between the uniform and variable
density versions is the matrix K, which is a scalar in [41].
For the special case where MΩ and MΛ are uniformly random
sub-sampling masks, P , P̃ and therefore K are proportional to
the identity matrix, and (3) simplifies to the uniform version.
The mathematical requirement that pj > 0 and p̃j < 1 for all j
simply ensures that (1−K) is invertible: see Section A of the
Appendix.

Equation (3) implies that E[Y0|Ỹ ] can be estimated without
fully sampled data by training a network to estimate E[Y |Ỹ ].
To do this, a network can be trained to minimize

θ∗ = argmin
θ

E[‖W (fθ(Ỹ )− Y )‖22|Ỹ ] (5)

for a full-rank matrixW . The minimum occurs when the gradient
with respect to θ is zero:

∇θE[‖W (fθ(Ỹ )− Y )‖22|Ỹ ] = E[2JWHW (fθ(Ỹ )− Y )|Ỹ ] = 0,

where J is the Jacobian matrix with entries Jij = ∂fθ(Ỹ )j/∂θi.
The number of parameters is typically much greater than N , so
J has far more rows than columns. Assuming that the rows
of J are maximally linearly independent, so the row space is
N -dimensional, the only solution is

E[WHW (fθ(Ỹ )− Y )|Ỹ ] = 0. (6)

If W is full-rank, WHW is also full rank, so left-multiplying
by (WHW )−1 and using E[fθ(Ỹ )|Ỹ ] = fθ(Ỹ ),

fθ(Ỹ ) = E[Y |Ỹ ].

Therefore, by (3), a candidate for estimating fully sampled k-
space with sub-sampled data only is

E[Y0|Ỹ ] = (1−K)−1(fθ∗(Ỹ )−KỸ ).

This expression does not use Y , so does not use all available
data. Two candidate approaches for using all available data at
inference are considered in this article. Firstly, one can overwrite
known entries of the network output with Y :

Ŷ dc = (1−MΩ)E[Y0|Ỹ ] + Y

= (1−MΩ)(1−K)−1(fθ∗(Ỹ )−KỸ ) + Y

= (1−MΩ)(1−K)−1fθ∗(Ỹ ) + Y,

where the final step uses (1−MΩ)Ỹ = (1−
MΩ)MΛMΩY0 = 0. Here, the superscript refers to “data
consistent”, since the estimate is exactly consistent with Y .
We emphasize that Ŷ dc is consistent with all available data Y ,
not just the data in Ỹ . Alternatively, similar to the approaches
suggested in both SSDU [33] and the additive noise examples
in Noisier2Noise [41], one can use singly sub-sampled k-space
Y as the network input at inference:

Ŷ = (1−K)−1(fθ∗(Y )−KY ) (7)

Fig. 1. Schematic of the self-supervised training methods in this article. If
the loss weighting W is full rank, the training method is variable density
Noisier2Noise, as proposed in Section II-A, whereas if W = (1−MΛt )MΩt

the training method is SSDU: see Section II-D.

Since Claim 1 applies to fθ∗(Ỹ ), not fθ∗(Y ), (7) is not guaran-
teed to be correct in expectation. However, it has the advantage
that all available data is used by the network. Hence, despite
deviating from strict theory, we have found that it performs well
in practice: see Section IV.

This suggests the following procedure, illustrated in Fig. 1,
for training a network without fully-sampled data. For each
sub-sampled k-space in the training set yt = MΩt

y0,t, gener-
ate a further sub-sampled k-space ỹt = MΛt

yt = MΛt
MΩt

y0,t,
where MΛt

is an instance of MΛ. Then, approximate (5) by
training a network to minimize the loss function

θ̂ = argmin
θ

∑
t

‖W (fθ(ỹt)− yt)‖22, (8)

for some full-rank matrix W . During inference, estimate fully-
sampled k-space with either

ŷdcs = (1−MΩs
)(1−K)−1fθ̂(ỹs) + ys (9)

or

ŷs = (1−K)−1(fθ̂(ys)−Kys), (10)

where s indexes the test set.
In other words, we train a network to estimate the “singly”

sub-sampled k-space yt from “doubly” sub-sampled k-space ỹt
and then, during inference, apply a correction based on the
diagonal matrix K to estimate the fully sampled data. The
correction term only needs to be applied during inference and
has minimal computational cost.

In [41], only the version with W = 1 was presented. Here
we present a version with non-trivial W because it provides
a theoretical link to SSDU; Section II-D shows that Nois-
ier2Noise with the rank-deficient W = (1−MΛ)MΩ is SSDU
exactly.
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Noisier2Noise and SSDU work because the network cannot
deduce from ỹt which entries of yt are non-zero [41]. Therefore,
the loss is minimized when the network learns to recover all of
k-space: see Section V for a detailed discussion.

B. Choice of Mask Distributions

The only condition on the first mask MΩ from Claim 1 is that
pj > 0 for all j. In other words, the guarantee only applies when
there is a non-zero probability that there are sampled examples
of all k-space locations in the training set.

Claim 1 also states that the second maskMΛ must obey p̃j < 1
for all j. This ensures that there is a non-zero probability that
any entry of Ỹ is masked. Unlike MΩ, whose distribution is
determined by the acquisition protocol, the MΛ is chosen freely
during training. Following [41], we suggest using a distribution
of MΛ that is the same type as MΩ, but not necessarily with the
same parameters. For instance, if MΩ is column-wise sampling
with variable density, such as in Fig. 1, an appropriateMΛ is one
that is also column-wise, but possibly with a different variable
density distribution.

C. Choice of Network

Noisier2Noise is agnostic to the network architecture. We
have found that using the data consistent function

fθ(ỹt) = (1−MΛt
MΩt

)gθ(ỹt) + ỹt, (11)

where gθ(ỹt) is a network with arbitrary architecture, may
improve the performance of Noisier2Noise. This is because the
gθ(ỹt) in (11) only recovers regions of k-space that are not al-
ready sampled in ỹt, so the network does not need to learn to map
sampled k-space locations to themselves. We emphasize that
(11) ensures that fθ(ỹt) is consistent with ỹt, while (9) ensures
the estimate ŷdcs is consistent with ys, which is only applied at
inference and cannot be part of the network architecture when
ỹs is used as the input.

