
SCADAVT–A Framework for SCADA Security Testbed Based on Virtualization
Technology

Abdulmohsen Almalawi, Zahir Tari, Ibrahim Khalil and Adil Fahad
RMIT University School of Computer Science and IT

Melbourne, Australia
Emails:abdul.almalawi@student.rmit.edu.au, zahir.tari@rmit.edu.au

Ibrahim.khalil@rmit.edu.au, adil.alharthi@rmit.edu.au

Abstract—Supervisory Control and Data Acquisition
(SCADA) systems monitor and control infrastructures and
industrial processes such as smart grid power and water dis-
tribution systems. Recently, such systems have been attacked,
and traditional security solutions have failed to provide an
appropriate level of protection. Therefore, it is important to
develop security solutions tailored to SCADA systems. However,
it is impractical to evaluate such solutions on actual live
systems. This paper proposes a SCADA security testbed based
on virtualization technology, and introduces a server which is
used as a surrogate for water distribution systems. In addition,
this paper presents a case study of two malicious attacks to
demonstrate how the testbed can easily monitor and control
any automatised processes, and also to show how malicious
attacks can disrupt supervised processes.

Keywords-SCADA, Security, Simulation, Testbed

I. INTRODUCTION

SCADA (Supervisory Control and Data Acquisition) sys-
tems control and monitor public infrastructures such as
smart grids and water distribution networks and industrial
processes. Therefore, any attack targeting these systems
could cause great financial losses and have serious impacts
on public safety and the environment. For example, the
attack on the sewage treatment system in Maroochy Shire
(Australia) is an obvious example of such potential attacks
on critical infrastructures [1]. The Stuxnet [2] worm, which
is designed to damage nuclear power plants in Iran, is a
recent example of such threats.

An evaluation of the security of SCADA systems is
important. However, actual SCADA systems cannot be used
for such purposes because availability and performance,
which are the most important issues, are most likely to
be affected when analyzing vulnerabilities, threats and the
impact of attacks. To address this problem, real SCADA
testbeds such as [3] [4] have been set up for evaluation
purposes, but they are costly and beyond the reach of most
researchers. Similarly, small real SCADA testbeds [5], [6]
have also been set up; however, they are still proprietary
and location-constrained. Responding to the aforementioned
issues, a number of model-based SCADA testbeds have been
proposed [7], [8], [9], [10], [11]. However, these testbeds
use several modelling tools to build the essential main

components of a SCADA system, and the way in which these
are linked makes it a complex process to use each testbed.
Therefore, such testbeds are unlikely to target experts in
control system security.

In this paper we propose SCADAVT, a framework for
building a SCADA model-based testbed that is targeted to
security experts of SCADA systems. This testbed is built
on the top of the CORE emulator [12], and the essential
SCADA components such as protocols, I/O modules and
simulators of field devices are integrated by exploiting the
plug-in service feature which is available in the CORE
emulator. Moreover, we introduce a server that simulates
water distribution systems through the use of the dynamic
link library (DLL) of EPANET, the well-known modelling
tool for simulating water movement and quality behaviour
within pressurized pipe networks [13]. In addition, the server
can simulate any topology of water network systems and can
be manipulated by a custom TCP-based protocol.

In Section II, we introduce SCADA systems and their
main components. Section III describes the components of
the SCADAVT. Section IV introduces the simulations server
of water distribution systems. In Section V, we present the
scenario implementation of the proposed testbed. Section VI
describes two types of malicious attacks and demonstrates
their effects on supervised processes. Finally, we conclude
the work in Section VII.

