38th Annual IEEE Conference on Local Computer Networks

A Cloud Storage Overlay to Aggregate
Heterogeneous Cloud Services

Guilherme Sperb Machado, Thomas Bocek, Michael Ammann, Burkhard Stiller
Department of Informatics IFI, Communication Systems Group CSG, University of Zurich
Binzmiihlestrasse 14, CH-8050 Zurich, Switzerland
[machado|bocek]stiller|@ifi.uzh.ch, michael.ammann@uzh.ch

Abstract—Many Cloud services provide generic (e.g., Ama-
zon S3 or Dropbox) or data-specific Cloud storage (e.g., Google
Picasa or SoundCloud). Although both Cloud storage service
types have the data storage in common, they present heteroge-
neous characteristics: different interfaces, accounting and charg-
ing schemes, privacy and security levels, functionality and,
among the data-specific Cloud storage services, different data
type restrictions. This paper proposes PiCsMu (Platform-inde-
pendent Cloud Storage System for Multiple Usage), a novel
approach exploiting heterogeneous data storage of different
Cloud services by building a Cloud storage overlay, which aggre-
gates multiple Cloud storage services, provides enhanced pri-
vacy, and offers a distributed file sharing system. As opposed to
P2P file sharing, where data and indices are stored on peers,
PiCsMu uses Cloud storage systems for data storage, while
maintaining a distributed index. The main contribution of this
work is to show the feasibility to store arbitrary data in different
Cloud services for private use and/or for file sharing. Further-
more, the evaluation of the prototype confirms the scalability
with respect to different file sizes and also shows that a moder-
ate overhead in terms of storage and processing time is required.

Index Terms—Cloud Computing, Cloud Services, Cloud Stor-
age, Cloud Overlay, Peer-to-peer, DHT, Data Validation

I. INTRODUCTION

A wide variety of Cloud Services (CS) are available today,
such as Amazon EC2 [1], SkyDrive [14], Google App Engine
[5], or Dropbox [4]. These CSs can be categorized into 3
types: Infrastructure-as-a-Service (laaS), Platform-as-a-Ser-
vice (PaaS), and Software-as-a-Service (SaaS). In all of these
three categories, there exist CSs for storage purposes, to pro-
vide data storage through a well-defined Application Pro-
gramming Interface (API). On one hand, services supporting
any data types are termed generic Cloud storage services. On
the other hand, there exist CSs that support storage of a
restricted set of data types. Those are termed data-specific
Cloud storage services. Typically, CSs offering data-specific
storage employ a data validation scheme of certain data types
and/or properties. E.g., Google Picasa provides an API, where
users are able to publish and organize pictures and albums,
allowing the upload of images with a certain file format (such
as JPG, PNG, or BMP), resolution, and size.

Both types of Cloud services — with generic and data-
specific storage — show one common aspect: data is stored
on CS’s servers. However, both types of CSs are still hetero-
geneous: they offer different APIs, different accounting and
charging schemes, different privacy and security levels, differ-
ent functionality, and, among generic Cloud storage services,
they present different data type restrictions. Therefore, the
heterogeneity between CSs turns the task of aggregating CSs’

978-1-4799-0537-9/13/$31.00 ©2013 |EEE

storage (into one single storage entity) a challenging task.
Aggregating multiple CSs allow end-users to have more inte-
grated storage space, a single entry point to store data, and,
depending on how data is managed among CSs, more data
reliability and privacy.

This paper addresses the following research questions: (1)
Is it possible to build an overlay (i.e., a network on top of
another network) that explores generic and data-specific stor-
age of CSs in order to store, retrieve, and share any kind of
files? (2) Would such an overlay scale with respect to differ-
ent files (with different sizes) being stored, retrieved, and
shared? (3) How much overhead is required to exploit jointly
generic and data-specific storage of CSs? Hence, this paper
presents and evaluates a new approach of a Cloud storage
overlay, entitled Platform-independent Cloud Storage System
for Multiple Usage (PiCsMu) [17]. PiCsMu stores data on
heterogeneous CSs independent of its Cloud category, i.e.,
TaaS, PaaS, or SaaS, (a) by aggregating multiple CSs’ data
storage capabilities to be seen as one single storage entity, (b)
by providing enhanced privacy levels, and (c) by enabling a
distributed file sharing network relying on CSs’ storage
instead of peers’ storage. Even though the aggregation of
CSs’ storage within an overlay may loose specific CSs’ fea-
tures (like, e.g., rotating a picture within Google Picasa or
version control within Dropbox), PiCsMu brings specific stor-
age advantages as (a), (b), and (c).

PiCsMu employs the following 4 steps to aggregate CSs’
storage and upload files: (1) fragmentation, (2) encryption, (3)
data encoding, and (4) data upload to CSs. Each of these steps
requires a minimal overhead with respect to processing time
and storage. These steps, combined, add another layer of tasks
to reconstruct original files, therefore turning it even harder
for an attacker (or, in case of data leakage, non-authorized
users) to gain access to the stored content. The fragmentation
step brings advantages in data reliability and redundancy,
since multiple fragments can be stored in multiple CSs, thus,
preventing data loss if a single CS shuts down its services
(e.g., Megaupload [21]) or if a CS presents serious availabil-
ity problems.

Since the resulting information related to all 4 steps forms
the PiCsMu Index, which represents what, how, and where
data was stored, file sharing functionality effects scalability.
PiCsMu uses a hybrid mechanism that can store this index
either centrally, for private storage, or in a Peer-to-peer (P2P)
network enabled by a Distributed Hash Table (DHT), for shar-
ing purposes. The evaluation focuses on measurements related
to the file upload and download times, scalability considering
different file sizes, and system overhead. Although PiCsMu
supports public CSs, the evaluation uses a local CS within a

597

38th Annual IEEE Conference on Local Computer Networks

local network in order to perform measurements considering
the best case scenario (excluding external factors, e.g., delays,
which are not part of PiCsMu).

The remainder of this paper is organized as follows.
Section. II outlines basic terminology and related work, which
is followed by the PiCsMu System Architecture and Design in
Section. III. The PiCsMu Prototype (Section. IV) is discussed
and was used to perform evaluations (Section. V). Finally
Section. VI summarizes the work and addresses future work.

II. TERMINOLOGY AND RELATED WORK

An overlay network (or overlay in short) is a virtual or
logical network on top of another network with addressable
endpoints [12]. Overlays are often used to provide a routing
topology not available in the underlying network. Encoding is
the process in which data is converted into another form. Pos-
sible encoding applications include reduction of the file size
(e.g., compression) or hiding data inside other file formats to
conceal the original content (e.g., steganography) [9]. Decod-
ing is the reverse process to restore the encoded data to their
original form. A credential is the attestation of authority to
access a given CS account. This can be achieved through pro-
viding a security handle, e.g., an OAuth [15] token with
restricted access (time out) or a username/password pair with
full access to that account.

