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Abstract—Monocular depth estimation and image deblurring
are two fundamental tasks in computer vision, given their crucial
role in understanding 3D scenes. Performing any of them by relying
on a single image is an ill-posed problem. The recent advances in the
field of Deep Convolutional Neural Networks (DNNs) have revolu-
tionized many tasks in computer vision, including depth estimation
and image deblurring. When it comes to using defocused images,
the depth estimation and the recovery of the All-in-Focus (Aif)
image become related problems due to defocus physics. Despite
this, most of the existing models treat them separately. There are,
however, recent models that solve these problems simultaneously
by concatenating two networks in a sequence to first estimate the
depth or defocus map and then reconstruct the focused image based
on it. We propose a DNN that solves the depth estimation and
image deblurring in parallel. Our Two-headed Depth Estimation
and Deblurring Network (2HDED:NET) extends a conventional
Depth from Defocus (DFD) networks with a deblurring branch
that shares the same encoder as the depth branch. The proposed
method has been successfully tested on two benchmarks, one for
indoor and the other for outdoor scenes: NYU-v2 and Make3D.
Extensive experiments with 2HDED:NET on these benchmarks
have demonstrated superior or close performances to those of the
state-of-the-art models for depth estimation and image deblurring.

Index Terms—Depth from defocus, image deblurring, deep
learning.

I. INTRODUCTION

D EPTH estimation from a single image is a key problem
in computer vision, where it spans a lot of applications.

Robotics, augmented reality, human-computer interaction or
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computational photography, to give only several examples, ben-
efit from depth estimation. With the recent advancements in 3D
computer vision and the newly emerging tasks like semantic seg-
mentation or 3D object detection, depth estimation has become
even more important.

The depth can be measured by specialized devices or can be
inferred from images and videos. For outdoor scenes, LIDAR
or stereo systems are typically used to measure the depth of
the scene. For indoor scenes, Time of Flight (ToF) cameras
like RGBD Kinect from Microsoft, is used to capture depth
information in addition to the RGB images. However, the ap-
plicability of these devices is limited. ToF cameras are not
working properly in the outdoors, being limited to 30 m at
best, while the LIDAR may produce poor-quality depth maps
because of infrared interference. These physical limitations,
the sparse nature of the measurements, and the cost of the
devices have fostered the research in the direction of obtaining
depth from images or videos taken with commercial cameras.
Here, although the performance of depth estimation methods is
steadily increasing, there are still major problems related to the
accuracy and resolution of the estimated depth maps.

Image deblurring is a classical problem in low-level computer
vision, and a prepossessing step in numerous applications such
as face detection, classification, object recognition, or misfocus
correction. Object motion, camera shake, or out-of-focus are
common causes for the blur appearing in the images taken with
a camera. The goal of image deblurring is to recover an AiF
image with all the details and sharp edges from its defocused
counterpart.

The main objective of the network proposed in this article is
to estimate the depth and remove blur from a single out-of-focus
image. Fig. 1 shows an example of Depth from Defocus (DFD)
and image deblurring. In this example, the network estimates
a dense depth map and reconstructs the AiF image from a
defocused image.

Most of the DNNs dedicated to depth estimation work on
AiF images [1], [2], [3]. The exploitable information in such
images is limited to the scene geometry, which explains the lower
performances compared to LIDAR or ToF cameras. The defocus
blur is a complementary cue that can help to improve the depth
accuracy.

DFD has been widely investigated in the past [4]. The first
DFD methods were focused on the depth related to the blur
amount and as a result, they suffered from insensitivity in the
Depth of Field (DoF) region and uncertainty regarding the object
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Fig. 1. Example of image deblurring and depth prediction using 2HDED:NET
in a scene from the NYU-v2 dataset. AiF is an all-in-focus image that serves as
ground truth for deblurring. The AiF and ground-truth depth are captured by an
RGBD Kinect camera.

position with respect to the in-focus plane. The use of coded
apertures [5], [6], dual images or focal stacks [7], [8], [9] has
alleviated such problems.

In many applications, including DFD [10], [11], [12], [13],
DNN models outperform the classical methods, due to the ability
of learning more complex features. The features learned from
defocused images combine both the scene geometry and the blur
for more accurate depth estimation. In the last years, a series of
DNNs has been proposed for image deblurring as well [10], [14],
[15], [16], [17].

Although the depth and defocus blur are closely related, the
deblurring and depth estimation have been generally, treated as
separate problems by deep learning. There are however some
rare exceptions like the method of Anwar et al. [10], which
concatenates two networks to first estimate the depth map and
then, based on this depth map, restores a focused image by
pixel-wise non-blind deconvolution. More precisely, in [10] a
fully convolutional neural network with 13 layers provides a
pixel level feature map, then a patch pooling layer turns the
patches around predefined key points into fixed size feature map,
which are further propagated through a shallow fully connected
network to estimate a dense depth map. The deblurring is done
by deconvolution with kernels calculated for every pixel of the
RGB image, by using the estimated depth.