II. SCADA SYSTEM

SCADA systems are used to provide a centralized mon-
itoring and control system for distributed systems such as
electric power generation, water distribution and wastew-
ater collection systems and public transportation systems.
A SCADA system can be divided into two levels [14]:
(i) Control center which contains high-level components
such as SCADA servers or Master Terminal Units (MTU),
Human-Machine Interface (HMI) and a historian database.
From this level, MTU pulls and logs information gathered
from field sites, displays information to the HMI, which
allows an operator to monitor and control a supervised
system, and may send a control message to a field device
based upon collected information. Moreover, at this level,

38th Annual IEEE Conference on Local Computer Networks

978-1-4799-0537-9/13/$31.00 ©2013 IEEE 639

all gathered information is stored in a historian database for
auditing and analysis. (ii) Field level which encompasses
field devices such as Remote Terminal Units (RTU), Pro-
grammable Logic control (PLC), and Intelligent Electronic
Device (IED). These devices are deployed in field sites to
control and collect measurement data from end devices such
as sensors and actuators which in this paper are termed
’process parameters’. The measurement data is compiled and
formatted by PLCs and RTUs before they are sent to the
control center. Various communication links (e.g traditional
telephone and computer network and wireless network) are
used to link these two levels [15][16]. For further informa-
tion on a SCADA system, please refer to [17].

III. SCADAVT

The proposed SCADAVT is built on top of the CORE
emulator [12] which provides the communication infras-
tructure for SCADA components. Prior to choosing the
CORE emulator as the basis of the proposed SCADAVT,
we conducted a thorough investigation of a number of
network simulators such as NS2/NS3 [18], OMNET++ [19],
OPNET [20], QualNet [21], and emulators such as, Plan-
etLab [22], NetBed [23] and MNE [24]. The CORE was
chosen because of a number of available features: (i) the
friendly interface that is used to build any network topology
and set up its configuration without writing any code, (ii)
the plug-in service that can be exploited to integrate the
essential SCADA components, (iii) the CORE emulator
that is based on virtualization technology which generates
network behaviour and data that are similar to the ones
generated by real systems [10]. (IV) Actual network devices
can be connected to the emulated network, and therefore,
actual SCADA devices can be tested.

A. Integrating SCADA components into the CORE

Due to the lack of SCADA-specific protocols in the
CORE emulator, the widely-used SCADA protocol (e.g.
ModBus [25]) is implemented to integrate three essential
SCADA components: Modbus/TCP slave and master simu-
lators and Modbus/TCP HMI server. These components are
integrated as services in the CORE emulator as follows:

1) Modbus/TCP Simulators of Master/Slave: The modern
SCADA systems adapted a master-slave model which is
similar to the client-server approach, where the role of the
slave model is to listen to any request from the master model.
The master model sends control messages to a number of
slaves to which a required slave responds according to the
control instructions received. Therefore, the integration of
the master and slave models are important when setting
up SCADA systems. Since the proposed SCADAVT in this
stage supports only the Modus protocol, the MODBUS/TCP
Master/Slave modes are integrated as shown in Figure 1. The
publicly-available ModBus library [26] is used to integrate
the simulators in the CORE emulator. This is performed by

some python-based scripts that automatically do this inte-
gration, where simulators are added to the CORE emulator
as services.Therefore, the user does not need to write any
code.

Similar to the actual field device (e.g PLC or RTU), each
Modbus/TCP slave simulator in the CORE emulator after
integration is required to map its registers. Therefore, we
provided a registers map procedure for mapping the registers
as follows:

pro_1 = [’ProcessID1’,’C’,1,’i’];
pro_2 = [’ProcessID2’,’C’,2,’i’];
...
...
pro_9 = [’ProcessID9’,’C’,10,’o’];
Registers=[pro_1,pro_2,..,pro_9];

The pro 1 is a python list variable which contains the tag
of a supervised process parameter and its block type and
position in the RAM in its associated slave simulator and
parameter type (e.g, input/output). Four symbols, namely H,
C, D and A are used to represent the following register types,
HOLDING, COILS, DISCRETE and ANALOG registers
respectively. It can be seen from the above that the type of
registers are COIL. The last line is the function which adds
the mapped registers. All the process IDs have to be unique.
This is because the gateway reads and writes measurement
data from and to the registers in each Modbus/TCP slave
simulator through the ID process.