TABLE I: A FEATURE COMPARISON OF CLOUD STORAGE SERVICES.

= 3
O3 (=]] °
Feature 22 5 g |z
5 o =1 3 (=] Q
s 8 [A
3¢ | 7
Overlay - - v v
Additional Service Support - - - v v
Fragmentation to Multiple Clouds - - - - v
Built-in Client-side Encryption - v v _a v
Encoding - - - - v
Decentralized Index - - - - v

#Encryption might be offered by underlaying CSs only.

In order to compare related work to PiCsMu, selected
related work is divided into two groups: first, a comparison to
generic Cloud storage services and, second, to P2P file shar-
ing systems. Amazon S3 [1], Dropbox [4], Google Drive [5],
SkyDrive [14] are examples of generic Cloud storage ser-
vices. SpiderOak [19] and Wuala [22] have been selected,
since they are known for Cloud storage services with encryp-
tion on the client-side. Otixo [16] was chosen, because it pres-
ents an overlay and supports multiple Cloud services. The
comparison of related generic Cloud storage services in
Table I presents six key features, “v"™ describing the presence
of the specified feature, while “-” denotes the lack of it:
“Overlay” defines that the CS builds a management network
on top of other CSs. Therefore, the CS does not store content
data itself, but in an underlaying CS. “Additional Service
Support” represents whether a CS supports the aggregation of
other CSs’ storage, thus, expanding its storage capabilities.
“Fragmentation” indicates whether a CS can split up the file
and store it with other CSs, thus, fragmenting it into multiple

Clouds. “Built-in Client-side Encryption”, refers to the
encryption done by the end-user application, rather than man-
ually by the end-user or by the CS system. “Encoding” indi-
cates whether data can be transformed to a well-known data
type that is accepted by restricted Cloud storage services.
Finally, “Decentralized Index” indicates whether the index of
files is stored in a distributed manner.

PiCsMu and Otixo offer Cloud storage overlay services.
The advantages of using an overlay is that data is stored in
third-party servers, and the overlay system can decide where
to store based on policies (storage management). Moreover,
users need to interact with the overlay system only, instead of
accessing each service itself. The fragmentation enables to
use many Cloud storage services, giving the user a bigger size
of storage and providing data redundancy. Only SpiderOak,
Wauala, and PiCsMu use client-side encryption, but the other
Cloud storage services may use a service that provides it.
Using server-side encryption, the service provider holds the
encryption and decryption key pair. However, pure server-side
encryption allows the provider to view and access all files and
thus, only provides privacy in case of servers are compro-
mised without compromising the keys. PiCsMu offers built-in
client-side encryption, where all data is encrypted on the end-
user machine before sending it to the CS. The disadvantage is
that if the user loses the password, the data cannot be
accessed anymore. The encoding provides the possibility to
store data in any Cloud storage service, even if the Cloud
storage service uses data validation just accepting files of spe-
cific file formats (e.g., SoundCloud accepts audio files only).
Although Otixo is the closest approach to PiCsMu, to the
authors best knowledge, PiCsMu is the only system known to
fragment, encrypt, and encode files in order to distribute frag-
ments in multiple CSs. Machado et al. [13] already investi-
gated how to bypass the data validation process of CSs to
store arbitrary data without restrictions, where encoders were
implemented in an early version of the PiCsMu System.

TABLE II: A COMPARISON OF P2P FILE SHARING SYSTEMS.

-
S] s - =
) = o 7]
- E z =
Criteria Z £ 5 < #
5 z £ £ o
&) Z -9
Topolo Central- Decen- Central- Decen- Decen-
pology ized tralized ized tralized tralized
Architec- Unstruc- Unstruc- Unstruc- Unstruc- Struc-
ture tured tured tured tured tured
Central . Tracker/
Lookup Index Flooding DHT Key-based DHT
Storage on v v v v _
Peers
File Search Internal Internal External External Internal
Download Peers Peers Peers Peers CSs
Upload Peers Peers Peers Peers CSs
Privz.lte _ _ v - v
Sharing

The PiCsMu System presents a share functionality, which
uses a P2P network. Thus, the comparison of related P2P file
sharing systems is presented in Table II, where the following
dimensions are taken into consideration: “Topology” deter-
mines whether the network topology is centralized or decen-
tralized, “Architecture” illustrates the overlay scheme as
structured or unstructured, “Lookup” represents the imple-
mented protocol as being able to query other peers for infor-

598

38th Annual IEEE Conference on Local Computer Networks

mation, “Storage on Peers” describes whether peers store file
data, “File Search” determines how the user can search for
files within the P2P network, “Download” determines the
entity, where data is downloaded from, “Upload” determines
the entity, where data is uploaded to, “Private Sharing” deter-
mines if the system supports closed groups of peers.

PiCsMu uses a DHT, which is a common type of struc-
tured overlay and guarantees a lookup time of O(log N),
where N is the number of peers. Queries in structured over-
lays are more efficient, in contrast to queries in most unstruc-
tured overlays [12]. Although BitTorrent and PiCsMu are
systems that are based on a structured overlay for storing
information about files (i.e., file metadata), PiCsMu differs in
the sense of file storage locations: While in BitTorrent frag-
ments are also stored on peers, PiCsMu fragments are stored
within CSs. Previous work [11] shows a problem in P2P net-
works: massive content distribution is often disrupted or suf-
fers from poor performance by churning peers. Thus, CSs are
considered stable systems compared to peers within a P2P
network. Addressing the issue presented in [11], PiCsMu
stores information about files on peers (index), which repre-
sents much less data than the file, thus having a faster replica-
tion to more peers to counter the effects of churn.

III. PICSMU SYSTEM ARCHITECTURE AND DESIGN

PiCsMu defines how and where files are handled/stored.
Thus, the designed file upload and download processes for
storing and retrieving files within the PiCsMu System is
explained, presenting three modes of operation: private stor-
age, private sharing, and public sharing. While private stor-
age relies on a centralized index, private and public sharing
modes are used with the support of a P2P network. Finally, all
three modes of operation are presented in a use case.

PiCsMu SystemI

[}

[}

!]

! PiCsMu User PiCsMu P2P PiCsMu Identity

: Bootstrapping Servers Provider (IdP)

8 o :

! — H

1 A

. [}

| H =]

: \4 vV 4 4 |
[}

: l Overlay l 1
[}

| .

| PiCsMu \

| ... PN

| Application [« @ '

' (PM-App)]

] PiCsMu Central :

[} PiCsMu P2P Network Index Service |

[}

L g)
[cs 1 (File Format x) |[¢S 2 (File Format Y) | --- | CS n (File Format n) |
Underlay

Legend: <> z:':;’;fg‘:("ge through .5 :‘:;_’viga)am’" m PM-App Peer

Fig. 1. PiCsMu System Architecture.