It is known that architectures with independent and task-
dedicated branches and their loss terms combined decrease
overfitting in the training phase, and permit to execute any of the
tasks in the inference time. In this line, we propose a DNN that
solves the problem of DFD and image deblurring in parallel. The
proposed two-headed network, called 2HDED:NET, estimates
the depth and deblurs the image in a balanced way by giving the
same importance to both tasks. The network consists of three
modules: i) an encoder for multi-level feature extraction from the
defocused image, ii) a depth estimation decoder (DED) for the
DFD, iii) an AiF decoder (AifD) for image deblurring (Fig. 2).
The heads interact with each other during training, allowing the
encoder to learn semantically rich features that are well-suited
for both tasks.

Unlike Anwar et al. in [10], where the deblurring depends on
the intermediate result of depth estimation, our 2HDED:NET

generates an AiF image, which is not any more constrained by
depth accuracy. Separating the deblurring and depth estimation
branches also makes AifD self-sufficient and better able to
perform the deblurring task without relying on an estimated
depth map.

2HDED:NET is a typical Multitask Learning (MTL) neural
network with hard sharing of parameters. The encoder layers are
shared by both depth estimation and deblurring tasks while the
two decoders remain task-specific. Comparing to the single task
networks, the MTL networks benefit from a series of advantages:
an augmented training set, relevant feature learning by attention
focusing, easier learning of features from less complex models,
reduced risk of overfitting, and better generalization to new tasks
[21]. The foundations of MTL by hard parameter sharing had
been laid by Caruana in 1997 [18], and two recent surveys of
MTL can be found in [19], [20]. The MTL technique has been
used successfully in computer vision applications as well as in
other areas such as natural language processing and drug discov-
ery. Two recent applications closely related to our application
are addressed in [21], [22], where the depth map and semantic
segmentation are learned by MTL.

The architecture of 2HDED:NET is straightforward, simple,
and easy to train. With its double functionality – depth estimation
and deblurring – 2HDED:NET emulates a Kinect-type camera
on a commercial camera with limited DoF. A special feature of
2HDED:NET is that after training, the depth estimation head is
no longer necessary to recover a sharp image and vice versa.

We define a hybrid loss function to train 2HDED:NET. It
embeds specific cost functions for depth and deblurring like L1
norm and Charbonier loss [11], [23], as well as specific regular-
izations like gradient-based smoothing [24] and maximization
of Structural Similarity Index Measure (SSIM).

We run extensive experiments on the NYU-v2 and Maked3D
benchmarks in order to evaluate the performance of the
2HDED:NET and to compare with the state-of-the-art meth-
ods for depth estimation and image deblurring. In most
cases, 2HDED:NET generates better results. For training,
2HDED:NET uses two types of ground truth, the depth and the
AiF images in the benchmarks. As input, synthetically defocused
images are generated using the thin lens model. Hence, the prior
information is consistent with that of any other network for depth
estimation. The supplement includes the mathematical model of
the defocus blur, which is proven effective through our results.

The main scientific contributions of our work are:
� A parallel architecture, namely 2HDED:NET, that enables

the recovery of AiF images and the generation of depth
maps from a single defocused image.

� The architecture has the merit to achieve a balanced gener-
ation of both depth maps and AiF images while assigning
equal significance to both tasks.

� A hybrid loss function that combines losses and re-
gularizations from both depth estimation and deblurring
and enforces the encoder to learn much richer semantic
features.

� Extensive experimental results on NYU-v2 and Make3D
datasets enriched with synthetic defocused images, confirm
the effectiveness of our approach.
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Fig. 2. 2HDED:NET architecture consists of one encoder and two decoders that work in parallel. The upper Head estimates the depth map and the lower one the
AiF image. The network is fed in with defocused RGB images.

The remainder of this article is organized as follows. In
Section II, we provide an overview of the related work. In
Section III, we present our methodology. The experimental setup
and results are reported in Sections IV and V, and, finally, in
Section VI, we present conclusions and future work.

II. RELATED WORK

This section briefly reviews the state-of-the-art DNN-based
solutions for DFD and deblurring.

