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Abstract—Wireless sensor networks (WSN) must ensure worst-
case end-to-end delay and reliability guarantees for mission-
critical applications. TDMA-based scheduling offers delay guar-
antees, thus it is used in industrial monitoring and automation.
We propose to evolve pairs of TDMA schedule and routing-
tree in a cross-layer in order to fulfill multiple conflicting QoS
requirements, exemplified by latency and reliability. The genetic
algorithm we utilize can be used as an analytical tool for both the
feasibility and expected QoS in production. Near-optimal cross-
layer solutions are found within seconds and can be directly
enforced into the network.

I. INTRODUCTION

Wireless Sensor Networks (WSN) have the potential to
diminish installation and maintenance costs for communi-
cation systems in the automation industry. WSNs increase
mobility, flexibility and scalability as compared to the typically
applied wired field-bus. However, for process automation, true
wireless field devices are not foreseen in the near future, due
to harsh requirements in noisy environments [1]. One main
reason is that the WSNs available today were created for
monitoring, not mission-critical applications. The challenge is
to guarantee QoS via an unreliable communication medium,
not energy efficiency, as power supplies can usually be ex-
pected near sensors. Mission-critical scenarios require updates
every 10-250ms with a guaranteed reception failure below
0.001% [1]. The authors in [2] report a lack of analytical
tools that display what is possible on the protocol level
and suggest topological changes that satisfy the requirements.
Cross-layer design strategies spanning routing and the MAC
layer (even the physical layer) integrate the decision making of
complementing means to efficiently realize QoS [3]. Here, the
choice of the MAC layer protocol is critical, as it manages
the access to the shared communication medium. ZigBee
uses CSMA/CA on the MAC layer and has been shown to
not perform well for the outlined applications, for instance,
when compared to WirelessHART [4]. WirelessHART utilizes
time-division multiple access (TDMA) on the MAC layer
to guarantee the access to the communication medium [5].
Our contribution is a heuristic that rapidly finds near-optimal
routing and TDMA cross-layer solutions considering multiple
conflicting objectives. We simulate networks based on offline
collected node-to-node connectivity statistics. The proposed
genetic algorithm (GA) rapidly produces near-optimal lower-
bounds, depicting the QoS that can be expected for the
topology. In the time domain, we guarantee near-optimal end-
to-end delay primal bounds for packet delivery in multi-hop

networks in relation to finding as short a collision-free TDMA
schedule as possible. Finding optimal solutions for this so
called scheduling problem is NP-hard, even ignoring reliability
and given a routing tree [6]. Reliability is addressed by end-
to-end packet reception rates.

II. RELATED WORK

Variants of the scheduling problem have been investigated
previously (e.g. [6], [7]). For mission-critical applications,
however, the problem is rather a constraint satisfaction prob-
lem involving reliability rather than a pure optimization prob-
lem. In [2], the authors present and compare recent QoS
approaches for mission-critical WSN involving the MAC layer.
Only a few contributions address the trade-off between latency
and reliability. Even though WirelessHART supports QoS,
the specification leaves it up to the vendor to select the
appropriate routing and scheduling strategies for the central
network manager. Further, the WirelessHART has no cross-
layer design support; it enables collision-free communication
on the MAC layer and reliability is improved by channel-
hopping with no guarantees. The authors in [8] and [9] con-
sider offline dimensioning including the a-priori assessment
of noise levels. Neither tackle the problem in a cross-layer,
but both use TDMA-based scheduling, considering burst-error
metrics in order to improve the guarantee of latency-bounds
by extending schedules with repeated slots. The greedy algo-
rithm presented in [9] utilizes spatial-reuse to provide latency
guarantees. Node-to-node packet reception rates (PRRn2n)
are not reported, which enables the assumption to be made
that they were high. In environments with heavy machinery
and noise, connectivity, on the contrary, can be poor at times,
even if it is possible to obtain lower connectivity bounds. The
authors in [10] present best-effort contention-based scheduling
for multi-hop networks, using PRRn2n and probability theory
to maximize QoS for individual packets online by requesting
speed options. A tool that, at deployment, suggests routing
and scheduling combinations with performance guarantees for
a user-defined confidence level, would be beneficial. None of
the methods can provide such a-priori network guarantees.