A. PiCsMu System Architecture

Fig. B illustrates the PiCsMu System architecture and its
interactions with external entities. The PiCsMu System is
divided into a PiCsMu Application, PiCsMu P2P Bootstrap-
ping Servers, a PiCsMu Identity Provider (IdP), and a PiC-

sMu overlay. The PiCsMu Application is responsible for
providing to PiCsMu Users means to upload, download, and
share files, also, providing an interface to create a PiCsMu
Identity. A PiCsMu Identity is created before using the PiC-
sMu Application. The PiCsMu P2P Bootstrapping Servers
provide means to the PiCsMu Application to join the PiCsMu
P2P network. Thus, at least one PiCsMu P2P Bootstrapping
Server has to be known by the PiCsMu Application. During a
file upload and download processes, the application interacts
with the PiCsMu Overlay and the underlay.

The PiCsMu Overlay is composed out of the PiCsMu P2P
Network and the PiCsMu Central Index Server, both storing
file index information. The index keeps track of files stored
within PiCsMu, where the file data is located, and how to
access it (c¢f. Section. III-B). The PiCsMu P2P Network is
maintained to persist index information of shared files. A P2P
network was chosen due to scalability and performance met-
rics, as well as to avoid a single point of failure. The PiCsMu
Central Index Server persists index information of private
files, i.e., files that are not meant to be shared with other PiC-
sMu Users, but to be kept for private use. A centralized index
server was chosen, since a controlled environment represents
a more reliable system (in terms of stability and data avail-
ability), if compared to P2P networks. Centralized index serv-
ers do not share content to others, avoiding index information
being distributed several times to multiple PiCsMu Users,
thus, possibly impacting the servers’ performance. The under-
lay, which is not provided by the PiCsMu System, is com-
posed out of one or multiple CSs, each associated with a valid
credential. While the overlay stores references to data parts,
the underlay stores the actual data. For downloading files CSs
credentials are not necessary, however, to store and/or share
files, the PiCsMu User must provide at least one CS’s creden-
tial beforehand. In order to use the PiCsMu System a user has
to create a PiCsMu Identity within a PiCsMu IdP using the
PiCsMu Application. A PiCsMu Identity consists of the PiC-
sMu identifier (PM-ID), the PiCsMu public key, and an
encrypted PiCsMu private key. The PM-ID is a unique identi-
fier (e.g., username) to distinguish PiCsMu Users within the
PiCsMu System. The public and private keys are generated,
when the PiCsMu User creates his/her identity. For the key
generation, the PiCsMu Application uses RSA, with a key
length of 1,024 Byte. The application uses Password-based
Encryption (PBE) to encrypt the private key and, therefore,
persists the encrypted private key within the PiCsMu IdP. The
advantage of encrypting the private key with a password is to
prevent the user on maintaining a private key locally (most of
times persisted in a hard disk), which can represent a security
exposure. However, if the PiCsMu User loses such password,
another key pair must be generated, and the PiCsMu IdP
should be contacted. Moreover, it is also possible to set pre-
existing RSA keys to create a PiCsMu Identity.

B. PiCsMu Index Information

The PiCsMu Index consists out of information entities of
the PiCsMu file upload process result and contains all param-
eters necessary to locate and reconstruct a file within the PiC-
sMu System. The PiCsMu Index consists of three independent
top-level entities: the File Information, Credential Informa-
tion, File Part Information. Only with all three entities the
PiCsMu Application can find all corresponding file parts and
can reconstruct the original file.

599

38th Annual IEEE Conference on Local Computer Networks

File Information: The description of a file in the PiCsMu
System. Each file is identified by a Universally Unique Iden-
tifier (UUID), using UUID version 4 [6], relying on random
numbers. In addition, mandatory information such as file
name, file size, upload date, and number of file parts are
included. Optional information as description and tags may be
included by the PiCsMu User.

Credential Information: The CS credential where the
encoded file part was stored. The credential information is
composed of a unique identifier (generated using a UUID),
the credential type (“OAuth” or “username/password”), the
CS that it belongs to, the credential itself, which can be an
OAuth token or username/password string, and the credential
expiration time. Credential Information instances are associ-
ated to one or more File Part Information entities through the
Credential Information unique identifier.

File Part Information: Those file information required: a
unique identifier, a credential identifier, and a file part size.
The file part unique identifier is composed out of the file
UUID concatenated with the file part order identifier, starting
from “0”. Therefore, each file part is considered unique by the
PiCsMu System relying on the file UUID information plus the
file part order (cf. Section. IV-C). The credential identifier,
which also is a UUID, points to an existing Credential Infor-
mation entity. The File Part Information instances are associ-
ated to one or more File Information instances also through
the File Information unique identifier, and, if a File Part Infor-
mation instance is updated (e.g., the file part was upload to a
different CS due to fault tolerance reasons), it does not require
to update the File Information instance. Further elements of
the File Part Information are: Encryption Information, Encod-
ing/Decoding Information, and CS Information:

Encryption Information: The encrypting information is
composed out of a salt, an Initialization Vector (IV), and a
password. Each file part is encrypted separately, using a PBE
method, with a randomly generated IV and password.

Encoding/Decoding Information: The description of the
encoder/decoder used for each encrypted file part. Each
encrypted file part is encoded separately, with the encoder
being chosen based on which CS the resulting encoded file
part will be uploaded to, as well as based on the CS file for-
mat restriction. Hence, the used encoding algorithm and the
embedded file format have to be placed in the index.

CS Information: Knowledge of where an encoded file part
was stored. This includes individual locations (i.e., URL or
internal CS’s unique identifiers as, e.g., a picture identifier
within a Google Picasa account) of all CSs used during the
upload process.

C. File Upload and Download Processes

Fig. 2 shows the PiCsMu file upload process. A PiCsMu
User selects a file to upload, for sharing or private use. The
user is responsible for providing valid CSs credentials. Once
the file and CSs credentials are set, the PiCsMu application
continues with (1) fragmentation, (2) encryption, (3) data
encoding, and (4) data upload to those CSs, which are based
on the CSs credentials the user has provided. Within step (1),
files are split generating file parts. Each of these file parts is
encrypted in (2), resulting in encrypted file parts. Step (3)
encodes each of the encrypted file parts using a data encoder,
which converts the file part into a specific file format (each
file format chosen based on available CSs credentials and
implementation decisions), resulting in an encrypted and

encoded file part. E.g., data can be encoded into an image file
through the means of steganography [9]. Finally, the file part
encoded is uploaded to a CS in step (4), using the CSs’ API.