A. Single Image Depth Estimation

The success of DNN models in various fields of computer
vision, such as image segmentation and classification, has
prompted the scientific community to consider using DNNs for
depth estimation as well. Saxena et al. [2] presented one of the
first solutions for monocular depth estimation with deep learning
methods. They estimate the depth with a multi-scale architecture
and the Markov Random Field (MRF). Eigen et al. [3] presented
one of the most successful works by developing a multi-scale
architecture to extract information from a scene at global and
local levels in order to estimate the depth map. Laina et al. [25]
proposed an encoder-decoder network with a fast up-projection
block. Cao et al. [26] relied on Conditional Random Fields
(CRF) to improve the accuracy of the depth maps. GANs have
also been utilized for depth prediction. Jung et al. in [27] and
Carvalho et al. in [28] implemented an adversarial loss for depth
prediction. Most of the evoked networks solve the problem of
monocular depth estimation by using in-focus images as input

and ignoring the defocus blur, which is however an important
cue in depth estimation.

B. Depth From Defocus

Defocus blur occurs when images are captured with limited
DoF. All cameras have a limited DoF, which is controlled by the
camera aperture diameter. Although the blur exists also in this
range, it is not perceived by the human eye.

To estimate depth from a single defocused image, Carvalho
et al. [11] built on a dense network DenseNet-121 with skip
connections that improved the state-of-the-art results of the
time. To handle the DFD problem, Gur et al. [29] designed a
convolution layer based on the Point Spread Function (PSF) to
train an unsupervised network. Anwar et al. [10] trained a fully
connected cascaded deep neural network inspired by the VGG-
16 model on dense overlapping fields to estimate depth from a
single defocused image. In [12], Fu et al. proposed a multi-scale
network structure to obtain high-resolution depth maps using
spacing-increasing discretization and a simple regression loss.

C. Image Deblurring

Blind image deblurring has been always a difficult problem.
Since the advent of DNNs, several models were designed to
reduce the blur from a single image. The first ones directly re-
move the blur, such as Nah et al. [30], who used a multiscale loss
function to train their model. Tao et al. [31] improved their work
by using joint network parameters at different scales. Kupyn
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et al. proposed DeblurGAN to reconstruct AiF images from
defocused images by using an adversarial loss function [32].

The strategy adopted in more recent papers is to first estimate
a defocus/depth map and later use this information for image
deblurring. Thus, Lee et al. [33] introduced a deep architecture
along with a domain-matching approach to estimate the defocus
map of an image, and also presented a large dataset for train-
ing DNNs. Very recently, by estimating defocus maps, works
like [10], [14] use the amount of blur per pixel to reconstruct the
entire deblurred image.

Zhang Kai et al. proposed two general methods for image
restoration, with deblurring as a particular case in [34], [35].
In [34], it is shown that by separating the fidelity from the
regularization term in the energy function, the optimization
problem can be solved by plugging a denoising neural net-
work in a Half Quadrating Splitting framework. The method
is tested for denoising, super-resolution and deblurring. In [35],
the authors proposed a convolutional neural network for blind
Gaussian denoising. The network removes the latent clean image
and estimates the residual Gaussian noise with unknown level.
By observing that the image degradation model for Gaussian
denoising can be converted to other restoration problems, the
authors successfully apply it to image super-resolution and JPEG
deblocking.

The priors on image model play an important role in im-
age restoration by optimization. Zha et al. proposed in [36]
a low-rank and deep image model with three complementary
priors: internal and external, shallow and deep, and non-local
and local priors. The model is successfully tested on image
deblurring, restoration after compressive sensing, and JPEG
deblocking. The sole non-local self-similarity prior is used by
Zha et al. in [37] for image restoration by using the Expectation
Maximization algorithm with image deblurring, denoising, and
deblocking as applications.

D. Joint DFD and Image Deblurring

The survey of the literature has revealed only two DNN
models that addressed both depth estimation and blurring or
deblurring process. Gur et al. proposed a network to estimate
the depth from a single defocused image in [29]. Unlike the
supervised learning networks, they adopted a self-supervised
learning approach with a loss function based on the difference
between the defocused input image and a defocused image
estimated by a second network. This second network implements
the blur model and creates a synthetically defocused image by
using the estimated depth.

The closest approach to our architecture is the model proposed
by Anwar et al. in [10]. They train a cascade of two smaller
networks to estimate a depth map, which is then used to compute
kernels for restoring the AiF image by pixel-wise non-blind
deconvolution.

III. 2HDED:NET ARCHITECTURE

Fig. 2 depicts the architecture of 2HDED:NET. Given a single
defocused image I , the goal of our network is to estimate
the depth map Îdepth and to restore the AiF image Îaif . As

TABLE I
SIZE OF OUTPUT FEATURES AND INPUT/OUTPUT CHANNELS OF EACH LAYER

OF 2HDED:NET

shown in Fig. 2, 2HDED:NET consists of one encoder and two
decoders that output the depth map and AiF image in parallel. By
utilizing the features learned by the same encoder, both heads can
mutually benefit from each other. 2HDED:NET is a supervised
method that requires the ground truth depth as well as the AiF
images for training.