2) Modbus/TCP Simulator of HMI Server: The HMI
Server is an intermediate component between MTU and the
HMI client where HMI client sends the user’s manipulation
to the HMI server in order to be read and executed by the
MTU. In the opposite direction, the MTU sends to the HMI
server the collected data from a field device after the user’s
manipulation so that the HMI client can request it in order
to show the effects of the user’s manipulation in a graphical
interface for human operators. As can be seen in Figure 1,
the HMI client is considered as an external component
in the proposed SCADAVT because the HMI client with
a graphical interface cannot be supported in the CORE
emulator. Therefore, the simulator of the HMI server runs
two independent instances: the first instance listens to the
request from the MTU via the internal IP of virtual node in
the emulated environment, while the second instance listens
to the request from the HMI client via the backchannel
which is assigned to each emulated node. Therefore, the
HMI client can connect with the HMI server in two ways: via
a backchannel or directly through RJ45 if the HMI client has
an independent physical interface and supports Modbus/TCP
protocol as well.

3) I/O modules Simulator: The Modbus/TCP slave simu-
lator, which will be running in the virtual node, is required to
monitor and control the simulated supervised process such
as the simulations of power generation and water distribution

38th Annual IEEE Conference on Local Computer Networks

640

CORE Emulator

Back channels

Backchannls

IOModuleGate

I/O Modules Simulator

Modbus/TCP Slave Simulator

Modbus/TCP Master Simulator

Modbus/TCP HMI Server Simulator

Integrated services
RJ45

Supervised process

Meta-converter

Supervised Modbus-device

with a physical interface

Modbus HMI Client

with a physical interface

Modbus HMI Client

CORE Virtual Nodes

Figure 1: SCADAVT Architecture.

systems that are outside the emulated environment. There-
fore, the IOModules simulator is integrated into the CORE
emulator, where it acts as a server which receives input data
from the external environment and sends output data when
requested. This is performed through the backchannel for
each virtual node using a simple and intuitive custom TCP-
based protocol called IOModules that will be elaborated on
in Section III-C.

B. IOModuleGate

A gateway class implements the IOModules protocol (see
Section III-C). This gateway class periodically exchanges the
measurement data between each slave simulator and the re-
spective supervised process parameters through the I/O mod-
ules server running in each virtual node. Two configuration
files are invoked to this class, where each file is formatted
as shown in Table I. For example, in the first file, PLC1
represents the ID for a slave simulator whose backchannel
IP and port are 172.16.0.1 and 9161 respectively. While,
in the second file, the process parameters P1 and P2 are
supervised by this slave simulator (PLC1). The parameter
type is indicated by either ”o” or ”i” (e.g, input/output).
For pulling and pushing the measurement data to and from
the emulated environment, two public writing and reading
methods are provided by this class. These methods take and
return a python dictionary variable which is a key-value pair.
The key is the identity ID of the process parameter (e.g
P1) and its I/O data, where each process parameter in a
supervised process must have a unique ID.

C. Communication protocols

Two types of protocols are used in SCADAVT: (i) SCADA
protocol such as Modbus that is used to enable communi-

Table I: The configuration of IOModuleGate

1st conguration file 2nd conguration file

[PLC1]
ip:172.16.0.1
port:9161

[PLC2]
ip:172.16.0.2
port:9161

[P1]
controller : PLC1
paraType : i

[P2]
controller : PLC1
paraType : o

cation between the SCADA components within the CORE
network emulator, and also to communicate with external
components (e.g. simulated or real devices) which support
the Modbus protocol. (2) A custom TCP-based protocol
called IOModules to exchange the measurement data be-
tween the I/O modules simulator and the gateway class
which called IOModuleGate.

1) SCADA protocol: The Modbus protocol worked only
on Modicon programmable controllers. However, it has
become widely-used in recent SCADA control devices.
Modbus devices adapted a client-server approach, where
the Modbus slave device represents the server side, while
the Modbus master device represents the client side of the
communication model. Only the master (Client) initiates
the communication, while the slave (Server) listens to the
request from master in order to supply the requested data
or execute the requested action. There are many variants
of Modbus protocols. In this testbed, we have used the
Modbus/TCP protocol. Please refer to [25] for more details
about this protocol.