PiCsMu User &

|

|

! 1
[} % - - :

— -
: 3 Credentials |-%. PiCsMu |
" ‘ Overlay 1
e Fragmentaton =~ -)l | |
I|o :
Ho ’ﬂﬁ ’—F.'F‘ W picsu | | !
|8 LPartt Part 2 Partn PP ||,
12 Network | |y
| % Encwpnon ----- |
C
| 'S o]
| i_') Encrypted Encrypted Encrypted |E| " 6\06 |
1w File File s Eile | 59 & :
e Parl Part 2 Partn | | Ei)s | '
! 2 L I ’lél /}L; |
| "(E Encoding e ‘3&/ |
= 2
1.8 ¥ ¥ v e Oé+ 1
: Q| File Format X || File Format Y | | File Format n | | :
1 |<C| |Encrypted | || |Encrypted Encrypted PleMu |
2| [|| | [||| S]
Part 1 Part 2
K = = Partn] | || Service | | !
1O I N A v]
e Upload = :
X
L ____________ Nmm e == o == —— 4
v X M
[cs 1 (File Format X) || cS 2 (File Format Y) | - [¢S n (File Format n) |
Underlay
Legend: --p a:t‘angz\;v to constitute Est:ago::er::u\t from 5_._-_._. _-5 E;ﬁ:da;tsﬁ:azz:mmed
Fig. 2. File Upload Process.

The information produced in steps (1), (2), (3), and (4)
forms the PiCsMu index. Once the PiCsMu Application
uploads all encoded files to CSs, the user chooses where to
persist the generated index. While for private storage the PiC-
sMu System uses the centralized index server to persist pri-
vate index information, for shared files the PiCsMu
Application uses a DHT. Using the PiCsMu Index informa-
tion, the PiCsMu System is able to retrieve and reconstruct a
previously stored file, applying the reverse process: down-
loading encoded files from one or many CSs, decoding these
files to obtain encrypted file parts, decrypting them to obtain
plain file parts data and, finally, joining all file parts to
acquire the original file that was stored.

D. Private Storage

If a file should not be shared, i.e., kept private to the
uploading PiCsMu User (private mode), the PiCsMu Index
information of the file is stored in the PiCsMu Central Index
Server. Thus, it is responsible for authenticating and authoriz-
ing which PiCsMu User has access to which PiCsMu Index
entity. The authentication is performed by the PiCsMu IdP.
The PiCsMu Central Index Server receives an authentication
request from the PiCsMu Application containing the PiCsMu
Identity (username and password). Thus, the PiCsMu IdP can
check the validity of the given PiCsMu Identity. Once the
authentication is done, the PiCsMu Central Index Server can
authorize the user to have access to previously persisted pri-
vate index entities. Therefore, the PiCsMu System guarantees
that each PiCsMu User has the right to only delete or retrieve
its own file index entities.

600

38th Annual IEEE Conference on Local Computer Networks

E. Private Sharing

Within the private sharing mode, a PiCsMu User (sender)
can upload and share a file with one or more specific PiCsMu
Users (receivers). Moreover, receivers have the possibility to
verify the sender within the PiCsMu IdP. The private sharing
mode and the sender verification mechanism are described in
4 steps:

1) Create a Sender’s Digital Signature: The sender cre-
ates a signature based on the Index entity with the sender’s
private key.

2) Encrypt the PiCsMu Index entity: The sender
encrypts the top-level PiCsMu Index entity using a randomly
generated key (PBE algorithm).

3) Encrypt the Random Generated Key: The sender
encrypt the randomly generated key from step 2 with the pub-
lic keys from the receivers.

4) Concatenate Results: All results of steps 1 to 3 are
appended. The result of these steps applied for each PiCsMu
Index entities generates PiCsMu Encrypted Index entities.
The PiCsMu Encrypted Index entity carries additional infor-
mation and, therefore, ensures that the receiver obtains all
cryptographic information necessary.

Every time a file is shared with another PiCsMu User, the
sender is responsible for generating a PiCsMu Share Notifica-
tion entity for each receiver. The PiCsMu Share Notification
entity is also stored in the DHT, using the PM-ID as the DHT
key. The information contained in the PiCsMu Share Notifica-
tion entity is the shared file UUID and the sender PM-ID.
PiCsMu uses a friendship relation (unilaterally acknowl-
edged, as publish/subscribe). The friends list, which is a set of
friend relations, is kept in the PiCsMu IdP, since it could be
manipulated by malicious peers if persisted in the PiCsMu
P2P Network. The friends list is fetched from the PiCsMu IdP
and transmitted to the PiCsMu Application upon start and the
list is updated on the PiCsMu IdP, if a modification happens
on the application side (e.g., add/remove a friend). The
friends list, which is composed out of other PiCsMu Users, is
mandatory, if the PiCsMu User aims to receive shared files.
To avoid fake share notifications, a PiCsMu User only can
receive files, if the sender’s PiCsMu Identity exists in his/her
friend list. If the PiCsMu System is only used for private stor-
age or to share files with others (but not receive shared files),
the friends list is optional.

F. Public Sharing

Within the public sharing mode, a PiCsMu User can
upload and share a file with the entire PiCsMu System and,
therefore, any PiCsMu User has access to it. In this mode no
index encryption is needed. Thus, each of the PiCsMu Index
entities are directly stored in the DHT.

Instead of using PiCsMu Share Notifications, content can
be searched through a content-based search query. Content-
based search used in PiCsMu allows for the lookup of files
without knowing an exact keyword by using P2PFastSS [3], a
similarity algorithm based on the edit distance metric (Leven-
shtein) [10]. The search is enabled by storing multiple key-
words as DHT keys, pointing to the corresponding PiCsMu
Index entities. These keywords are generated based on the
description and tags attributes of the File Information entity.
Multiple keywords are stored for each uploaded file. There-
fore, the search is performed by finding keywords entered by
the PiCsMu User that are in the DHT as keys.

G. Use Case

To demonstrate the file upload and download processes, a
use case is provided for the private file sharing. Fig. 3 illus-
trates Alice sharing a file specifically with Bob. “PM-ID” rep-
resents the unique identifier of a PiCsMu Identity, having
“PM-ID A” as Alice’s and “PM-ID B” as Bob’s identifiers.

Both Bob and Alice start their PiCsMu Application by
fetching her and his public and encrypted private key, respec-
tively, from the PiCsMu IdP (step 1). The encrypted private
key is decrypted with that user password, which was chosen
when the PiCsMu Identity was created to obtain the private
key. In parallel, also in step 1, their respective PiCsMu Appli-
cations contact the PiCsMu P2P Bootstrapping Servers to
connect to the PiCsMu P2P Network.