A. Encoder

For the encoder network, we use the DenseNet-121 [38].
As its name suggests, DenseNet consists of densely connected
layers. The main feature of DenseNet-121 is that this network
reuses the features of each layer by concatenating them with
the features of the next layer, rather than simply aggregating
them like ResNet50. The goal of the concatenation is to use
the features obtained in the previous layers in the deeper layers.
This is referred to as “feature reusability”. DenseNets can learn
mappings with fewer parameters than a typical CNN since there
are no redundant maps to learn. Similar to [11], we replace
the max-pooling layer with a 4 × 4 convolutional layer to
reduce resolution while increasing the number of the feature
channel maps. We use skip connections between the encoder and
decoder parts to simplify learning. The skip connections prevent
the problem of the gradient disappearing since the subsequent
layers focus on solving residuals rather than completely new
representations. The encoder helps to obtain multi-resolution
features from the input image, which are useful for the two
tasks that 2HDED:NET performs. Further information about the
encoder’s output size, input, and output channels can be seen in
Table I.

B. Depth Estimation Head

The Depth Estimation Decoder (DED) is inspired by [11].
It consists of 5 decoding layers, each with 4 × 4 convolution
that increases the resolution of the feature map, followed by a
3× 3 convolution that reduces the aliasing effect of upsampling.
Batch normalization and ReLU functions are included after each
convolutional layer to make learning more stable and to allow
the representation of nonlinearities. Table I shows how decoder
layers upsample the input using transpose convolutions. The
output of DED is one channel depth map.
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C. Deblurring Head

We refer to the deblurring decoder as to AiF decoder (AifD).
Unlike DED, the output of AifD is a three-channel RGB
image. We use an input joint layer to aggregate the defocused
input image with the output of AifD as in [14], [39] for the
final prediction. The content of the defocused image and the
corresponding prediction from AifD are embedded in the input
joint layer, giving this head more detailed guidance for learning
deblurring. Unlike methods that use pipeline processing, where
the depth or defocus map is first predicted and then the Aif image
is recovered, our deblurring head is not based on such estimates,
avoiding reliance on insufficient depth maps in some cases.

An important feature of our solution is that once 2HDED:NET
is fully trained, we are still able to perform a task when the other
head is removed, e.g. we can perform DFD without the AifD
head and vice versa.

D. Loss Functions

The training of the 2HDED:NET is supervised simultaneously
by ground truth depth maps and AiF images. To consider this
dual information, we propose a loss function with two terms, one
that accounts for the depth loss and another for the deblurred im-
age. These two components are balanced to have approximately
equal contributions.

1) Depth Loss: Most of the deep learning methods pro-
posed for depth estimation have been trained with pixel-wise
regression-based loss functions calculated as the mean of abso-
lute differences (L1 norm), squared differences (L2 norm), or
combinations of them [11].

As the loss function for depth estimation, we resort to L1
norm, known for the ability to estimate sparse solutions as it is
the case for depth maps [11], [40]:

LDepth
1 =

1

n

n∑
i=1

|Îdepthi − Idepthi | (1)

where Îdepth is the estimated depth, Idepth the ground truth, i
is the current pixel and n is the number of pixels.

Often, this loss is complemented by a smoothing regulariza-
tion term that has the role of removing the low amplitude struc-
tures in the depth map while sharpening the main edges [24],
[29], [41], [42]. In the case of our network, we improve the
depth accuracy by combining L1 norm with the smoothing term
commonly used in supervised learning and defined as [24]:

Lgrad =
1

n

∑
i

|ΔxRi|+ |ΔyRi| (2)

where Ri = Îdepthi − Idepthi and Δx and Δy are the spatial
derivatives with respect to the x-axis and y-axis. As a result,
the overall depth loss function is defined as (3):

Ldepth = LDepth
1 + μLgrad (3)

where μ is a weighting coefficient set to 0.001.
2) Deblurring Loss: Various loss functions have been pro-

posed to train the DNNs for image deblurring. Pixel-wise content

loss functions like L1 and L2 norm are the most common [43],
[44].

To train 2HDED:NET, we test L1 norm and Charbonnier loss
function [45], which is the smoothed version ofL1. Charbonnier
loss is calculated as a squared error between the estimated
deblurred image Îaif and the ground truth AiF image Iaif :

Lcharb =
1

n

W∑
i=1

H∑
j=1

√
(Îaifi,j − Iaifi,j )2 + ε2 (4)

where ε is a hyper-parameter set to 1e− 3. This hyper-parameter
acts as a pseudo-Huber loss and smooths the errors smaller than
ε.