2) IOModules protocol: A simple custom TCP-based
protocol is used to read/write the measurement data from

38th Annual IEEE Conference on Local Computer Networks

641

I/O modules simulator that resides in each virtual node.
This protocol is implemented by the IOModuleGate class.
Figure 2 shows four fields that comprise the message struc-
ture of this protocol: (1) TransactionNo: a unique number
for each reading and writing operation. Both reading and
writing operations have independent sequential numbering
and initially start with one. In the response message, this
field contains the same number of request messages to
indicate that output data is available and correctly read.
However, if it contains zero, it indicates the output data is
not ready to be read, and therefore it needs to wait a while
before requesting again. The amount of waiting time can
be specified in the initialization time of the IOModuleGate
class. (2) Function Code: this takes three values, 1, 2 and
0, to indicate reading, writing and termination operations
respectively. (3) ProcessID: each process parameter in a
supervised process must have a unique ID. (4) Data: it
contains the process parameter’s value. This field is set to
zero in the request message of the reading operation.

DataFunction Code

1 Byte 10 Byte 4 Bytes

Protocol Data Unit

TransactionNO

4 Bytes

ProcessID

Figure 2: IOModules protocol message structure.

IV. WATERSYSTEM SERVER

In this section, we introduce a server that simulates water
distribution systems using a dynamic link library (DLL) of
the well-known modelling tool, which is called EPANET,
for simulating water movement and quality behaviour within
pressurized pipe networks [13]. This server is designed by
Visual Basic 6 langauge. Three arguments are required: (i)
the description file that describes the topology and proper-
ties of all components for the simulated water distribution
system. This description file can be designed and exported
by the visual interface of EPANET tool; (ii) port number
which the server is listening on; and (iii) time interval to
recompute new simulated data.

The server is provided with a custom TCP-based protocol
in order to manipulate the simulated data using a SCADA
system. For instance, a client can acquire and control pump
status in the simulation through this protocol. Figure 3 shows
the message structure of this protocol. (1) The processID
contains the ID of the process parameter, which needs to
be manipulated. (2) The Function code defines only two
operation types: acquisition and control. (3) The Parameter
Type defines only two component types, Node and link.
(4) The Data Type specifies the data type that needs to be
manipulated. For example, the link component such as pump
has a number of data types that can be manipulated (e.g.
speed, pumping energy and status). The (5) Data contains

the process parameter’s value. This field is set to zero in the
request message for the reading operation.

Parameter Type DataFunction Code

1 Byte 1 Byte 4 Bytes

Protocol Data Unit

ProcessID

10 Bytes 1 Byte

Data Type

Figure 3: The protocol message structure of the WaterSystem
Server.

V. SCENARIO IMPLEMENTATION

In this section, we demonstrate the implementation of
SCADA system that supervises and monitors water distri-
bution network in order to evaluate the proposed testbed.
This scenario is performed in three steps as follows:

A. Setting up SCADAVT

To set up SCADAVT, a number of dependencies are
required to be installed as follows:

• The CORE emulator is the core part of SCADAVT. For
installation details, please refer to [12].

• The Modbus library is a library provided by a third
party and is publicly available [26]

• Python interpreter is a prerequisite for the CORE
emulator, Modbus library and our integration scripts.

• the hpin3 utility is a security assignment tool that is
used to assemble/analyze TCP/IP packets [27]. This
tool supports many protocols such as TCP, UDP and
ICMP. Moreover, this tool can be used to launch
a number of attacks such as Denial of Service and
spoofing attacks.

• The integration scripts are our python scripts developed
in order to integrate the essential SCADA components
into the CORE emulator as services. To automatically
add these services, a user needs to move these scripts to
the myservices directory which is found in the CORE
default directory path prior to staring up the CORE
emulator.