Many popular network architectures for MRI reconstruction
are based on a sequence of “unrolled” iterations of a optimiza-
tion algorithm [48] such as the Iterative Shrinkage Thresholding
Algorithm (ISTA) [49] or the Alternating Direction Method
of Multipliers (ADMM) [50]. These are variously known as
“physics-guided”, “physics-based” or “model-based” methods
due to their explicit use of the MRI forward model. These
architectures typically alternate between a module that recov-
ers missing k-space entries by removing aliasing in the image
domain and a module that ensures consistency with the k-space
data. This implies that (11), or possibly a “soft” version of
it where the data is not forced to be exactly consistent, may
already be implemented as part of the network architecture.
In the experimental evaluation of the methods in this article
we used the Variational Network (VarNet) [12], [51], which is
one such architecture where (11) is not necessary. However, in
preliminary studies not presented in this article we found that
a U-net [52], which does not already employ data consistency,
benefited considerably from (11).

D. Relationship to SSDU

This section shows that SSDU [33] with an �2 loss is a version
of Noisier2Noise with a particular rank-deficient loss weighting
matrix W .

To see the connection between SSDU and Noisier2Noise, it
is instructive to see the relationship between Noisier2Noise’s Λt

and SSDU’s disjoint subsets At and Bt. Disjoint subsets of Ωt

can be formed in terms of Ωt and Λt by setting At = Ωt\Λt

and Bt = Ωt ∩ Λt. The distribution of At and Bt are defined
by the distributions of Ωt and Λt and always satisfy At ∪Bt =
Ωt and At ∩Bt = ∅ as required. In terms of sampling masks,
this is written asMAt

= (1−MΛt
)MΩt

andMBt
= MΛt

MΩt
.

Therefore, SSDU’s loss (2) with a squared �2 norm is∑
t

‖MAt
fθ(MBt

yt)−MAt
yt‖22 =

∑
t

‖(1−MΛt
)

·MΩt
(fθ(ỹt)− yt)‖22,

so is exactly Noisier2Noise withW = (1−MΛt
)MΩt

. In other
words, while Noiser2Noise’s loss is computed over all k-space,
SSDU’s loss is computed only on indices that are in Ωt but not
in Λt.

SSDU’s weighting ensures that any indices not sampled in Y
are ignored in the loss. One might think that the correct choice
for this goal would be W = MΩt

. However, if a data consistent
network is employed, as in (11), the contribution to the loss
from indices in both Ωt and Λt would be zero because they are
consistent by construction. Therefore the loss forW = MΩt

and
W = (1−MΛt

)MΩt
would be identical. A similar idea was

presented for fully supervised learning in [53], where a mask is
applied to the training data multiple times.

E. Proof of SSDU

This section shows that SSDU’s loss weighting causes the cor-
rection (1−K)−1 at inference to no longer be necessary. When
the weighting matrix W is the random variable (1−MΛ)MΩ,
the network parameters are trained to seek a minimum of

θ∗ = argmin
θ

E[‖(1−MΛ)MΩ(fθ(Ỹ )− Y )‖22|Ỹ ]. (12)

Unlike Noisier2Noise, W = (1−MΛ)MΩ is not full-rank,
so fθ∗(Ỹ ) 	= E[Y |Ỹ ]. The usual theoretical goal for self-
supervised methods is to prove that the network is correct in
expectation [38], [39], [40], [41], [42], [43], [44], as in Claim 1
for variable density Noisier2Noise. In the following we state, to
our knowledge, the first similar result for SSDU.

Claim 2: A network with parameters that minimizes (12)
satisfies

(1−K)(1−MΛMΩ)(fθ∗(Ỹ )− E[Y0|Ỹ ]) = 0. (13)

Proof: See Section B of the Appendix. �
If 1−K is invertible, which holds when pj > 0 and p̃j < 1

for all j,

(1−MΛMΩ)fθ∗(Ỹ ) = (1−MΛMΩ)E[Y0|Ỹ ].

Therefore, in general, fθ∗(Ỹ ) is correct in expectation, but only
in regions of k-space that are not sampled in Ỹ . This contrasts
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with the variable density Noisier2Noise method presented in
Section II-A, which is correct in expectation for all k-space
indices. However, as described in the following, this apparent
shortcoming can easily be circumvented by using all available
data at inference.

Similarly to Noisier2Noise’s (9) and (10), we consider two
options for the k-space estimate at inference, both of which use
all available data. Firstly, similarly to (9), the data consistent
estimate

Ŷ dc = (1−MΩ)fθ∗(Ỹ ) + Y (14)

can be used, which is correct in expectation everywhere in
k-space for any network architecture. Alternatively, the SSDU
paper [33] suggests using

Ŷ = fθ∗(Y ) (15)

and a physics-guided network architecture. Like (10) for Nois-
ier2Noise, the network input for (15) is singly sub-sampled, so
Claim 2 does not apply and the estimate is not guaranteed to be
correct in expectation. Nonetheless, it has the advantage over
(14) that it uses all available data in the input to the network. As
in [33], we have found that (15) performs well in practice when
the network architecture includes a data consistency module: see
Section IV.

We emphasize that unlike Noisier2Noise, SSDU does not
require the correction term (1−K)−1 at inference. This implies
that SSDU is less sensitive to inaccuracies in fθ∗(Ỹ ), and we
have found that SSDU outperforms Noisier2Noise in general:
see Section IV.