In a series of papers [23], [39], [46], the loss function defined
either as Charbonnier or L1 norm, is improved by requiring a
high SSIM. This results in adding the regularization term:

LSSIM = 1− SSIM
(
Îaifi,j , Iaifi,j

)
(5)

which makes the complete deblurring loss function to be:

Ldeblur = Lcharb +ΨLSSIM (6)

where Ψ is a weight set to 4.
3) 2HDED Loss Function: With the depth and deblurring

losses defined as in (3) and (6), we define the following total
loss for 2HDED:NET training:

L2HDED = Ldepth + λLdeblur (7)

In our experiments, we tested several versions ofL2HDED: with
Ldepth including or not Lsmooth, with Ldeblur being either L1
norm or Lcharb, and with or without SSIM loss. We noticed
during the experiments that the model performance is very
sensitive to the weighting value, which is why we paid close
attention to the choice of λ. Starting from the idea that both tasks
should be given the same importance, we evaluated the depth and
deblurring losses separately during the training, and we settled
λ in a way that they have an approximately similar contribution
to the total loss. Then we fine-tuned λ by performing a grid
search and we found that λ = 0.01 is suitable for all versions of
LHDED.

E. Accuracy Measures for DFD and Image Deblurring

To evaluate the accuracy of the estimated depth maps and
deblurred images, we use accuracy measures that have been
widely reported in previous studies.

For the depth estimation, we compute the root mean square er-
ror (RMSE), relative absolute error (Abs. Rel.), and thresholded
accuracy δ as follows:

1) RMSE =
√

1
n

∑n
i=0(Î

depth
t − Idepth)2

2) Abs.Rel. = 1
n

∑n
i=0

|̂Idepth
t −Idepth|

Idepth

3) Thresholded accuracy (δ) is the percentage of pixels such

that: max(
̂Idepth
t

Idepth ,
Idepth

̂Idepth
t

) = δ < threshold

To evaluate the deblurring, we resort to two well-known
metrics commonly used to measure the quality of images: Peak
Signal to Noise Ratio (PSNR) and SSIM.
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Fig. 3. The thin lens model: the COC diameter ε depends on the distance x
of the object to the lens.

IV. DATASETS

2HDED:NET is trained with two types of ground truth, depth
maps, and AiF images. Since until recently, DFD and image
deblurring have been considered separately, the existing solu-
tions were developed around datasets dedicated to one of these
applications. The lack of datasets including defocused images,
corresponding depth maps, and AiF images, determined us to
work on datasets for depth applications consisting of AiF images
and depth ground truth and to generate defocused images by
blurring the AiF images. The synthetically defocused images
have been used by many recent works [10], [11], [13] dedicated
either to depth inference or image restoration. Thus, our choice
has been the NYU-Depth V2 dataset containing indoor scenes,
and the Make3D dataset with outdoor scenes. The depth range
of the datasets depends on the type of sensor used to capture the
depth as well as the collection method. The depth range of NYU
images is 0.7 to 10 m and of Make3D, 0 to 80 m.

The NYU dataset comprises 230,000 pairs of RGB indoor
images and their corresponding depth maps. In order to speed
up the experiment, the training of 2HDED:NET has been run
with a smaller dataset. We used the same split as [10], [11], [47]
i.e., 795 images for training and 654 for testing. The original size
of the images captured by Microsoft Kinect is 640× 480 pixels,
but they were reduced to 561× 427 pixels in our experiments.

The Make3D dataset consists of 534 RGB images and depth
maps representing outdoor scenes. To train the 2HDED:NET un-
der the same conditions as in [10], we split the dataset similarly,
i.e., into 400 images for training and 134 images for testing.

To avoid overfitting, the training set has been increased by
data augmentation. We adopted the data augmentation procedure
addressed in [11]. Since we use defocus blur as a cue, we do not
apply any data augmentation process that can affect the blur
information. In the first step, all the images are centered scaled.
For random flips, each individual sample is flipped horizontally
by 50%.

A. Defocus Blur Simulation

To generate the realistic physical blur in the RGB images we
adopt the procedure used by the authors in [48] to generate the
SYNDOF dataset. To defocus an image, they start from the thin
lens model [49], commonly used in computer vision (Fig. 3).

We used the same parameter values as [48] such as aperture
size of 4.48 cm and focal length set to 0.07 m. In Fig. 3, x is the
distance to the object, f is the distance from the lens to the image
sensor, D is the diameter of the aperture, S is the distance to the
in-focus plane, and ε is the diameter of the circle of confusion
(COC) calculated as:

ε = α
|x− S|

x
,where α =

f

S
D (8)

To generate blur in the AiF image, we apply Gaussian filters
with a kernel with standard deviation ρ = ε/4. Similar to [48],
ε is calculated based on the per-pixel depth values. As a result,
we have defocused images with corresponding depth maps and
AiF images.