B. The setup of water distribution system

In this scenario, we designed a Water Distribution System
(WDS) for a small town as shown in Figure 4 using the
graphical interface of the EPANET tool. Figure 4 shows
that the water network is divided into three areas, namely
A, B and C. Each area has an elevated tank to supply the
area with water at a satisfactory pressure level. The supplied
water is pumped out by three pumps from the treatment
system into Tank1. The water is also delivered to Tank2 by
two pumps. Tank3 is supplied through gravity because the
elevation of Tank2 is higher than Tank3. Tank1 is twice
the size of Tank2 and Tank3 because it is the main water
source for areas B and C. left-bottom-right-top The water
consumption in the water network model is one of the factors
that reflects the behaviour of simulated data. Therefore, a

38th Annual IEEE Conference on Local Computer Networks

642

Area A

Area C

Area B

Pi1
Pi4 Pi5

Pi6

Pi7

Pi8

Pi9

Pi10Pi11

Pi12

Pi13

Pi16 Pi17 Pi18 Pi19

Pi30

P1

P2

P3

P4
P5

V1

V2

J1J2
J3 J4 J5

J6

J7

J8J9J10

J11

J12

J15 J16 J17 J18

J29

R1

T1

T2

T3

Field A
Field B

Field C

Field D

Field E

Day 1, 12:50 AM

Figure 4: The Simulation of water distribution system

realistic model of water consumption behaviour is required
in order to obtain more realistic simulated data. Therefore,
we fed the consumption module, in the EPANET model,
with a specific model based on [13] (i.e. the 2010 Melbourne
water consumption).

C. The setup of SCADA system for WDS

In this section, we demonstrate the deployment of the
SCADA devices that are used to monitor and control the
previously-discussed water distribution system. This process
is performed by dragging and dropping the components of
the CORE emulator such as virtual node, link and router.
The integrated SCADA components (e.g. Modbus/TCP slave
simulator) are automatically added to the services that can
be assigned to any virtual node by one click. Figure 5 shows
the SCADA network topology for this scenario. Seven PLCs
are deployed, and Table II shows their respective supervised
devices (sensors or actuators). Each PLC is required to
have the services of I/O modules and Modbus/TCP slave
simulators. Then, we map its registers to supervised devices
that are responsible for it, as discussed in the previous
Section III, and assigns its IP address and port. All these
PLCs are managed by the Master Terminal Unit (MTU)
which is represented by a virtual node that has to have the
service of the Modbus/TCP Master Simulator. MTU, in this
scenario, performs the following functions:

• Reads the water level in Tank1 from PLC3, and then
sends control messages to PLC2 to turn ON/OFF the
actuators of the pumps Pump1, Pump2 and Pump3

• Reads the water level in Tank2 from PLC1 and then
sends control messages to PLC4 to turn ON/OFF the
actuators of the pumps Pump4, Pump5.

• Reduces the water pressure in area A when water level
in Tank1 becomes higher.

• Intelligently adjusts the flow valve V1, which is between
Tank2 and Tank3, with an appropriate setting. This is
done using Algorithm 1.

Table II: Field devices and their respective supervised devices

Field
devices

Supervised devices

PLC1 [T2], water level sensor of tank2
PLC2 [P1, P2, P3], pump actuators of pump1, pump2 and pump3
PLC3 [T1], water level sensor of tank1
PLC4 [P4, P5], pump actuators of pump4 and pump5
PLC5 [V2], valve actuator of valve, V2
PLC6 [V1], valve actuator of valve, V1
PLC7 [T3], water level sensor of tank3

Algorithm 1 A smart control algorithm controlling water
flow from Tank2 to Tank3

1: b⇐ Water demand in area B
2: c⇐ Water demand in area C
3: t2 ⇐ Water level in tank2
4: t3 ⇐ Water level in tank3
5: f ⇐ Water flow to tank2
6: if t2 > t3 then
7: flow = b + (f − c)
8: Adjust V1 to flow
9: else

10: flow = b − c
11: Adjust V1 to flow
12: end if

Algorithm 1 is implemented to maintain sufficient water
in both Tank2 and Tank3. This problem is illustrated
in Figure 6 where the water level of Tank2 reached the
critical level seven times, during which area C was not
efficiently supplied with water. This is because the flow
valve V1 is set to a fixed setting, which is 1300 Litre Per
Minute (LPM) in this example, and the water flow from
Tank2 to Tank3 is constant even though the water level in
Tank2 is low. This problem is addressed by considering
the following parameters: the water level in Tank2 and
Tank3, the current water demands in areas C and B and
the water flow pumped in to Tank2. These parameters are
used by the MTU to intelligently adjust the flow valve V1.
Figure 7 shows the water level of Tank2 and Tank3 after
applying this algorithm. Thanks to SCADA systems, there
is an increase in the performance of daily services with less
equipment.