Application Alice
Encrypt | Req:[pub. Key B " /Sender) _ -

PiCsMu User ID with Keys
(BEE®O© PM-ID A Pub. Key A [Enc. Priv. Key A

m PM-ID B | Pub. Key B | Enc. Priv. Key B

PM-ID C | Pub. Key C | Enc. Priv. Key C

Enc. INDEX| =
(GRGE)

Res: [J—|Re :
Alice’s Friends List| Pub. Key A Alices’s Keys?
@ Bob[PM-IDB]| (ocal Picsmi Enc. Priv. Key AJ —\ 1

QcrairePVEID C P €) o
v Bob’s Public Key?
Res:
C]

<//7>

8.

PiCsMu
1dP Application
Decrypt

INDEX

PiCsMu P2P
Bootstrapping
Servers

Cl) Enc, INDEX

Res:

Enc. Priv. Key B

A Req:

®eE0

Res:

PM-ID B
PiCsMu PM-ID B| [Enc. INDEX
P2P Network ©C
H
(1) :
L/ H Bob
Legend: _ |Encryption Info (related to ® Fragmentation Info (i.e., Bob's Friends List (Downloader/
File Part) File Info, File Parts Info) 8 Alice[PM-IDA Receiver)
Bl e g i
redenti unt ut
(© |to persist the encoded file| Req| Request 6 IIl
part)

Fig. 3. Private sharing steps.

In step 2 Alice provides to her PiCsMu Application the
file to be shared with Bob and one or more CSs’ credentials.
Once the PiCsMu Application receives the file and all CSs
credentials, it starts the file upload process as described in
Section. III-C. During the file upload process her PiCsMu
Application recognizes that the file is shared (with Bob) and
within step 3 Alice’s PiCsMu Application requests Bob’s pub-
lic key from the PiCsMu IdP, including Bob’s PM-ID.

At step 4 Alice’s PiCsMu Application uploads the
encoded file parts to those CSs Alice provided credentials for.

Once the uploading of all file parts is successfully com-
pleted, Alice’s PiCsMu Application encrypts each PiCsMu
Index entities with a randomly generated key, which is also
encrypted with Bob’s public key (step 5). Moreover, Alice’s
digital signature is included with each of the PiCsMu
Encrypted Index entities.

In step 6 Alice’s PiCsMu Application persists each of the
PiCsMu Encrypted Index entities to the DHT. Therefore,

601

38th Annual IEEE Conference on Local Computer Networks

Alice creates a PiCsMu Share Notification entity to make Bob
aware of the newly shared file.

Bob’s PiCsMu Application consults the DHT for PiCsMu
Share Notification entities that was sent by his friends. Once
Bob recognizes a new notification, here from Alice, Bob’s
PiCsMu Application uses the file UUID from the PiCsMu
Share Notification to start a sequence of DHT calls that are
necessary to retrieve all PiCsMu Encrypted Index entities that
forms the PiCsMu Index (step 7).

Holding all PiCsMu Encrypted Index entities of the shared
file, Bob’s PiCsMu Application verifies in step 8 the digital
signature from step 5 against Alice’s public key provided by
the PiCsMu IdP. In parallel, Bob’s PiCsMu Application is
able to decrypt the PiCsMu Encrypted Index entities by using
Bob’s private key.

Finally, within step 9 all CSs’ credentials, part of the
index, are used to locate all encoded file parts in the CSs stor-
age. Upon retrieving all encoded file parts, Bob’s PiCsMu
Application follows the file download process and recon-
structs the original file shared by Alice.

IV. PICSMU PROTOTYPE

A Java-based prototypical implementation of the PiCsMu
System was developed to verify its feasibility, scalability, and
overhead. The PiCsMu Application implements the follow-
ing modules using well defined interfaces for reusability:
Schedulers, DataEncoders, EncryptionStrategies, IndexPer-
sistenceStrategies, and CloudServices. The security modules
implement PBE-AESCryptography, which is used to encrypt
larger amounts of data, such as PiCsMu Index entities, while
the RSACryptography just encrypts smaller amounts of data,
such as a randomly generated key. The PBE-AESCryptogra-
phy handles a key length up to 128 bit.

CentralizedIndex and DistributedIndex implement the per-
sistence of PiCsMu Index entities in the PiCsMu Central
Index Server and in the PiCsMu P2P Network, respectively.
Both implement methods to persist PiCsMu Index entities,
such as putFilelnfo(), putFilePartInfo(), putCredentiallnfo(),
as well as methods to retrieve the PiCsMu Index entities, such
as getFilelnfo(), getFilePartinfo(), and getCredentiallnfo().
The CentralizedIndex implementation expects as input the
PM-ID and PiCsMu Identity password for each get or put
called methods, since the PiCsMu Central Index Server is
implemented with stateless calls (i.e., without the notion of a
session). Therefore, get or put methods can be invoked any
time in a Remote Procedure Call (RPC) fashion encoded in
JSON (JavaScript Object Notation). The communication
between the CentralizedIndex implementation and the PiC-
sMu Central Index Server is done following the JSON-RPC
standard [8]. The PiCsMu Central Index Server and the PiC-
sMu IdP are implemented as standalone Java programs,
receiving and answering JSON-RPC method calls. In the cur-
rent prototype implementation, both PiCsMu Central Index
Server and PiCsMu IdP run a MySQL database to persist all
PiCsMu Index entities and PiCsMu Identities. The Distribute-
dIndex implementation uses the TomP2P library [20] allow-
ing the PiCsMu Application to put or get PiCsMu Index
entities, search keywords, and PiCsMu Share Notification
entities to/from the DHT. TomP2P has the notion of domains,
which are used together with a DHT key to build a unique
combination. Therefore, the DistributedIndex implementation
uses three DHT domains: (1) index domain, (2) search
domain, and (3) share notification domain. In (1) only PiC-

sMu Index entities are stored; (2) is used to store search key-
words pointing to PiCsMu Index entities; and (3) stores
PiCsMu Share Notification entities. The PiCsMu Bootstrap-
ping Servers are also implemented as standalone Java pro-
grams to receive bootstrapping requests from the PiCsMu
Application.

A. Data Encoders

A File Format Sample (FFS) is a file with a specific for-
mat that is used to encode data into. E.g, in order to inject
data into MP3 files, a MP3 FFS is necessary, as well as a data
encoder, which is the software that performs the encoding
using the FFS.

Each of the data encoders supported by PiCsMu were
implemented having three basic methods as the interface to
the PiCsMu Application: pack(), unpack(), and getEstimated-
OutputFileSize(). The pack() method expects the data to be
encoded as input, performs the encoding process, and pro-
vides the encoded file as output. The unpack() does the
decoding process. The getEstimatedOutputFileSize() method
performs an estimation of the final encoded file size, without
actually encoding any data in a FFS. As parameter, the
method expects a data size as input to the encoder in order to
perform the estimation.