V. RESULTS

For the experimental results, we divided our analysis into the
following sections:
� Depth estimation and image deblurring results with various

loss functions. We tested simple solutions like Lcharb for
deblurring and L1 for depth and improved our results
gradually, by adding regularizations consisting of SSIM
for deblurring and smoothing for depth.

� Results with two heads and one head ablated to see the
effectiveness of the two-head architecture.

� Finally, we compare our results to the state-of-the-art
results for depth or image deblurring, obtained on the
NYU-v2 and Make3D benchmarks.

Our network is implemented using the PyTorch package in
Python environment The entire training session takes approxi-
mately 9 hours on an NVIDIA Quadro GV100 GPU with 32 GB
memory. We trained 2HDED:NET for 500 epochs with a batch
size of 4 images. We use Stochastic Gradient Descent (SGD) op-
timizer with an initial learning rate of 0.0002. The initial learning
rate is reduced 10 times after the first 300 epochs, this allows for
large weight changes at the beginning of the learning process and
small changes towards the end of the learning process. As for
the total number of network parameters, our network is much
lighter than [10]. Specifically, our 2HDED:NET comprises a
total of 41M parameters, whereas [10] employs a network with
138M parameters, three times higher than our model.

A. Effect of Loss Functions

In this subsection, we perform a set of experiments consisting
of training the 2HDED:NET with the various loss functions
described in Section III-D. To select among the multiple op-
tions existing for our combined depth and deblur loss function,
we adopt a simple to complex approach. In the first step, we
use a photometric error for deblurring and L1 norm for depth
accuracy. For deblurring, we test with L1 and Charbonnier loss
functions, the latter being a smoothed version ofL1. To ensure an
equal contribution of the two components, the deblurring error
is weighted by λ = 0.01. We maintain the principle of equal
contribution over the entire experiment.

Table II presents results obtained on the NYU dataset. The
depth estimation has a good accuracy even for this simple loss
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TABLE II
RESULTS ON NYU-V2 DATASET WITH DIFFERENT LOSS FUNCTIONS FOR DEPTH ESTIMATION AND IMAGE DEBLURRING

Fig. 4. Results with and without the smoothing regularization for depth esti-
mation on NYU-v2 dataset. The deblurring loss isLcharb. The rectangular crops
illustrate areas where new details emerge when using smoothing regularization.

function. The RMSE is under 0.3 and there are no significant
differences when the photometric error for deblurring switches
from Charbonnier to L1, where the accuracy is only slightly
worse. This is not the case for deblurring, where the use of
Charbonnier improves the PSNR by 3 dB comparing with L1,
providing on average, a quality of 33.554 dB for the test set.
Therefore, we choose Charbonnier for the subsequent experi-
ments.

In the second step, we alternately improve on deblur and depth
losses by adding an SSIM-based term to Lcharb and smoothing
regularization to L1. These additional terms are weighted by
Ψ = 4 and μ = 0.001, respectively. The smoothing regulariza-
tion improves the RMSE depth accuracy from 0.285 to 0.244
on average but it worsens the deblurring results by more than
1 dB. This apparently small difference in RMSE can impact
significantly on the quality of depth maps as it can be seen from
the example in Fig. 4, where new details are emerging when the
smoothing regularization is added.

The introduction of SSIM term brings benefits to both depth
estimation and deblurring. The RMSE decreases to 0.282 and
the PSNR becomes higher by 0.3 dB on average. The deblurring
results on simple L1 loss and the default loss, which is Lcharb +
Ψ(1− SSIM), can be seen in Fig. 5.

Finally, we combine the photometric errors and the two reg-
ularizations – SSIM and smoothing – in a unique loss function.
The network trained with this loss function achieves the best
results both in depth accuracy and deblurring. The RMSE of
depth touches the lowest level of 0.241 and the PSNR of the
deblurred images is almost 35 dB. Some examples are depicted
in Figs. 6 to 8 and commented in the next subsection.

Fig. 5. Deblurring results withL1 andLcharb +Ψ(1− SSIM) default loss
on NYU-v2 dataset. The depth loss is L1.

Fig. 6. 2HDED:NET results for depth estimation on NYU-v2 dataset using
the default loss L2HDED : (a) RGB defocused image (b) Depth ground truth
(c) Estimated Depth.