III. PROBLEM FORMULATION

We identify near-optimal TDMA schedule and routing-tree
combinations by maximizing reliability and minimizing
latency. By specifying user requirements, we will show how
priority can be placed on either reliability, latency, or both
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(best-effort). Reliability is measured in end-to-end packet
reception rates PRRe2e, the ratio of packets that are sent
at the beginning of a time-frame, and received at the sink
at its end. Latency is measured as the length of the TDMA
frame in slots. We assume a static single channel WSN with
n sensors and a converge-cast scenario with a single data
collector (sink). The presented cross-layer approach optimizes
routing and scheduling simultaneously, and in making a
decision as to extend schedules allowing for re-transmission
at any node, or to re-route, if this is more appropriate. The
physical layer is assumed to provide time synchronization
and knowledge about node-to-node connectivity between any
two sensors (PRRn2n). A means of obtaining PRRn2n is
performed empirically, by collecting network statistics once
the sensors are deployed (see e.g., [8], [9]). In addition,
symmetric transmission and interference ranges are assumed,
and in conformity with WirelessHART, transmissions and
their ACKs fit into a single dedicated time-slot. The up-link
quality QPRR=qij is defined as a matrix with n rows and
n+1 columns containing, in position qij the directed PRRn2n

from sensor i to sensor j. The entry qi(n+1) represents the
PRRn2n from sensor i to the sink. In addition, PRRn2n is
non-reflexive with qii=0. The WSN can be represented as a
directed graph G={V,E} with sensors V ={v1, . . . , vn+1},
and edges E={(vi, vj)|qij > 0}. A binary routing table R=rip
of equal size to QPRR assigns each sensor i to a single
receiver p (parent) with rip=1. A routing table is called valid
if it fulfills the following constraints:

n+1∑
p=1

rip = 1 (1) rii = 0 (2) rip = 1⇒ (vi, vp) ∈ E (3)

for i≤n and p≤n+1. Hence, any sensor with the exception
of the sink, has exactly one parent (1), no sensor is its
own parent (2), and a directed route requires a link (3).
The routing table results in a routing tree with each path
terminating at the sink. A TDMA schedule frame F=fsi
is a binary table of size t×n which represents a recurring
scheme of t time-slots of equal length. If fsi=1, then sensor
i is allowed to transmit a packet every (s mod t)th time-
slot. Considering both primary and secondary transmission
conflicts, the following constraints must hold for F to be
collision-free (detailed description of conflicts in, e.g., [7]):

fsi = 1⇒ fsjqji = 0 (4)
∑
i

fsiqij ≤ 1 (5)

for s ≤ t, i ≤ n, and j ≤ n+1. Thus, a sensor cannot receive
at the same time as it transmits (4), and a sensor may not be
in the range of two transmitting sensors (5). In addition, we
require the probability of the event A=’All packets scheduled
in one frame arrive at the sink in the same frame’ to be above
zero with PR,F (A)>0, in order to exclude routing-schedule
pairs that imply starvation for a subset of sensors. A solution
fulfilling all constraints is called successful. Evolved lower
bounds either guarantee that QoS constraints are met or that
the topology requires adjustment.

IV. APPROACH

GAs are population-based algorithms that trigger an artifi-
cial evolution in order to find solutions to hard optimization
problems [11]. Individuals are encoded as genomes which
translate into phenomes; solutions to the problem. From
generation to generation, the GA clones and manipulates
the fit genomes using recombination and mutation operators.
Fitness is defined as the ability of phenomes to survive in
the environment, assessed by the fitness function. A selection
mechanism enforces the survival of the fittest. In relation to
the success of a GA, the appropriate choice of fitness function,
genome representation, and operators that both drive diversity
and preserve successful patterns (building blocks) are vital in
order for the population to evolve into fit regions of the search
space. ¡Existing work on schedule optimization surveyed in [6]
lists contributions using GA, but no work, to our knowledge,
combines QoS and cross-layer optimization.

V. APPLICATION SCENARIO

We investigate sparsely connected multi-hop WSN with 17
sensors collecting mission-critical readings. We created 100
random topologies with 16 sensors and a single sink. Providing
QoS guarantees even for small size networks is difficult. The
small size allows us to find reference cross-layer solutions,
inducing minimum delay for comparison purposes using inte-
ger programs. Those solutions do not consider reliability. The
topology graphs G=(V,E) are created as follows. For each
sensor vi a number of between 1 and 3, uniformly at random
drawn, neighbors from V \ {vi} are assigned directed links.
Then, for each link, connectivity qij is assigned uniformly at
random from [0.95, 0.99]. The PRRn2n levels are assumed to
be comprised of interference. In a true scenario they could be
lower-bounds, obtained offline.