The following data encoders are supported by the PiC-
sMu system prototype:

IDv3 Tag Encoder: This encoder injects data using
optional headers of an audio file format. The ID3 Tag
Encoder uses the ID3 version 2 [7] metadata container to
inject data in all fields specified by the standard, which are,
e.g., title, artist, album, track number, among others. The stan-
dard specifies a metadata tag size up to 256 MByte. Thus, this
encoder uses a MP3 File Format Sample up to 10 seconds of
audio and encodes data in the ID3v2 tag within the file, where
the encoded data can vary depending on the amount of data
that the Scheduler. The output is a playable MP3 file with the
specified data in ID3v2 tags.

Text Encoder: This encoder uses a data conversion tech-
nique to transform data into a set of ASCII characters. This
encoder is able to upload the encoded ASCII data to CSs that
only accept textual input. It takes an amount of data as input,
and generates as output a sequence of ASCII characters.
Therefore, the Text Encoder does not require a FFS.

JPG and PNG Steganography Encoder: This encoder
uses the steganography technique, where data is hidden in a
way that intends to turn them imperceptible apart from the
sender and receiver. The purpose of this encoder is to inject
data (hiding it) in JPG and PNG files. It takes a FFS (JPG or
PNG) as input and, for each pixel, it injects 3 bits of data (also
specified as input) into the LSBs (Least Significant Bit). The
output is a JPG or PNG FFS, which includes the data speci-
fied. There are more sophisticated image steganography
methods already widely discussed [9].

B. Cloud Services

Each of the CSs supported by PiCsMu were implemented
having 4 basic methods as the interface to the PiCsMu Appli-
cation: (a) put(), (b) get(), (c) getMaxInputSize(), and (d)
getAllowedFileFormats(). In (a) and (b), the CS implementa-
tion should be able to store and retrieve files, respectively,
having a CS credential as parameter. While in (a) the method
returns a unique identifier to locate the file within the scope of
the CS account associated with the specified CS credential, in

602

38th Annual IEEE Conference on Local Computer Networks

(b) the method expects this unique identified as parameter to
retrieve the correct file. In (c) the implementation specifies
what is the maximum file size that this CS can handle for
each upload, and in (d) the CS implementation returns the
allowed file formats to be uploaded. Based on the allowed file
formats the PiCsMu Application can check what are the pos-
sible data encoders to be used with each CS. The following
CSs are supported by the PiCsMu system prototype:

CSG Service: The CSG Service is an internal storage ser-
vice in the CSG group at the University of Zurich. The
CSGService implementation uploads a file, without file for-
mat restrictions, up to 20 MByte, and it returns a URL with a
randomly generated identifier to fetch the file again, without
the need of a CS credential. Credentials are necessary to
upload, but not to download files. The CSG Service is classi-
fied as a generic Cloud storage service.

Google GMail: Google GMail is an email service which
allows to store data within the email body and email attach-
ments. GMailService implementation uses the structure of an
email to store data, thus being classified as a data-specific
Cloud storage service. It creates an email to be sent to the
same GMail account associated with the specified CS creden-
tial, storing the encoded file as an attachment. The attach-
ment maximum file size is 25 MByte, and the email body is
left blank. In order to identify in which email the encoded file
is located, the GMailService implementation generates a ran-
dom UUID in the email subject. The GMailService imple-
mentation accepts any format.

Facebook Update Status: Facebook is a social network
service providing the status update as a feature. Facebook
users can write a text input which has a maximum input size
of 63,206 characters by today. The FacebookStatusUpda-
teService implementation uses the status update field to store
data, thus, being classified as a data-specific Cloud storage
service. Every time that a status update is created, the CS gen-
erates a unique identifier associated with the status updated.
Therefore, data represented as text is the input, while a URL
generated by the CS that locates the status updated is the out-
put. The CS credential used to update the status is also neces-
sary to retrieve the status update. FacebookStatusUpdate
Service only accepts text as input.

Google Picasa: Google Picasa is an image organizer and
viewer. Google Picasa accepts the upload of images with sizes
up to 20 MByte, despite of the image resolution, thus, being
classified as data-specific Cloud storage service. The Picasa-
Service implementation takes an image file as input, gener-
ates a random UUID which is associated with the Picasa
image name attribute, and returns such a UUID as an output.
The UUID is valid in the scope of the CS credential given to
upload the image, therefore, the used CS credential to upload
is also necessary to download the file. Although the Google
Picasa service accepts a wide range of image file formats, the
PicasaService implementation prototype at this stages accepts
PNG and JPG formats only.

ImageShack: ImageShack is an image organizer and
viewer. It accepts the upload of images with sizes up to 5
MByte, despite of the image resolution, thus, being classified
as data-specific Cloud storage service. The ImageShackSer-
vice implementation takes an image file as input and returns a
URL with a randomly generated identifier to fetch the file
again, without the need of a CS credential. A CS credential is
necessary to upload, but not to download the file. The Image-
ShackService implementation today accepts PNG and JPG

files, even though the CS accepts a wider variety of image
formats.

SoundCloud: SoundCloud is a service platform which
allows users to upload, organize, and listen to audio. It
accepts the upload of audio files, without a maximum file
size, but with a free account limiting to 60 minutes of audio.
SoundCloud is classified as being a data-specific Cloud stor-
age service. The SoundCloudService implementation takes an
audio file as an input and returns a URL with a randomly gen-
erated identifier to fetch the file again. The CS credential used
to upload is also necessary to download the file. Currently, the
SoundCloudService implementation accepts MP3 files today,
even though the CS accepts generally a wider variety of audio
formats.

C. Scheduler Algorithm

The PiCsMu Scheduler module chooses how to fragment
files, which encryption to use, which data encoder to select,
and finally to which CS to upload. Different Scheduler imple-
mentations may prioritize different aspects, e.g., to lowest
number of file parts, to lowest number of CS, or to highest
number of CS. The DefaultScheduler implementation uses a
random function to determine CSs and its credentials, data
encoders, and encryption strategies for each file part. The
fragmentation strategy followed by the DefaultScheduler is to
try to put as much data within one file part, considering the
chosen CS and data encoder. The DefaultScheduler consults
the chosen data encoder again to have an estimate of what
will be the final file size after the encoding process (using
getEstimatedOutputFileSize()). Based on the estimated file
size after the encoding process, the DefaultScheduler checks
if the estimated file size can be uploaded to the chosen CS
(using the CS implementation getMaxInputSize() method). If
not, the DefaultScheduler has to decrease the file part size, to
be given as input to the data encoder. Since the estimated out-
put size is often correct and potential errors are small, the cur-
rent implementation decreases the file part size by 10 Byte, in
a loop, before the estimation is made again and checked if the
newly estimated file size can be uploaded to the chosen CS.