F. K-Weighted SSDU

Since we train on a finite number of instances of the random
variables Y , Ỹ , Ω and Λ, the network parameters we obtain in
practice, which we denote θ̂, are an approximation of the ideal θ∗

from (12). In this case, the right-hand-side of (13) is not exactly
zero. Rather,

(1−K)(1−MΛMΩ)(fθ̂(Ỹ )− E[Y0|Ỹ ]) = E , (16)

where E is a vector random variable. The vector E characterizes
the difference between a true expectation and the network’s
estimate of it, which is non-zero for finite data. In other words,
E is a statistical error due to finite sampling. The difference
between the trained network’s output and the expectation of
interest, E[Y0|Ỹ ], is (1−K)−1E . This implies that the network
is more sensitive to errors in k-space locations where (1−K)−1

is large.
To compensate for this, we propose minimizing the following

weighted version of SSDU’s loss as an alternative to (12):

argmin
θ

E[‖(1−K)−
1
2 (1−MΛ)MΩ(fθ(Ỹ )− Y )‖22|Ỹ ].

Introducing (1−K)−
1
2 in the loss cancels the 1−K in (16),

so mitigates the error amplification caused by θ∗ approxima-
tion. We find that this version of SSDU, which we refer to as
“K-weighted SSDU” throughout the remainder of this article,
substantially improves the image restoration quality and robust-
ness to training hyperparameters: see Section IV. We chose the

power (1−K)−
1
2 because it exactly cancels the 1−K on the

left-hand-side of (16) when the squared �2 loss is used; we also
tried power (1−K)−1 and found that, as expected, it did not
perform as well in practice.

G. Understanding the Need for Correction

This section intuitively explains why Noisier2Noise requires
correction at inference but SSDU does not. We can write the
weighted loss as

‖W (fθ(Ỹ )− Y )‖22 = ‖W [MΩMΛ + (1−MΛ)MΩ

+ (1−MΩ)](fθ(Ỹ )− Y )‖22,
where we have used that the term is square brackets equals the
identity matrix. When fθ(Ỹ ) is consistent with Ỹ , such as in
(11), MΩMΛ(fθ(Ỹ )− Y ) = 0. Therefore

‖W (fθ(Ỹ )− Y )‖22 = ‖W (1−MΛ)MΩ(fθ(Ỹ )− Y )‖22
+ ‖W (1−MΩ)fθ(Ỹ )‖22, (17)

where we have used (1−MΩ)Y = 0. In (17) is SSDU’s loss
function (12) plus a contribution from all j ∈ Ωc

t .
Intuitively, the second term on the right-hand-side of (17)

causes the proposed method to underestimate regions of k-space
with index j ∈ Ωc

j . This underestimation is compensated for
with (1−K)−1 at inference. For SSDU, where W = (1−
MΛ)MΩ, the second term on the right-hand-side of (17) is zero,
k-space is not underestimated anywhere, and there is no need
for a correction term at inference.

III. EXPERIMENTAL METHOD

A. Description of Data

We used the multi-coil brain and knee data from the fastMRI
dataset [25], which is comprised of multi-channel raw k-space
MRI data. The reference fastMRI test set data is magnitude
images only, without fully sampled k-space data. Since we
also require phase, we discarded the data allocated for testing
and generated our own partition into training, validation and
test sets. For the brain data, we only used data that was ac-
quired on 16 coils, and used training, validation and test set
sizes of 127, 19 and 14 volumes (2020, 302, and 224 slices)
respectively. For the knee data, the training, validation and
test sets consisted of 166, 19 and 14 volumes (5977, 665,
and 493 slices) respectively. We set the network output to be
zero in regions of k-space where the reference data had zero
padding.

B. Network Architecture

For fθ, we used the variant of the VarNet [12] that estimates
coil sensitivities on-the-fly [51], which performs competitively
on the fastMRI leaderboard and is available as part of the
fastMRI package.1 After a coil sensitivity estimation module,
VarNet uses multiple repetitions of a module based on gradient

1[Online]. Available: https://github.com/facebookresearch/fastMRI

https://github.com/facebookresearch/fastMRI
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Fig. 2. Example of the singly sub-sampled mask MΩt , and doubly sub-
sampled MΛtMΩt with two MΛ distribution types. Here, the acceleration
factor of the first mask is RΩ = 4 and the second is RΛ = 2.

descent, which is comprised of a data consistency term in
k-space and a prior based on a U-net [52] that acts in the image
domain after an inverse Fourier transform and coil combination.
The output of the neural network was in k-space. We used 6
repetitions of the main module, so that our model had around
1.5× 107 parameters. Note that in [25], the Structural Similarity
Index (SSIM) [54] was used as the loss, while in this article we
use an �2 loss.

The only additional operations SSDU and Noisier2Noise
require compared to fully-supervised training are simple entry-
wise masks, so all methods had similar memory requirements
and training time. We trained for 50 epochs, which took around
17 hours on a GTX 1080 Ti GPU with 11 GB of RAM for the
brain data. For all methods we used the Adam optimizer [55]
with a fixed learning rate of 10−3. Our PyTorch implementation
is publicly available on GitHub.2

C. Distribution of Masks

So that the distribution of the sampling masks were known
exactly, we generated our own masks rather than using those
suggested in fastMRI. Unless stated otherwise, the distribution
of the first maskMΩ was 1D column-wise. We fully sampled the
central 10 columns and sampled the remainder with polynomial
variable density. We used polynomial order 8, and scaled the
probability density P so that it matched a desired acceleration
factor. We ran each method with RΩ ∈ {4, 8}, where RΩ =
N/

∑
j pj is the expected acceleration factor. An example at

RΩ = 4 is shown in Fig. 2(a).
In [41], it is suggested that the distribution of Noisier2Noise’s

second random variable is the same as the first, but not nec-
essarily with the same distribution parameters. Therefore, for
Noisier2Noise’s second mask MΛ, we used the same type of
distribution asMΩ with a different variable density. An example
with RΩ = 4 and RΛ = N/

∑
j p̃j = 2 is shown in Fig. 2(b).