VI. ALGORITHM

A. Representation & Constraint Handling

GA require an encoding for both genome and phenome,
and a deterministic translation from genome to phenome. A
candidate is composed of a routing table R and a schedule
frame F . The routing table and schedule are represented as a
binary matrix for the genome and phenome, thus allowing for
the use of standard GA mating operators. Mating operations
are usually performed on the genome, while fitness assessment
is exclusively on the phenome. The genome does not have to
fulfill any constraints. For highly constrained problems, such
as the present, validity for the phenomes must be guaranteed.
The two most common approaches to ensure constraint confor-
mity are penalization and repair algorithms. Penalization is not
an option in this case because our fitness assessment simulator
only has the ability to assess valid solutions. The GA repairs
R and F in parallel and assesses them in combination. Figure
1 provides a conceptual map in relation to where and how this
fits into the GA framework. Algorithm 1 realizes deterministic
schedule repair. The algorithm identifies any conflicts for each
slot (line 2) and resolves them by iteratively removing the
transmitting sensors with the highest conflict rate (line 4-6)
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Fig. 1: A conceptual map of the introduced algorithms.

until no conflicts remain. The algorithm is fully parallelizable
with regards to the amount of slots t. Algorithm 2 realizes
deterministic routing repair, consisting of three steps (lines 1-
3): Remove invalid routes in R, recursively connect all sensors
to sinks using multi-hop, and remove redundant paths.

Algorithm 1: ScheduleRepair(QPRR, F )
Input: Link Matrix QPRR, Genome Schedule F
Output: Phenome Schedule F
1: for Slot S in F do
2: C ← Conflicts(S,QPRR) // t-r, t-t, t-r-t conflicts
3: while not C = ∅ do
4: i←MostConflictingSensor(C)
5: fsi ← 0
6: RemoveConflicts(i, C)
7: AddNonConflictingSenders(S,QPRR)

B. Fitness Function
We consider the constraints (1-5) and PR,F (A)>0. Reliabil-

ity is addressed by maximizing the expected PRRe2e ∈ [0, 1[.
PRRe2e estimates are based on a customized number of
network simulation repetitions throughout the evolution (here
100). Each simulation involves one candidate with each sensor
having an initially specified number of packets waiting for
transmission. Latency is addressed by minimizing the schedule
size t∈{ n

sinks , . . . ,
n(n+1)

2 }. It is a trivial matter to prove
that n

sinks is the lower bound in a single channel WSN.
Also, a successful schedule of size n(n+1)

2 can always be
constructed using exclusive transmission slots starting at the
furthest point from the sink. We abandoned obsolete packets
so that no packet arriving at the sink is older than t slots. All
packets arrive in a time frame with probability PRRe2e. The
GA attempts to minimizes fitness function (6), by integrating
reliability and latency.

f(R,F ) = size(F )− PRRe2e(R,F ) (6)

C. Dynamic Frame Size Adjustment

The initial schedule size and how it changes throughout
evolution when fitness is promising (poor) must also be
decided. Initial schedule length is defined by the sum of hops
to a sink for all sensors given each candidates, repaired initial
routing table. R and F are randomly instantiated from {0, 1}.
Algorithm 6 ensures that, during evolution, the offspring of
successful schedules is shortened, while for non-successful

Algorithm 2: RoutingRepair(QPRR, R)
Input: Link Matrix QPRR, Genome Routing R
Output: Phenome Routing R
1: RemoveDeadLinks(QPRR, R)
2: Connect(sink, ∅, QPRR, R) // Alg. 3
3: RemoveRedundant(sink, ∅, QPRR, R) // Alg. 4

Algorithm 3: Connect(parent,Marked,QPRR, R)
Input: Sensor parent, Marked Sensors Marked, Link Matrix

QPRR, Routing R
1: for child ∈ Children(parent,QPRR) do
2: if not child ∈Marked then
3: if not IsConnected(child,QPRR, ∅,Marked) then
4: rchild,parent ← 1
5: Marked←Marked ∪ {child}
6: Connect(child,Marked,QPRR, R)

Algorithm 4: RemoveRedundant(parent,Marked,QPRR, R)
Input: Sensor parent, Marked Sensors Marked, Link Matrix

QPRR, Routing R.
1: for child ∈ Children(parent,R) do
2: if not child ∈Marked then
3: for altParent ∈ Parents(child,QPRR) do
4: if altParent 6= parent then
5: rchild,altParent ← 0
6: Marked←Marked ∪ {child}
7: RemoveRedundant(child,Marked,QPRR, R)

Algorithm 5: IsConnected(sensor,QPRR, Path,Marked)
Input: Sensor sensor, Marked Sensors Marked, Path Path, Link

Matrix QPRR.
1: if sensor ∈ Path then
2: return false
3: if sensor ∈Marked or sensor = n then
4: return true
5: Path← Path ∪ {sensor}
6: for parent ∈ Parents(sensor,QPRR) do
7: if IsConnected(parent,QPRR, Path,Marked) then
8: return true
9: return false

ones it is prolonged. For offspring shorter than their parents,
slots are randomly removed from the frame. Prolonged off-
spring receive random repetitions of slots in order to fill up
the frame. The proportional change X in algorithm 6 is for
each individual drawn uniformly at random.