B. Effect of Head Ablation

The 2HDED:NET is trained by using two kinds of ground
truth values, the AiF image and the depth map. One is ingested
by the deblurring head, the other one by the depth head. They
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TABLE III
EFFECT OF ABLATING ONE HEAD. RESULTS ON NYU-V2 DATASET

Fig. 7. 2HDED:NET results for depth estimation on Make3D dataset using
the default loss L2HDED : (a) RGB defocused image (b) Depth ground truth
(c) Estimated depth.

contribute together to the training of the network as long as
the loss function combines the depth and deblurring errors.
Nevertheless, the network could be trained and still run by
keeping a single head.

In this subsection, we evaluate the benefits of the two-headed
architecture to the overall accuracy of the model. Hence, we
alternately remove one head and retrain the network by using ei-
ther the AiF or depth error depending on what head is preserved.
Table III shows the results. For image deblurring, when the depth
head is ablated and the lossLcharb +Ψ(1− SSIM) is used, the
PSNR decreases by almost 3 dB, from 34.849 dB to 31.941 dB.
Similarly, by ablating the deblurring head, the accuracy of the
estimated depth maps becomes worse. On average, the RMSE
increases by 0.05.

Thus, it is clear that 2HDED:NET achieves the best results
when both heads are used together. Each head improves the
results of the other one by complementing the ground truth,
even if it is of a different nature.

C. Comparison With SoA Methods for Depth Estimation and
Image Deblurring

We compare 2HDED:NET with some state-of-the-art solu-
tions based on neural networks for depth estimation and image
deblurring. Since in the literature, there are very few networks
that solve simultaneously the problems of DFD and image
deblurring [10], [29], we also consider recent methods dedicated
exclusively to depth estimation. The blur is rarely taken into
consideration in such cases [50], [51], [52], most of the networks
being trained on AiF images. Table IV presents in the left half,
results for depth estimation obtained with networks trained on
NYU and Make3D dataset.

For NYU dataset, the best accuracy in terms of RMSE is
obtained by Carvalho et al. [11] and Song et al. [13], both trained
on defocused images with the sole purpose of generating depth
maps. Their performances are very close, [13] outperforms [11]
on Abs.rel but not on RMSE. The approach proposed in [13]
demonstrates improvement in performance by utilizing pairs
of images with varying degrees of defocus to estimate depth,
thereby providing additional ground truth information.

From the same category of networks using defocused i-mages,
there are [29] and [10]. They are the most representative for our
comparison since these networks handle both depth maps and
blurred images. On average, the depth maps accuracy of [10] is
worse by 0.2 in RMSE comparing with the best result in [11].
Gur et al. [29] lags behind with an RMSE of 0.766 but the results
are still remarkable given the fact that they use self-supervised
learning. 2HDED:NET is at half way between [11] and [10]
with a RMSE of 0.241. In the category of networks handling
both depth and deblurred images, our 2HDED:NET is the best
in all metrics.

We also present results for three recent networks trained on
AiF images to generate exclusively depth maps. The average
RMSE ranges between 0.433 and 0.579, well inferior to the
results of [11] or [13] and to our result. This difference proves
the effectiveness of the defocus in the training set. The defocus
is an additional source of information, independent of the scene
geometry, which is commonly exploited by neural networks.
Fig. 6 depicts three examples of depth maps obtained with
2HDED:NET. The visual comparison with the ground truth
shows high-quality results. The smoothing regularization added
to L1 loss instructs the network to produce depth maps with
sharp edges and smooth, homogeneous regions that match well
the ground truth and have significantly fewer artifacts.
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Fig. 8. 2HDED:NET results for deblurring on NYU-v2 and Make3D dataset. From left to right: (a) defocused image, (b) ground truth AiF image, and
(c) deblurred image. Similarly, (d), (e), and (f) for a different scene. Zoomed-in patches are shown below each scene.

Fig. 9. Comparison of 2HDED:NET with the pipeline solution of Anwar et al. [10], and two general methods for image restoration [34], [35]: an example from
NYU-v2 dataset.
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TABLE IV
COMPARISON OF 2HDED:NET WITH SOA METHODS FOR DEPTH ESTIMATION AND IMAGE DEBLURRING ON NYU-V2 AND MAKE3D DATASETS

We also evaluate the performance of 2HDED:NET on
Make3D dataset, which consists of outdoor scenes. The common
approach to measuring the depth accuracy on this data set is to
estimate errors on two depth ranges: C1 for depth up to 70 m
and C2 up to 80m [53]. The results for Make3D dataset are
shown in the lower half of Table IV. Earlier methods [12], [29],
trained on Make3D dataset, are also displayed for comparison.
Our analysis shows that 2HDED:NET performs better than [29]
in all metrics and for both ranges. In what concerns [12], our
results are better in terms of Abs.rel. on C1 range and RMSE
on C2.

Fig. 7 depicts qualitative results for three different scenes.
2HDED:NET manages to correctly extract the depth of both
near and distant regions.