V. EVALUATIONS

The evaluation was performed in a controlled environ-
ment, with 17 physical nodes interconnected to one isolated
Gigabit switch. The node n/ holds both the PiCsMu Central
Index Server and the PiCsMu IdP. The PiCsMu P2P Boot-
strapping Server is hosted in the node n2. All PiCsMu Appli-
cation instances are pointed to n/ to store private indices and
retrieve PiCsMu Identities, and to n2 to discover other peers
in the PiCsMu P2P Network. In addition, the node n3 runs the
CSG Service, which emulates CSs. Nodes n/, n2, and n3 have
a Intel Xeon processor, with 2.2 GHz, 48 GByte RAM, and
500 GByte 7200 RPM hard drive. Although PiCsMu has been
tested and its functionality has been verified using public CSs,
the decision to not run evaluations with all supported CSs’
implementation relies on two reasons: first, performing evalu-
ations with a local service within a local network isolate the
results, thus excluding, e.g., delays in public networks that
could affect overall measurement values; second, the evalua-
tion with a local service enables more test runs due to be per-
formed in a controlled environment. The remaining 14 nodes
(AMD Opteron, 24 cores, 2.5 GHz, with 64 GByte RAM, and
500 GByte 7200 RPM hard drive) were used to run PiCsMu
Application instances, which required about 40 MByte of

603

38th Annual IEEE Conference on Local Computer Networks

RAM allowing a maximum of 700 active PiCsMu Applica-
tion instances (i.e., different PiCsMu Users). All PiCsMu
Application instances are connected through a local network
and listen on different ports and all 700 PiCsMu Application
instances are always online, thus, no churn is considered. In
all experiments all PiCsMu Application instances use the
same CS service but with different CS credentials. The same
files are used for each test case and test cases are repeated 10
times.

The following dimensions are observed: total time for file
upload/download (including all file upload and download
steps within the PiCsMu Application), file data overhead per-
centage (how many percent the original file grows, looking to
the encoded file parts size as a result of the encoding), and
PiCsMu Index overhead (how much data was generated by
the PiCsMu Index entities). These dimensions determine the
feasibility, scalability, and overhead of the PiCsMu System.

TABLE III: TEST CASES AND SCENARIOS.

Scenarios Test case A Test case B
(1) Private 1 PiCsMu User uploading a pri- | 1 PiCsMu User download a pri-
Storage mode vate file vate file
1 PiCsMu User uploading a file
(2) Private to share specifically with all All PiCsMu Users downloading
Sharing mode | other PiCsMu Users part of the the shared file
PiCsMu IdP
. 1 PiCsMu User uploading a file All PiCsMu Users part O.f the
(3) Public . P2P Network downloading a
. to share to the whole PiCsMu
Sharing mode P2P Network file that was shared to the whole
PiCsMu P2P Network
(4}) CSQSer— 1 User uploading a file to the 1 User downloading a file from
vice Without . .
PiCsMu CSG Service the CSG Service

A. Evaluation Test Cases

The following test cases (cf. Table III) were designed to
cover the three modes of operation related to the file upload
and download processes: (1) private storage, (2) private shar-
ing, and (3) public sharing. Moreover, an additional test case
was compiled to generate results for a comparative analysis:
(4) CSGService without PiCsMu System. Test case (4) shows
results of the file upload and download without the use of the
PiCsMu System, which means that no additional overhead or
processing time is produced. These test cases used files with
sizes of 1 MByte, 10 MByte, 100 MByte, and 1 GByte in
order to upload and download.

The total time to upload and download are measured in
test cases (A) only, since it generates the same (for scenario 1
and 4) or higher overhead/total time (for scenarios 2 and 3) as
(B), representing the upper bound. Scenario 2 issues share
notifications for all its users, resulting in a higher overhead
than scenario 3, also representing the upper bound.

B. Evaluation Results

Fig. 4 shows the total time for scenarios (1), (2), and (4).
In scenario (1) a 1 GByte file can be uploaded on average in
11.1 minutes (test case A) and downloaded in 6.7 minutes
(test case B). When compared to the average total time of sce-
nario (4), with the same 1 GByte file, where the upload is
completed in 1.59 minutes (test case A) and download is com-
pleted in 1.53 minutes (test case B), a PiCsMu User takes on
average 6.9 times to upload and 4.3 times to download. This
is due to fragmentation, encoding, and encryption overhead.
In scenario (2), the upload and download process is faster,

since the index is not encrypted and no DHT calls are per-
formed. Another observation is that with an increasing num-
ber of file parts, the total time is increasing too, since the
index for each file part is encrypted individually.

10000000 " Put w/o PiCsMu (scena‘rio 4) ‘

@ Put private storage (scenario 1) ===

% 1000000 Put private sharing (scenario 2) = 4
@

j=

o

= 100000 E
w

el

[=

8 10000 3 1
Q

Q

T 1000 .
£

[

£ 100 q
£

10
1M 10M 100M 1G
File sizes

Fig. 4. Total Times for Test Case A and Scenarios 1, 2, and 4.

Fig. 5 shows the data overhead for test case A of scenar-
ios (1) and (2) with a considerable data overhead variance for
smaller files when compared to the 1 GByte file. Since the
PiCsMu Application uses a random function, there is a higher
chance to choose different data encoders for less fragments in
different runs. Data encoders present different overhead. The
best encoder (SteganographyEncoder) has an overhead of
0.16% due to compressing the FFS (PNG image) after the 3
LSBs are injected, while the worst encoder (ID3v2Tag
Encoder) has an overhead of around 104%. The ID3v2Tag
Encoder is the one with most overhead since data is injected
and represented in a hexadecimal String format within ID3v2
tags, e.g., album name, song title, song description, etc. How-
ever it is also the encoder that stores the most data (5 MByte,
due to CSG Service upload size restrictions, compared to 43
KByte with SteganographyEncoder). For large files, the over-
head levels off at around 100%, which is the average over all
encoders.

140 T T " T
Private] storage (scenario 1)

Privatg sharing (scenario 2) ===

100 T il
S @

120

——

o]
o

Data overhead in %
[}
o
T

IN
o
T

N
o
T

o

iM ioM 1io0M

File sizes
Fig. 5. File Data Overhead.

Two distinct runs with extreme variations in the number of
files parts were chosen to analyze the relation between data
encoders and data overhead. Considering the 1 GByte file, the
PiCsMu Application generated 572 encoded file parts, with a
total size of 1.97 GByte data being uploaded. In a second run
it resulted in 237 encoded file parts, with a total size of 2.03
GByte, resulting in an additional overhead of 56 MBytes.

Fig. 6 shows the index overhead for scenario 2 and 3. The
index size for (2) is much smaller than for the private shar-
ing, since the index does not need to be distributed in the
DHT. For (3) the overhead to store the index in the DHT is

604

38th Annual IEEE Conference on Local Computer Networks

between a factor of 2.4 to 2.7 explained by DHT’s redun-
dancy settings. It can be observed that the index overhead lev-
els off at around 2,400 Byte per peer for the private sharing,
respectively 900 Byte for the private storage.