Concretely, we define two masks as having the same ‘type’ of
distribution when the conditional dependence of the sampling
set indices is the same. Let pj|k = P[j ∈ Ω|k ∈ Ω]. If pj|k = pj
for all j and k, the entries are independent and the mask is
the type ‘2D Bernoulli’. If pj|k = 1 when j and k are in the

2[Online]. Available: https://github.com/charlesmillard/Noisier2Noise_for_
recon

same k-space column and pj|k = pj otherwise, the mask is the
type ‘1D column-wise’. The experiments in this article focus
on these two types of masks; other types are discussed in
Section V. We emphasize that constraining a mask to a type
does not constrain the pjs, which define the variable sampling
density.

To ensure that p̃j < 1 everywhere, we set p̃j = 1− ε in the
central 10 columns of k-space, where ε is a small real constant.
The network architecture ensures that the central region is con-
sistent with the input, so ε can be small without penalty. We used
ε = 10−3.

In order to be a realistic simulation of prospectively sub-
sampled data, the sampling set Ωt must be fixed for all epochs.
However, Λt need not be. Therefore, we re-generated MΛt

from
the distribution of MΛ once per epoch. Since the network sees
more samples from the distribution of MΛ, the loss function
is closer to (5), so fθ̂ is expected to be a more accurate ap-

proximation of E[Y |Ỹ ]. This has similarities with training data
augmentation, as each slice is used to generate several inputs to
the network [56].

D. Comparative Methods

We trained Noisier2Noise using different weightings of the �2
loss stated in (8). For each self-supervised method, we consid-
ered two possible estimates at inference: one with the doubly
sub-sampled ỹs as the network input and the other with the
singly sub-sampled ys. The methods and their two estimates
at inference are summarized in Table I.

We trained with W = 1, referred to as “Unweighted Nois-
ier2Noise”. By Claim 1, Unweighted Noisier2Noise requires
a (1−K)−1 correction at inference: see Table I. We have
found that the need for correction substantially reduces the
image quality compared to SSDU, so do not recommend using
Unweighted Noisier2Noise in practice. Nonetheless, we include
some Unweighted Noisier2Noise results to illustrate the value
of SSDU’s loss weighting.

We also trained Noisier2Noise with W = (1−MΛ)MΩ

which, based on the relationship described in Section II-D,
we refer to as “SSDU”, despite some differences between our
implementation and [33]. In [33], a mixture of an �1 and �2 loss
was used, whereas here, so that it can be directly compared with
Unweighted Noisier2Noise, we used an �2 loss. We also used
a different MΩ distribution, dataset and network architecture
to [33].

SSDU [33] was originally applied to an architecture that
requires pre-computed sensitivity maps. It was suggested that
MBt

has a fully sampled 4× 4 central region and 2D Gaussian
variable density otherwise, so that high frequencies are sampled
with higher probability. For the architecture considered in this
article, which has a coil sensitivity estimation module, we found
that increasing the size of the fully sampled central region
considerably improved the method’s performance. Since MΩ

has 10 fully sampled central columns, we increased the size of
the central region of MΛ to 10× 10.

As the probability of sampling each location in k-space is
independent, the sampling set partition proposed in [33] is

https://github.com/charlesmillard/Noisier2Noise_for_recon
https://github.com/charlesmillard/Noisier2Noise_for_recon
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TABLE I
THE SELF-SUPERVISED METHODS EVALUATED IN THIS PAPER

equivalent to a 2D variable density Bernoulli MΛ distribution.
To estimate their variable density distribution P̃ we ran the
SSDU authors’ set partitioning code3 1000 times on a fully
sampled mask and averaged the result. We trained SSDU using
a distribution of MΛ of this type, referred to as “2D partitioned
SSDU”, illustrated in Fig. 2(c). We also trained SSDU using the
same distribution type of MΛ as MΩ, as in Fig. 2(b). We refer to
this method as “1D partitioned SSDU”, or “K-weighted 1D par-
titioned SSDU” when a (1−K)−

1
2 weighting is used in the loss

as described in Section II-F. Like Unweighted Noisier2Noise,
MΛt

was re-generated once per epoch [56]. We emphasize that
although 2D partitioned SSDU has a similar MΛ distribution as
in [33], the distribution of MΩ here is random variable density
columns, not equidistant columns as in [33]. Therefore, 2D
partitioned SSDU is not necessarily expected to perform as well
as SSDU in [33].

As a best-case target, we also trained using a fully supervised
method with an (unweighted) �2 loss. All deep learning methods
had the same network architecture and training hyperparameters,
as described in III-B.

Finally, as a comparative method that does not use deep
learning, we ran a compressed sensing algorithm with a sparse
model on wavelet coefficients, which we implemented via the
Berkeley Advanced Reconstruction Toolbox (BART) [57]. We
used BART’s default settings with fourth-order Daubechies
wavelets and a sparse weighting of λ = 2× 10−3.

E. Quality Metrics

To evaluate the reconstruction quality, we computed the
Normalized Mean Squared Error (NMSE) in k-space on the
test set: ‖ŷs − y0,s‖22/‖y0,s‖22. We also computed the image-
domain root-sum-of-squares (RSS), x̂s = (

∑
c |FHys,c|2)1/2

where ys,c is the k-space entries on coil c and F is the dis-
crete Fourier transform, cropped the RSS estimate to a central
320× 320 region and computed the SSIM, as suggested in
fastMRI [25].

IV. RESULTS

For brevity, the results presented here focus on RΩ = 8.
Similar results for the brain data at RΩ = 4 are shown in the
supplementary material: see Figs. S1– S4.

For the brain data, we evaluated the dependence of the meth-
ods’ performance on the distribution of MΛ by varying the pa-
rameters so that the sub-sampling factorRΛ changed. We trained

3[Online]. Available: https://github.com/byaman14/SSDU

Fig. 3. Mean test set NMSE percentage difference between fully supervised
and each methods at RΩ = 8 and a 1D distributed MΩ, where RΛ has
been tuned to minimize the test set NMSE. Fig. S1 shows a similar plot for
RΩ = 4.