Algorithm 6: DynamicFrameSizeAdjustment(I)
Input: Parent Phenome I=(R,F )
Output: offspring frame size
1: if PR,F (A) then
2: return size(F )−X ∈ {0, . . . , d size(F )−lb

2
e}

3: else
4: return size(F ) +X ∈ {0, . . . , dub−size(F )

2
e}

VII. SIMULATIONS AND RESULTS

All simulations were conducted in a Java GA simulator
on a Dell T3500 Intel Xeon Quad Core with 6 GB RAM.
A parameter tuning that, due to space restrictions, cannot
be explained in detail, has led to the chosen settings in
Table I. The GA is evaluated 30 times on each topology
using the fitness function (6). Study 1 explores the best-effort
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Operators
VerticalSinglepoint- (VSSC)
SchedulingCrossover
ToggleRouting- (TRM)
Mutation
ToggleScheduling- (TSM)
Mutation

Parameter Value
PopSize (EliteCount) 26(5)
Termination (Time) 5s
Selection(Selected) Sigma(3)
VSSC.Probability 0.81
TSM.Probability 0.01
TRM.Probability 0.025

TABLE I: The best identified setting for the Lamarckian GA.

capabilities, while in study 2 a latency bound of 30% distance
to the optimum (dto) was added in order to emulate the more
realistic case of strict submission deadlines. QoS, in terms of
reliability and latency is assessed after five seconds. The GA
results are compared to the features of the reference solutions.
Table II summarizes the numeric results. Gurobi 5.5, a state-
of-the-art solver, required an average of 34 minutes to identify
the reference solutions. For study 1, the expected reliability has
a mean PRRe2e of 0.951 while the latency is 4.5% from the
optimum. In each run of the second study, solutions with 30%

Delay (dto) % PRRe2e Time (s)
Reference 0 0.920± 0.013 2039± 13692

Study 1 4.5± 5.8 0.951± 0.012 5
Study 2 30 0.997± 0.006 5

TABLE II: The numerical results and reference solutions.

dto latency were found. An accumulated 0.32% of the packets
are expected not to arrive in time as compared to 8.02% for
the solutions with optimal latency.

VIII. DISCUSSION

The GA continuously evolves valid lower bounds with QoS
features that can be monitored until convergence is achieved.
Within 5 seconds, high reliability, low latency solutions could
be identified for all topologies. In balance with the natural
assessment, we observe that retaining a stable reliability while
decreasing latency is the biggest challenge and it is not
reliability or latency in isolation. Still, assuming routing to
be given, however, it is still the case that identifying optimal
latency in isolation is NP-hard. The application-level QoS
depends highly on the MAC layer, making it hard to find op-
timally matching solutions without the consideration of cross-
layer optimization. Consideration being given to the reliability
appears to boost the optimization. A possible explanation is
that the evolved solutions that do increase reliability are more
likely to produce successful offspring with shorter schedules.
We speculate that the inclusion of reliability could also boost
other heuristics. A centralized approach on small size networks
raises questions with regards to scalability and complexity.
Because GAs are non-deterministic approximation algorithms,
worst case guarantees cannot be made. However, the GA has
a population of size p, running for n consecutive generations.
This results in a fitness evaluation complexity of n, as all
p individuals can be evaluated in parallel. Since all network
simulations (not merely individuals) can run simultaneously,
the complexity of the fitness function is equal to the com-
plexity of one run of the network simulator NS, leading
to a total expected time of n∗time(NS(1)). Routing and

scheduling repair can be executed in parallel. The execution
time should not be an issue even for larger instances above
100 sensors, but the effects on the result quality have to
be investigated. The stochastic assessment coupled with a
constant challenging of the candidate, create robust reliability
levels. The algorithm evolves an average of 177 generations
per second. The proposed method is not limited to use for
converge-cast scenarios, and could be extended for multi-path
routing or multi-channel transmission which would cause it to
become more closely compatible with existing WSN protocol
stacks, such as WirelessHART.

IX. CONCLUSIONS

We introduced a MAC and routing cross-layer approach to
QoS assessment and optimization in a WSN. The approach can
be used both as a tool for rapid assessment of expected QoS
in deployed networks, and the finding of cross-layer routing
and TDMA schedules for utilization in the network. We
have investigated two modi; best-effort and latency constraint.
One of the major advantages of GA is that a change in
fitness function is relatively simple. Thus, extending them for
other QoS features will also prove to be rather simple. The
simulation results suggest that substantial gain in reliability
can be achieved, while only a small quality loss in latency is
introduced, in comparison to that for hard-to compute minimal
length TDMA schedule routing-tree pairs.
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