To start up the manipulation of the simulated data in
WDS, two steps are required: (i) invoking the WaterSystem
Server with required arguments that are previously discussed
in Section IV; (ii) extending the IOModuleGate class and
invoking it with configuration files of the system according
to the format that was previously discussed in Section III-B.

Clearly, from the detailed discussions above, the function-
ing of the emulation requires several different configuration
steps which necessitate specific knowledge of SCADA sys-
tems. Therefore, the user of SCADAVT who performs the
simulation has to be someone well-versed in the specifics of

38th Annual IEEE Conference on Local Computer Networks

643

Router3
Router2

Field B Router
ISP Router

Field E Router

ISP Router

Field D Router

Corporate Router
ISP Router

Field A Router

Field C Router

Router1

Tank2

Pump1 Pump2 Pump3

Pump4 Pump5

Tank1

Pressure Valve, V2

Flow

 Valve, V1
Tank3

PLC3

PLC4

PLC2

PLC5

PLC1 PLC7
PLC6

Back channels

Back channels

B
a

c
k
 c

h
a

n
n

e
ls

B
a

c
k
 c

h
a

n
n

e
ls

MTU/HMI Server

CORE Emulator

Tank1 Tank2

Simulation of

WDS

IOModuleGate

HMI Client

Water

flow

Water

 flow

WAN

Figure 5: SCADA network topology for controlling the scenario of the water distribution network

1 21 41 61 81 101 121 141
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

h(Hours)

W
a

te
r

V
o

lu
m

e

Tank 2 Tank 3 Critical level

Figure 6: The water levels over a period of time for Tank2 and
Tank3 without control system

1 21 41 61 81 101 121 141
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

h(hours)

W
a
te

r
V

o
lu

m
e

Tank 2 Tank 3 Critical level

Figure 7: The water levels over a period of time for Tank2 and
Tank3 with control system

SCADA systems.

VI. ATTACK SCENARIOS

We demonstrate two common attack scenarios: a denial
of service and an integrity attack to evaluate SCADAVT and
show how these malicious attacks can affect the performance
of the WDS.

A. Denial of Service Attack

In this type of attack, attackers launch flood attacks
against a target to prevent it from receiving a legitimate
request. As previously discussed, the MTU periodically
adjusts the flow valve V1, which is controlled by PLC6,
using Algorithm 1. In fact, if the MTU cannot establish
a connection with PLC6 to send a control message, the
flow valve V1 will not be properly adjusted. Hence, the
water volume in Tank2 and Tank3 will not be balanced,
and the critical level may be reached. In this scenario, we
demonstrate a Distributed Denial of Service attack (DDoS)
where ten virtual nodes are attached to public routers,
namely router1, router2 and router3. This is easily done
with a few clicks. The open source hping3 utility [27] is
used to launch flood attacks on the field device PLC6.
Three times PLC6 was flooded with TCP SYN packets.
The first attack starts at time= 15h and ends at 20h. The
second attack starts at time= 55h and ends at 57h. The
last attack starts at time= 100h and ends at 105h. During
these attack times, the MTU sometimes failed to establish
a connection with PLC6 and sometimes it took a long
time to successfully connect with it. Figure 8 shows the
unsuccessful and successful connections between MTU and
PLC6. It can be seen that the unsuccessful connections and

38th Annual IEEE Conference on Local Computer Networks

644

the connection establishing time at the period time of DDoS
are significantly different from the normal behaviour. That
is, the MTU failed a number of times and waited a long
time to establish connection compared to attack-free time.
Hence, because the MTU failed to intelligently adjust the
flow valve V1, the water volumes of both Tank2 and Tank3
have been affected. Figure 9 clearly shows that the water
volumes of Tank2 and Tank3 fell below the critical level
twice and once respectively. Consequently, areas C and B
were not sufficiently supplied with water two and one times
respectively.