Fig. 4. NMSE for all methods at RΩ = 8 and a 1D distributed MΩ, where
RΛ has been tuned to minimize the test set NMSE. Fig. S2 shows a similar plot
for RΩ = 4 and the exact numerical values are in Table S1.

with RΛ ∈ {1.2, 1.6, 2, 4, 6}, except for 2D partitioned SSDU,
which we found needed finer tuning and a smallerRΛ for the best
performance, so we trained withRΛ ∈ {1.1, 1.2, . . . , 2, 3, 4, 6}.

A. Performance With Tuned RΛ

This section focuses on the case where RΛ has been tuned
to minimize the ground truth test set NMSE. Figs. 3 and S1
show bar charts of the percentage difference between fully
supervised training and each method: (μ− μfull)/μfull where
μ and μfull are the mean NMSE of interest and mean NMSE of
fully supervised training respectively. The best performance was
for K-weighted 1D partitioned SSDU with a ys input; its mean
NMSE was only 1.1% and 0.8% larger than fully supervised for
RΩ = 8, 4 respectively. Figs. 4 and S2 show box plots of the
NMSE of each method for RΩ = 8 and RΩ = 4 respectively:

https://github.com/byaman14/SSDU
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Fig. 5. Reconstruction example with a 1D sub-sampled MΩ and RΩ = 8,
with a RΛ tuned to minimize the test set NMSE. A similar figure for RΩ = 4
is in the supplementary material, Fig. S3.

see Table S1 of the supplementary material for the numerical
values.

To evaluate whether the proposed changes to SSDU were
statistically significant, we performed a one-sided Wilcoxon
signed-rank test with p-value 0.01 on the test set NMSEs. For
both the ys and ỹs inputs, we found that there was a significant
statistical difference between 2D and 1D partitioned SSDU. We
also found that the difference between 1D partitioned SSDU and
K-weighted 1D partitioned SSDU was statistically significant.

Figs. 5 and S3 show RSS estimates from the test set at
RΩ = 8 andRΩ = 4 respectively. Qualitatively, K-weighted 1D
partitioned SSDU performs the most similarly to fully super-
vised training. Although 2D partitioned SSDU has a competitive
quantitative score for the estimate with ỹs input, it exhibits some
streaking artifacts.

Unweighted Noisier2Noise’s performance was substantially
worse than SSDU. Therefore we compare SSDU and its modi-
fications only in the remainder of this article.

Fig. 6. Dependence of the test set NMSE on the acceleration factor of the
second mask MΛ, denoted as RΛ, at RΩ = 8 for both outputs. 1D partitioned
SSDU is far more robust to the tuning of RΛ than 2D partitioned SSDU.
Fully supervised learning does not use a second mask MΛ, so has the same
performance for all RΛ. A similar figure for RΩ = 4 is in the supplementary
material, Fig. S3.

Fig. 7. Robustness to RΛ, where the blue box highlights the case where RΛ is
tuned. K-weighted 1D partitioned SSDU is very robust to RΛ, with very similar
restoration quality for all RΛ between 1.6 and 6. 2D partitioned SSDU is far
more sensitive, with substantial degradation in image quality for mistunings as
small as 0.1. Here, we show the estimate with ys input only.
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Fig. 8. Reconstruction example from the brain fastMRI dataset with a 2D
Bernoulli distributed MΩ and RΩ = 8. Compared to Fig. 5, the comparative
performance of the SSDU algorithms are switched: here, 2D partitioned SSDU
performs similarly to fully supervised training, while 1D partitioned SSDU
suffers from streaking artifacts.

B. Robustness to RΛ

For actual, prospectively sampled data, it would not be pos-
sible to tune RΛ on the ground truth test set NMSE. The
practicality of SSDU therefore depends greatly on the robustness
to RΛ. Figs. 6 and S4 show the dependence of the mean test set
NMSE onRΛ forRΩ = 8 andRΩ = 4 respectively. K-weighted
1D partitioned SSDU was the most robust to the tuning of RΛ.
2D partitioned SSDU was the least robust, especially for the
estimate with ys input. This is visualized in Fig. 7, which shows
reconstruction examples for a number of RΛs. K-weighted 1D
partitioned SSDU performs very similarly for all RΛs between
1.6 and 6, while 2D partitioned SSDU’s restoration quality
significantly degrades qualitatively and quantitatively for mis-
tunings as small as 0.1.

C. Performance on 2D Sampled Brain Data

To further evaluate the role of the partitioning distribution,
we also ran 1D and 2D partitioned SSDU on the brain data with
a 2D Bernoulli sampled MΩ. In this case, the type matching
of the second mask to MΩ is switched: 2D partitioned SSDU’s
second mask has the same type of distribution as the first, while
1D partitioned SSDU has a different type. For MΩ, we used a
fully sampled 10× 10 central region and a polynomial variable
density that samples low frequencies with higher probability
otherwise. We used RΛ = 1.2 and RΛ = 4 for 2D and 1D

Fig. 9. Two reconstruction examples of K-weighted 1D partitioned SSDU
from the knee fastMRI dataset, where MΩ is 1D. As in Fig. 5, K-weighted
1D partitioned SSDU’s restoration quality is very similar to fully supervised
training.

partitioned SSDU respectively. All other hyperparameters and
network specifics were unchanged.

In this case, the best performance was 2D partitioned SSDU,
which performed very similarly to fully supervised training: see
Fig. 8. The ỹs input had a mean test set NMSE of 0.141 and
0.144 for 2D and 1D partitioned SSDU respectively, and the
ys input had 0.141 and 0.145, compared with 0.139 for fully
supervised training. Although not shown in Fig. 8 for brevity,
we also trained 2D partitioned SSDU with a (1−K)−

1
2 loss

weighting. As for 1D partitioned SSDU in Section IV-A, we
found that this reduced the mean NMSE further to 0.140 for
both the ys and ỹs input.