Regarding image deblurring, in order to have a fair com-
parison, we selected only methods that are tested on NYU
and/or Make3D benchmarks. The number of such methods is
limited as these benchmarks are typically employed for depth
estimation, rather than deblurring. Thus, for the NYU dataset,
we selected [10], [29], [54] as a baseline, and for the Make3D
dataset, only [10]. The results are shown in the right half of
Table IV.

2HDED:NET performs better than the selected methods for
NYU dataset, where it achieves an average PSNR of 34.85 dB.
Comparing with [10], which is the main competitor, our results
are superior by a margin of 0.64 dB. 2HDED:NET outperforms
this method also on Make3D dataset, where the average PSNR
is higher by 3 db.

Some qualitative results are depicted in Fig. 8. On the first
row, there are two scenes from the NYU dataset. For each scene,
the AiF image 8(b), its artificially defocused counterpart 8(a),
and the deblurred version output by 2HDED:NET 8(c) can be
compared. It can be seen how the blur is reduced both from near
and far ranges. Two small areas, one with the stickers on the
fridge in the foreground and the other with the margin of the hob
closer to the camera are zoomed in on the second row. Fig. 8(c)

shows how the details come to the surface after deblurring in
both distant and near areas. 2HDED:NET works similarly on
the second scene depicted in Fig. 8(d)–(f). Far and near-range
patches are zoomed in order to prove the quality of the restored
details.

For the outdoor scenes in the Make3D dataset, the quality
of the restored image can be observed from the two examples
in Fig. 8(g)–(l). The street light and the manhole cover that
appear highly defocused in Fig. 8(g) are well restored in Fig. 8(i).
Similarly, the tree branches in the second scene of Fig. 8(j) are
obviously restored by 2HDED:NET in Fig. 8(l).

We also compared our results with the two networks, IrCNN
and DnCNN, proposed by Zhang Kai et al. in [34] and [35]
for deblurring. Since the reported results were for other bench-
marks, we retrained and tested the networks on our datasets.
The DnCNN is under 2HDED:NET in PSNR and SSIM of
the deblurred images, while IrDNN overcomes our solution by
0.6 dB on average on the NYU dataset, and by 2.33 dB on
Make3D. Still, there are cases like the image in Fig. 10 with
fine textures, where our network performs much better (a PSNR
gain of 2 dB). It seems that the fine textures are better restored
by 2HDED:NET.

In the evaluation of 2HDED:NET, we placed particular em-
phasis on comparing it with the network proposed by Anwar
et al. [10]. Although both networks provide depth maps and de-
blurred images, Anwar’s network utilizes a pipeline processing
approach, making it a suitable point of comparison with our
network.

In Fig. 9, we give an example of an image from the NYU
dataset restored by both [10] and 2HDED:NET. Our method
achieves a PSNR of 35.87 dB, which is almost 2 dB higher than
that of [10] for the same image. The blur removal can be well
observed in the areas delimited by the red rectangles: the light
on the ceiling and the edges of the furniture. Another example,
from the outdoor Make3D dataset, is depicted in Fig. 10. In this
particular image, 2HDED:NET archives a PSNR of 37.19 dB,
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Fig. 10. Comparison of 2HDED:NET with the pipeline solution of Anwar et al. [10], and two general methods for image restoration [34], [35]: an example from
Make3D dataset.

which is higher by almost 7 dB when compared to that obtained
by [10]. The highly textured area of the wall, with tiles that are
almost invisible in the image obtained by [10], is well restored
in the image output by 2HDED:NET. Another advantage of
2HDED:NET with respect to [10] is the speed of computation.
Once trained, 2HDED:NET generates the restored images very
quickly, while in the case of [10], the restoration is a long process
because of pixel-wise non-blind deconvolution.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a novel deep convolutional neural
network that estimates depth and restores the AiF images from
a single out-of-focus image. The proposed network has a two-
headed architecture consisting of an encoder and two parallel
decoders, each of which with different roles: one outputs the
depth map and the other the deblurred image. The formulation
of an architecture that estimates the depth maps while removing
blur from out-of-focus images, distinguishes our network from
existing methods that are using pipeline processing. By paral-
lelizing the tasks, the complexity of the network is reduced,
while the depth estimation and blur removal work together
toward performances that prove to be superior or close to the

state-of-the-art results. Extensive tests on indoor and outdoor
benchmarks have shown that 2HDED:NET outperforms the
existing pipeline networks in both DFD and image deblurring.
For the novel architecture of 2HDED:NET, we have proposed a
new loss function that fuses depth and AiF errors, traditionally
used separately in deep learning.

Since we experimented with synthetically blurred datasets,
our future work will focus on developing a real defocused dataset
containing depth ground truth, AiF and naturally defocused
images.
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