1 21 41 61 81 101 121 141
−2

−1

0

1

2

3

4

5

6

7

8

h(Hours)

C
o
n
n
e
c
ti
o
n
 t
im

e

Unsuccessful connection Successful connection

38 4433

Figure 8: The unsuccessful and successful connections and their
elapsed times between MTU and PLC6

1 21 41 61 81 101 121 141

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

h(Hours)

W
a
te

r
V

o
lu

m
e

Tank 2 Tank 3 Critical level

Attack 3

Attack 2
Attack 1

Figure 9: The effect of DDoS, which targets PLC6, on the water
volume of Tank2 and Tank3.

B. Integrity Attack
This type of attack occurs as a result of the manipulation

of command messages; it is termed a high-level control
attack [7] [28] [29]. To launch this type of attack, an attacker
requires prior knowledge of the target system. This can be
obtained by the specifications, or by a correlation analysis
of the network traffic of that system. Taking over the control
center and sending undesired control messages, or inter-
cepting (e.g, man-in-middle attack) the command messages

between the control center and field devices, are a common
means of launching such attacks. In fact, such an attack is
difficult to detect because the false message is still legitimate
in terms of the Modbus/TCP protocol specifications. To
demonstrate this type of attack, we intercept and modify the
control message between the MTU and field device PLC4,
which controls the operation of Pump4 and Pump5. To
perform this attack, we establish a proxy between these
devices. As previously discussed, the MTU sends a control
message to PLC4 to turn its associated pumps ON/OFF.
We modified the intercepted control message sent to PLC4

three times. The starting and ending times of each integrity
attack are depicted in Figure 10. In each attack, we modified
the intercepted control message with a control data whereby
Pump4 and Pump5 are turned off. Figure 10 shows the
water volumes of Tank2 and Tank3 after the integrity
attack, and it can be seen that the critical level was reached
several times, and that the effect of attacks has not occurred
at the same times as the attacks. This depends on the
functionality being attacked in the target system.

1 21 41 61 81 101 121 141

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Tank 2 Tank 3 Critical line Attack start Attack end

Figure 10: The effect of integrity attack, which targets PLC4, on
the water volume of Tank2 and Tank3.

VII. CONCLUSION

This paper presents a framework for a SCADA testbed
based on virtualization technology. The proposed framework
is a novel solution in that, unlike existing testbeds, it
provides a friendly interface to create a SCADA system
with just a few clicks. Moreover, it is based on the CORE
emulator that is scalable for an increasing number of virtual
nodes. In addition, the proposed framework realistically
mimics the real SCADA testbed, and also has the feature
that can allow an actual SCADA device to be connected
for realistic evaluation. Furthermore, the paper introduces
a server which acts as a surrogate for water distribution
systems. A case study is presented to demonstrate how
the testbed can easily be used to monitor and control any
automatised processes. DDoS and integrity attacks have been
described to illustrate how malicious attacks can disrupt

38th Annual IEEE Conference on Local Computer Networks

645

supervised processes. In future work, we intend to integrate
other SCADA protocols such as Zigbee and DNP3 .

REFERENCES

[1] J. Slay and M. Miller, “Lessons learned from the maroochy
water breach,” in Critical Infrastructure Protection. Springer
Boston, 2007, vol. 253, pp. 73–82.

[2] N. Falliere, L. O. Murchu, and E. Chien, “W32.stuxnet
dossier,” Symantec Tech, Tech. Rep. 1.4, 2011.

[3] H. Christiansson and E. Luiijf, “Creating a european scada
security testbed,” in IFIP International Federation for Infor-
mation Processing, vol. 253, no. 1, 2010.

[4] “National scada testbed,” July 2012. [Online]. Available:
http://www.sandia.gov/ccss/National Testbed.htm

[5] I. N. Fovino, M. Masera, L. Guidi, and G. Carpi, “An
experimental platform for assessing scada vulnerabilities and
countermeasures in power plants,” in Human System Inter-
actions (HSI), 2010 3rd Conference on. IEEE, 2010, pp.
679–686.