D. Performance on 1D Sampled Knee Data

We also trained K-weighted 1D partitioned SSDU on the
fastMRI knee data with the same network architecture, training
hyperparameters, and a 1D distributed MΩ. The sub-sampling
factor of the first and second masks were RΩ = 8 and RΛ = 2
respectively. The mean test set NMSE was 0.233 and 0.231 for
the estimates with ỹs and ys inputs respectively, compared with
0.230 for fully supervised training. Fig. 9 shows two example
reconstructions from the test set, demonstrating competitive
performance with fully supervised training qualitatively.

V. DISCUSSION

Due to its need for correction at inference, Unweighted Nois-
ier2Noise had consistently the worst score. We therefore do
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not recommend using Unweighted Noisier2Noise in practice.
Rather, we suggest using a variant of SSDU, which has a loss
weighting that removes the need for such a correction.

The hierarchy of 1D and 2D partitioned SSDU depends on the
distribution ofMΩ. In particular, the best performance was when
they are both 1D or both 2D. It is conventional wisdom that better
reconstruction quality is possible when k-space is randomly
sub-sampled in both spatial dimensions (see, for instance, [58]).
This is because the image-domain aliasing is incoherent in both
dimensions, so is easier to remove. The superior performance
of 1D partitioned SSDU compared with 2D partitioned SSDU
when MΩ is 1D shows that it is not necessarily true that the
sampling set partition should also ideally be two-dimensional.
Rather, better performance is possible when the distribution of
MΩ and MΛMΩ are of the same type.

To see why, consider the nature of the aliasing caused by
sub-sampling and further sub-sampling k-space, focusing on the
example of a random 1D column sampled MΩ. Such sampling
causes the image-domain aliasing to be horizontally incoherent
and vertically coherent. With a 1D column-wise Λt, further
horizontal aliasing is introduced. Since the network cannot
distinguish between the horizontal aliasing caused by Ωt or Λt,
the loss is minimized when the aliasing due to both is removed.
On the other hand, a 2D Λt introduces some aliasing that is
orthogonal to the original aliasing, which is distinguishable in
principle. In this case, the loss is minimized when the network
removes the aliasing caused by Λs, but not necessarily the
original aliasing caused by Ωs. This is visible in Figs. 5 and
8, where SSDU fails to completely remove artifacts caused by
MΩ when MΛ does not have the same type of distribution.

This implies that, in general, better performance is possible
when the distribution of the aliasing of ỹt and yt are of the
same type. For both the independent 1D column sampling and
2D Bernoulli sampling considered here, this can be achieved
by choosing a MΛ with the same type of distribution as MΩ.
Recently, in [59], this was also observed empirically for SSDU
with random spoke sampling. However, such a procedure does
not always achieve this goal. For instance, while the SSDU
paper [33] considers a fully sampled central region and equidis-
tant column sampling, recovery of images with regular under-
sampling is not currently considered in the proposed framework.
In this case, a Λt of the same type would not give a ỹt with
the same aliasing type as yt. The 2D Gaussian variable density
partition employed in this article was originally constructed
to handle such sampling patterns, and was found to perform
very well in this context. Future work includes establishing the
correct sampling set partitions for MΩ distributions not in [33]
or covered by the approach suggested here.

We found that K-weighted SSDU further improved the image
quality and robustness to RΛ. Consider the jth entry of the
(squared) weighting (1−K)−1 in terms of sampling proba-
bilities:

(1− kj)
−1 =

1− p̃jpj
pj(1− p̃j)

=
P(j /∈ Λ ∩ Ω)

P(j ∈ Ω \ Λ) .

This leads to the following intuitive interpretation of the pro-
posed loss weighting as compensation for the variable density

of Ω and Λ. A smaller denominator P(j ∈ Ω \ Λ) implies that
the jth location occurs less frequently in the loss, which is com-
pensated for by an increased weighting. A smaller numerator
P(j /∈ Λ ∩ Ω) implies that the jth location is estimated by the
network less frequently, so has a decreased weighting.

The benefit of the (1−K)−1 weighting highlights and ad-
dresses a general challenge of self-supervised learning with
variable density sampling: regions of k-space sampled with
lower probability are underrepresented in the loss. This issue
has been noted in other works. For instance, for variable density
reconstruction with Noise2Noise, [60] suggests weighting the
loss function by the sampling density. An alternative approach
was suggested in [61], which suggests passing the training target
through the network before it is employed in the loss function.
We note that if the sampling and partitioning had uniform den-
sity, such as in [56], K would also be uniform, so the proposed
weighting would not be required. This may explain in part the
empirical performance observed in [56].

When MΩ was 1D, with the exception of 2D partitioned
SSDU, Fig. 6 shows that the estimate with ys input performed
similarly or better than with ỹs input when RΛ is tuned. This
indicates that, for these methods, the advantage of using all the
data in the input to the network outweighs the disadvantage
that the input data has a different sampling distribution to the
training data so is not guaranteed by Claim 1 or 2 to be correct
in expectation. Heuristically, when MΩ and MΛMΩ are both
variable density column-wise sampled, a network trained on
doubly sub-sampled data is likely to also be able to handle
singly sub-sampled data. However, for 2D partitioned SSDU,
MΛMΩ is no longer column-wise, see Fig. 2(c). Accordingly,
2D partitioned SSDU was the only method that had a higher
NMSE for the ys input compared to the ỹs input.

The bestRΛ for 2D partitioned SSDU was lower than compet-
ing methods: RΛ = 1.8 and RΛ = 1.2 for the ys and ỹs inputs
respectively. In [33], the sampling set partition was quantified in
terms of the ratio ρ = |At|/|Bt|, and it was found that ρ = 0.4
offered the best performance. Since the MΩ distributions are
different here, the optimal ρ is not expected to necessarily be
the same. For 2D partitioned SSDU RΛ = 1.8 and RΛ = 1.2
corresponds to ρ = 0.52 and ρ = 0.21 respectively, while for
the other methods’s best performance at RΛ = 4 corresponded
to ρ = 0.57. Therefore the ρ were reasonably similar despite the
substantial difference in RΛ.