4000 Pri‘vate storage (écenario 1) P

Privatg sharing (scenario 2) ===

2
2 3500
9]
o
@ 3000
8
>
4 2500 Jr p—
<
° -
© 2000
<
% 1500 1
% K3
g 1000 s o ; .)
- kX W X
500 : :
M 10M 100M 1G
File sizes
Fig. 6. PiCsMu Index Overhead.

VI. SUMMARY AND FUTURE WORK

PiCsMu defines a novel storage overlay aggregating het-
erogeneous Cloud storage services, supporting both generic
and data-specific storage service types. For data-specific
Cloud storage services the lack of data validation is exploited
to provide a generic storage service. PiCsMu provides a sin-
gle interface to end users enabling storage and data sharing.

PiCsMu shows advantages in terms of increased security
and privacy: the data encoding, file part encryption, and file
fragmentation processes, combined, add another layer of tasks
to reconstruct original files, thus, turning it even harder for an
attacker to gain access to the content of original files. Another
advantage is data redundancy: multiple fragments in multiple
CSs prevents data loss in case that a single CS provider shuts
down its services like, e.g., Megaupload [21]. Furthermore,
additional storage space is available with PiCsMu, since mul-
tiple CS that offer free storage can be aggregated.

The evaluation addressed all research questions proposed
in Section. I. The PiCsMu prototype implementation showed
that it is possible to build an overlay over generic and data-
specific CS storage, used to store, retrieve, and share any kind
of files. The total time for storing and retrieving data and its
overhead showed that PiCsMu scales with respect to different
file sizes. The overhead with respect to the index is moderate
even for 700 users, all receiving a share notification.

These experiments indicated that the Scheduler is a key
component as it decides how many fragments are generated.
Prioritizing to generate less file parts results in less overhead,
but it does not spread the data to many CSs, especially not for
small files. Thus, for future work, the Scheduler should take
the file size into consideration. Furthermore, the Scheduler
could decide which CS to take, based on the current perfor-
mance of the CS in order to optimize PiCsMu for the end
user. Since this optimization considers the storage of data, the
time of retrieval of the data is not known in advance and
could be anticipated based on previous user behavior.

This paper does not consider any legal implications, such
as boundaries of Cloud storage services. Thus, the PiCsMu
User has the responsibility to decide about legal aspects,
whether the use of a Cloud storage overlay system is con-
forming (i.e. fair-use) to the terms of service and its legal
intent of CS providers. Additionally, such legal aspects will
be explored in the future, including views of various stake-
holders and their interests. Moreover, additional evaluation

measurements showing the system’s effectiveness will be car-
ried out, using the public CSs supported by PiCsMu.

VII. ACKNOWLEDGEMENTS

This work was supported partially by the Smart-
enlT and the FLAMINGO projects, funded by the EU FP7
Program under Contract No. FP7-2012-ICT-317846 and No.
FP7-2012-1CT-318488, respectively.

REFERENCES

[1] Amazon.com Web Services: Products and Services. Available at:
http://aws.amazon.com/products. Last visited on: March 2013.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, 1. Stoica, M. Zaharia:
Above the Clouds: A Berkeley View of Cloud Computing. Technical
Report UCB/EECS-2009-28, University of California at Berkeley,
California, U.S.A, February 2009.

[3] T. Bocek, E. Hunt, D. Hausheer, B. Stiller: Fast Similarity Search in
Peer-to-Peer Networks. 11th IEEE/IFIP Network Operations and
Management Symposium (NOMS 2008), Salvador, Brazil, April 2008,
pp. 240-247, doi: 10.1109/NOMS.2008.4575140.

[4] Dropbox: Dropbox Service. Available at: dropbox.com. March 2013.

[51 Google Corporate: Google Products and Solutions. Available at:
http://google.com/intl/en/about/products/. Last visited at: March 2013.

[6] IETF: 4 Universally Unique IDentifier (UUID) URN Namespace. REC
4122, July 2005. http://tools.ietf.org/html/rfc4122, March 2013.

[71 1D3 Website: ID3 Version 2 Standard. Available at: id3.org. May 2013.

[8] JSON-RPC Website Specification: 4 Light Weight Remote Procedure
Call Protocol, Specification 2.0. Available at: jsonrpc.org. April 2013.

[91 G C. Kessler: An Overview of Steganography for the Computer
Forensics Examiner. Technical Report, Gary Kessler Associates,
February 2004. http://www.garykessler.net/library/fsc_stego.html.

[10] V. L. Levenshtein: Binary Codes Capable Of Correcting Deletions,
Insertions And Reversals. Soviet Physics Doklady, Vol. 10, No. 8,
February 1966, pp. 707-710.

[11] Z.Li, G Xie, K. Hwang, Zhongcheng Li: Churn-Resilient Protocol for
Massive Data Dissemination in P2P Networks. IEEE Transactions of
Parallel and Distributed Systems, Vol. 22, No. 8, August 2011, pp.
1342-1349. doi: 10.1109/TPDS.2011.15.

[12] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim: 4 Survey and
Comparison of Peer-to-Peer Overlay Network Schemes. 1EEE
Communications Surveys and Tutorials, Vol. 7, No. 2, pp. 72-93, 2005.

[13] G. S. Machado, F. Hecht, M. Waldburger, B. Stiller: Bypassing Cloud
Providers Data Validation To Store Arbitrary Data. 13th 1IFIP/IEEE
International Symposium on Integrated Network Management (IM
2013), Ghent, Belgium, May 2013.

[14] Microsoft: SkyDrive, Files Anywhere. http://skydrive.com. March 2013.

[15] OAuth Specification: OAuth 2.0 Specification. Available at:
http://oauth.net/2. Last visited on: March 2013.

[16] Otixo: All Your Cloud Files from a Single Login. Available at:
http://otixo.com. Last visited on: March 2013.

[17] PiCsMu Website: Platform-independent Cloud Storage System for
Multiple Usage. Available at: http://www.pics.mu , May 2013.

[18] SalesForce.com: The Leader of Customer Relationship Management
(CRM) and Cloud Computing. Available at: http://www.salesforce.com.
Last visited on February 2010.

[19] SpiderOak: Private Online Backup and Sharing. Available at:
https://spideroak.com. Last visited on: March 2013.

[20] TomP2P Website: A P2P-based High Performance Key-value Pair
Storage Library. Available at: http://tomp2p.net, March 2013.

[21] Wikipedia: Megaupload. Available at: http://en.wikipedia.org/
wiki/Megaupload. Last visited on: March 2013.

[22] Wuala: Secure Storage Service. Available at: wuala.com. March 2013.

605