[6] T. Morris, A. Srivastava, B. Reaves, W. Gao, K. Pavurapu,
and R. Reddi, “A control system testbed to validate critical
infrastructure protection concepts,” International Journal of
Critical Infrastructure Protection (IJCIP), vol. 4, no. 2, pp.
88–103, 2011.

[7] C. Queiroz, A. Mahmood, and Z. Tari, “Scadasim-a frame-
work for building scada simulations,” IEEE Transactions on
Smart Grid, vol. 2, no. 4, pp. 589–597, 2011.

[8] N. Kush, E. Foo, and E. Ahmed, “Smart grid test bed design
and implementation,” 2010.

[9] C. M. Davis, J. E. Tate, H. Okhravi, C. Grier, T. J. Overbye, ,
and D. Nicol, “Scada cyber security testbed development,” in
Power Symposium, 2006. NAPS 2006. 38th North American.
IEEE, 2006, pp. 483–488.

[10] B. Reaves and T. Morris, “An open virtual testbed for indus-
trial control system security research,” International Journal
of Information Security, pp. 1–15, 2012.

[11] A. Giani, G. Karsai, T. Roosta, A. Shah, B. Sinopoli, and
J. Wiley, “A testbed for secure and robust scada systems,”
SIGBED Rev, vol. 5, no. 2, pp. 1–4, 2008.

[12] J. Ahrenholz, “Comparison of core network emulation plat-
forms,” in Proceedings of IEEE MILCOM Conference, 2010,
pp. 864–869.

[13] [Online].Available:http://www.epa.gov/nrmrl/wswrd/dw/epanet.html,
“Software that models the hydraulic and water quality
behavior of water distribution piping systems,” Accessed
November 2011.

[14] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial
control systems (ics) security,” NIST Special Publication, vol.
800, p. 82, 2007.

[15] A. N. Bessani, P. Sousa, M. Correia, N. F. Neves, and
P. Verssimo, “The crutial way of critical infrastructure pro-
tection,” Security Privacy, IEEE, vol. 6, no. 6, pp. 44 –51,
Nov.-Dec. 2008.

[16] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security
issues in scada networks,” Computers & Security, vol. 25,
no. 7, pp. 498–506, 2006.

[17] D. Bailey and E. Wright, “Practical scada for industry,” 2003.

[18] “Ns3 simulator,” July 2012. [Online]. Available: http:
www.nsnam.org/

[19] A. Varga and R. Hornig, “An overview of the omnet++
simulation environment,” in Proceedings of the 1st Inter-
national Conference on Simulation tools and techniques
for communications, networks and systems & workshops.
ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2008, p. 60.

[20] “Opnet modeler: Scalable network sim-
ulation,” July 2012. [Online]. Available:
http://www.opnet.com/solutions/network rd/modeler.html

[21] “Scalable network technologies: Qualnet developer,”
July 2012. [Online]. Available: http://www.scalable-
networks.com/products/developer.php

[22] “Planetlab: an open platform for deploying,” July 2012.
[Online]. Available: http://www.planet-lab.org/

[23] “Emulab-network emulation testbed home,” July 2012.
[Online]. Available: http://boss.netbed.icics.ubc.ca/

[24] “Mobile network emulator (mne),” July 2012. [Online]. Avail-
able: http://cs.itd.nrl.navy.mil/work/proteantools/mne.php

[25] M. IDA, “Modbus messaging on tcp/ip implementation guide
v1.0a,” June 2004.

[26] “Modbus library,” July 2012. [Online]. Available:
http://code.google.com/p/pymodbus

[27] “hping3,” July 2012. [Online]. Available:
http://www.hping.org/hping3.html

[28] D. Wei, Y. Lu, M. Jafari, P. M. Skare, and K. Rohde, “Pro-
tecting smart grid automation systems against cyberattacks,”
IEEE Transactions on Smart Grid, no. 99, pp. 1–1, 2011.

[29] A. Giani, E. Bitar, M. Garcia, M. McQueen, P. Khargonekar,
and K. Poolla, “Smart grid data integrity attacks,” no. 1,
January 2012.

38th Annual IEEE Conference on Local Computer Networks

646