Since the network architecture uses ỹt in its coil sensitivity
estimation module, not yt, it is plausible that the differences
between 1D and 2D partitioning could be due to poorer coil
sensitivity estimation rather than an intrinsic property of the
partition change. To examine this, we re-trained tuned 1D and
2D partitioned SSDU on the 1D sampled brain data with k-
space masked to a central 10× 10 region in the coil sensitivity
estimation module. We found that the test set NMSE was within
1% of the usual approach. This verifies that the performance
improvement was indeed a consequence of the partition change,
not simply a consequence of specifics of the architecture.

Unweighted Noisier2Noise’s correction at inference (1−
K)−1 is only valid when an �2 loss is used; we have found that
other loss functions do not perform well in practice. This loss
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leads to smoothing artifacts, even for fully supervised training.
For SSDU, since there is no correction term, loss functions other
than �2 are possible. For instance, in [33], a mixture of �2 and �1
was used. Better visual quality may be achievable when SSDU
is implemented with a different loss; we do not suggest using
an �2 loss in general, it is only required here so that it can be
compared directly with Noisier2Noise.

For all self-supervised methods in this work, we re-generated
Λt once per epoch. This has similarities to the multi-mask SSDU
approach proposed in [56]. However, in [56], a fixed number nΛ

of Λts were generated for each Ωt, each of which were treated
as an additional member of the training set. Therefore, unlike
in this article, each epoch was nΛ times as long. Future work
includes establishing whether it is also advantageous to limit the
number of unique Λts per Ωt for the approach considered in this
article.

All methods in this article were trained without taking mea-
surement noise into account [62], [63]. Recent work by the
present authors has shown that the additive and multiplicative
versions of Noisier2Noise can be combined to recover higher
fidelity images than SSDU in the presence of noise [64].

VI. CONCLUSIONS AND FUTURE WORK

Based on the observation that SSDU is a version of Nois-
ier2Noise with a particular rank-deficient loss weighting, we
proved that SSDU correctly estimates Y0 in expectation. This
analysis led to two proposals that we found significantly im-
proved SSDU’s performance in practice. Firstly, we propose
employing a distribution of MΛMΩ that is the same type as
the original mask MΩ. Secondly, we propose introducing a
weighting of (1−K)−

1
2 in SSDU’s loss. We found that that

each of these modifications significantly improved SSDU’s test
set NMSE and robustness to RΛ.

There are a number of other self-supervised learning methods
that also use sampling set partitioning [37], [56], [65], some
of which are variants of SSDU. For instance, [37], [65], [66]
propose training two networks in parallel, one for each sampling
subset, with a loss function that includes the difference between
the outputs of the two networks. Another recent development is
zero-shot SSDU [67], which shows that sampling set partition-
ing can also be applied to recover images without a training
dataset [68]. Future work includes determining whether the
theoretical and practical developments of this article can be
extended to these methods.

APPENDIX

A. Proof of Variable Density Noisier2Noise

This section of the Appendix proves that when pj 	= 0 and
p̃j 	= 1 for all j,

E[Y0|Ỹ ] = (1−K)−1(E[Y |Ỹ ]−KỸ ), (18)

where K = (1− P̃P )−1(1− P ) for P = E[MΩ] and P̃ =
E[MΛ].

Proof: This proof is based on Section III-D of Nois-
ier2Noise [41], but with more mathematical detail and gener-
alized to variable density sampling. Following the compressed
sensing literature, this article uses pj to refer to the probability

that the jth location in k-space is sampled. This differs to [41],
which uses p to denote the probability that a pixel is zeroed.

We wish to compute E[Yj |Ỹj ] as a function of E[Y0,j |Ỹj ]. To
do this, we split E[Yj |Ỹj ] into two cases, for conditions Ỹj 	=
0 or Ỹj = 0, and subsequently construct an expression that is
consistent with both.

Case 1. (E[Yj |Ỹj 	= 0]): By the measurement model Ỹ =
MΛY = MΛMΩY0, the singly sub-sampled Yj must take the
same value as Ỹj when Ỹj 	= 0. Therefore

E[Yj |Ỹj 	= 0] = Ỹj . (19)

Case 2. (E[Yj |Ỹj = 0]): Using the partition theorem for
expectations, we write E[Yj |Ỹj = 0] as the weighted sum of
E[Yj |Ỹj = 0 ∩ Yj = 0] and E[Yj |Ỹj = 0 ∩ Yj 	= 0]:

E[Yj |Ỹj = 0] = E[Yj |Ỹj = 0 ∩ Yj = 0] · kj
+ E[Yj |Ỹj = 0 ∩ Yj 	= 0] · (1− kj), (20)

where we define kj = P[Yj = 0|Ỹj = 0]. Evaluating each of the
terms on the right-hand-side of (20) in turn:
� E[Yj |Ỹj = 0 ∩ Yj = 0]: Since the random variable Yj is

conditionally zero, its expectation is also zero:

E[Yj |Ỹj = 0 ∩ Yj = 0] = 0.

� E[Yj |Ỹj = 0 ∩ Yj 	= 0]: The measurement model implies
that when Yj is non-zero, and therefore unmasked, it takes
the value of Y0,j . Therefore its expectation can be written
in terms of the expectation of Y0,j :

E[Yj |Ỹj = 0 ∩ Yj 	= 0] = E[Y0,j |Ỹj = 0]. (21)

� kj : By the definition of conditional expectation:

kj = P[Yj = 0|Ỹj = 0] =
P[Yj = 0 ∩ Ỹj = 0]

P[Ỹj = 0]
.

The numerator is

P[Yj = 0 ∩ Ỹj = 0] = P[Yj = 0]

= 1− pj ,

where pj = P[Yj 	= 0] = E[MΩ,jj ] is the probability that
j ∈ Ω. By the partition theorem, the denominator is

P[Ỹj = 0] = P[Ỹj = 0|Yj = 0]P[Yj = 0]

+ P[Ỹj = 0|Yj 	= 0]P[Yj 	= 0]

= 1 · (1− pj) + (1− p̃j)pj

= 1− p̃jpj ,

where p̃j = P[Ỹ 	= 0] = E[MΛ,jj ]. Therefore

kj = P[Yj = 0|Ỹj = 0] =
1− pj
1− p̃jpj

. (22)

Substituting the above results into (20) gives

E[Yj |Ỹj = 0] = E[Y0,j |Ỹj = 0](1− kj), (23)

where kj is defined in (22).
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Combining Cases 1 and 2. (E[Yj |Ỹj ]): To find E[Yj |Ỹj ], one
must construct an expression that holds for both (19) and (23).
Consider the following candidate:

E[Yj |Ỹj ] = (1− kj)E[Y0,j |Ỹj ] + kj Ỹj . (24)

This expression can be verified as consistent with (19) by setting
Ỹj 	= 0:

E[Yj |Ỹj 	= 0] = (1− kj)E[Y0,j |Ỹj 	= 0] + kj Ỹj

= (1− kj)Ỹj + kj Ỹj

= Ỹj ,

as required. Secondly, setting Ỹj = 0 gives

E[Yj |Ỹj = 0] = (1− kj)E[Y0,j |Ỹj = 0] + kj · 0
= (1− kj)E[Y0,j |Ỹj = 0],

as required by (23). Therefore (24) is consistent with both (19)
and (23), so is a correct expression for E[Yj |Ỹj ].

When 1− kj 	= 0 we can rearrange (24) for E[Y0,j |Ỹj ]:

E[Y0,j |Ỹj ] = (1− kj)
−1(E[Yj |Ỹj ]− kj Ỹj). (25)

By the expression for kj given in (22), 1− kj is

1− kj = 1− 1− pj
1− p̃jpj

=
pj(1− p̃j)

1− p̃jpj
,

so is non-zero when pj 	= 0 and p̃j 	= 1. Writing (25) in terms
of vectors and matrices yields (18), as required.

B. Proof of SSDU

This section of the Appendix proves that a network trained
with SSDU’s loss weighting (1−MΛ)MΩ satisfies

(1−K)(1−MΛMΩ)(fθ∗(Ỹ )− E[Y0|Ỹ ]) = 0. (26)

Proof: By (6), the minimum of SSDU’s loss function (12)
gives a function that satisfies

E[(1−MΛ)MΩ(fθ∗(Ỹ )− Y )|Ỹ ] = 0 (27)

Similarly to Section A of the Appendix, the following derives
expressions for E[(1−MΛ)MΩ(fθ∗(Ỹ )− Y )|Ỹ ] under two
conditions, Ỹj 	= 0 and Ỹj = 0, and subsequently find an ex-
pression that is true for both. In the following, m̃j and mj are
the jth diagonals of MΛ and MΩ respectively.

Case 1. (E[(1− m̃j)mj(fθ∗(Ỹ )j − Yj)|Ỹj 	= 0]): When
Ỹj 	= 0, the jth entry is not masked: m̃j = 1. Therefore (1−
m̃j)mj = 0 and the expression is zero:

E[(1− m̃j)mj(fθ∗(Ỹ )j − Yj)|Ỹj 	= 0] = 0. (28)

Case 2. (E[(1− m̃j)mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0]): When
Ỹj = 0, m̃jmj = 0, so (1− m̃j)mj = mj . Therefore

E[(1− m̃j)mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0]

= E[mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0]. (29)

As for Case 2 of Section A of the Appendix, we can use the
partition theorem to express (29) as a weighted sum:

E[mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0]

= E[mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0 ∩ Yj = 0] · kj
+ E[mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0 ∩ Yj 	= 0] · (1− kj),

(30)

where kj = P[Yj = 0|Ỹj = 0] as in Section A of the Appendix,
given in (22). Taking each term in turn:
� E[mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0 ∩ Yj = 0]: Since Yj = 0

when it is zeroed by the mask, mj = 0. Therefore

E[mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0 ∩ Yj = 0] = 0.

� E[mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0 ∩ Yj 	= 0]: When Yj 	= 0, it
is not zeroed by the mask, so mj = 1:

E[mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0 ∩ Yj 	= 0]

= E[fθ∗(Ỹ )j − Yj |Ỹj = 0 ∩ Yj 	= 0].

Further, since Yj = Y0,j when Yj 	= 0 by the measurement
model,

E[fθ∗(Ỹ )j − Yj |Ỹj = 0 ∩ Yj 	= 0]

= E[fθ∗(Ỹ )j − Y0,j |Ỹj = 0].

Substituting the above results in to (30) gives

E[(1− m̃j)mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0]

= E[fθ∗(Ỹ )j − Y0,j |Ỹj = 0] · (1− kj). (31)

Combining Cases 1 and 2: A correct expression for E[(1−
m̃j)mj(fθ∗(Ỹ )j − Yj)|Ỹj = 0]must be true for both Case 1 and
2, so consistent with both (28) and (31). Consider the candidate

E[(1− m̃j)mj(fθ∗(Ỹ )j − Y0,j)|Ỹj ]

= (1− kj)(1− m̃jmj)E[fθ∗(Ỹ )j − Y0,j |Ỹj ]. (32)

Equation (32) is consistent with (28) because (1− m̃jmj) = 0

when Ỹj 	= 0, and consistent with (31) because (1− m̃jmj) =

1 when Ỹj = 0. Using the vector form of (32) and setting
E[fθ∗(Ỹ )|Ỹ ] = fθ∗(Ỹ ) gives

E[(1−MΛ)MΩ(fθ∗(Ỹ )− Y )|Ỹ ]

= (1−K)(1−MΛMΩ)(fθ∗(Ỹ )− E[Y0|Ỹ ]) = 0, (33)

as required.
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