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Abstract—Dynamic Adaptive Streaming over HTTP (DASH) is
a new streaming standard which adaptively streams video based
on the link bandwidth between server and client. DASH encoded
videos are chunked in small segments and each segment can
have different representations. Switching between these repre-
sentations enables adaptive streaming, which has the potential
to reduce bandwidth consumption in cases where a video is not
completely watched. In this paper, we present an analysis on
the advantages and disadvantages of using DASH as YouTube’s
video streaming format. To perform this analysis, we make use
of a YouTube video trace and analyze the potential reduction in
bandwidth consumption by employing DASH in YouTube, based
on user watching patterns. Results from our analysis show that
by employing DASH with a segment interval of 2 seconds, we
can obtain 95% reduction in bandwidth for low quality videos
and up to 83% reduction for HD videos in cases where users do
not watch videos completely, which is the case for ~ 42% of all
video requests in our trace. Considering all videos requested in
the trace the overall bandwidth reduction is 40% for low quality
videos and 35% for HD videos.

I. INTRODUCTION

YouTube is the world’s most popular Internet service
that hosts user-generated videos. According to [9], in 2011
YouTube had more than 1 trillion views or around 140 views
for every person on Earth. Consequently, these numbers lead to
a huge amount of network traffic which bears the potential of
causing congestion in the network. Caching and prefetching of
YouTube videos have shown to reduce bandwidth consumption
and latency [17], [19], but their efficiency in reducing core
network bandwidth consumption is limited. This is caused by
the fact that the popularity of YouTube videos follows a long
tail distribution [13], [28], and in ~ 80% of the cases a video is
requested only once, which limits the effectiveness of caching
and prefetching techniques. Hence, a different mechanism is
required to further reduce the amount of traffic from YouTube
in the network.

In today’s Internet, the most popular video streaming ser-
vices (e.g., Netflix, Hulu, YouTube) employ HTTP streaming
over TCP, which has become a de facto standard. HTTP
streaming has evolved constantly over time and can be divided
into three main sub-categories. First, regular HTTP streaming,
where the video is streamed or downloaded completely to
the client. Second, progressive download, where the video
download to the client is performed progressively but with a
fixed quality. Finally, adaptive streaming over HTTP is gaining
attraction since it allows to adapt the video stream’s quality to
the available bandwidth on the path between server and client.
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Dynamic Adaptive Streaming over HTTP (DASH) [27], [26] is
the MPEG standard that defines this new streaming framework.

DASH, in a nutshell, divides the videos into segments with
each segment representing a portion of the total length of the
video. In addition, different quality versions for each segment
of a video can be provided. A Media Presentation Description
(MPD) file is presented to the client upon request of the video,
containing information of the segments, its data ranges and
the server hosting the segments. The MPD has also a detailed
description of the various video bit rates or qualities offered.
The client periodically (2 - 10 seconds) probes the bandwidth
to the video server and switches to a different quality level
based on the network condition adapting the streaming rate to
the available bandwidth.

Analyzing video traffic and user behavior from a YouTube
network trace collected on a U.S. university campus gateway,
we find that in ~ 42% of the cases users do not completely
watch the video they request. Out of the 42%, 55% of the
time the viewers only watch the initial 20% of a video. By
employing progressive download or regular HTTP streaming,
a significant amount of data that is streamed to the client
might actually not be consumed by the viewer, since this pre-
fetched data are actually not watched if a user decides to not
completely watch a video. This extra data transmitted incurs
unnecessary bandwidth consumption in the network, which
may lead to congestion and increase latency.

Motivated by the fact that using DASH in YouTube could
significantly reduce bandwidth consumption, we investigate
the advantages and disadvantages of this approach. We demon-
strate the advantages of DASH by analyzing YouTube video
streaming under the assumption that videos are encoded in
5 different bit rates (240p, 360p, 480p, 720p and 1080p). In
the cases where videos are not completely watched (which
happens 42% of the time in our trace), results from our
analysis show the potential for a 95% reduction in bandwidth
consumption for low quality videos (240p, 360p and 480p) and
up to 83% reduction for HD videos (720p and 1080p) when us-
ing segment length of 2 seconds. We show that, considering all
videos requested in the trace the overall bandwidth reduction
is 40% for low quality videos and 35% for HD videos. We also
show that DASH improves the Quality of Experience (QoE)
of watching a YouTube video, as it switches to different bit
rate streams depending on the link bandwidth to the YouTube
server. Compared to the current streaming approach this will
reduce the the number of pauses for buffering when watching
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YouTube under fluctuating network conditions.

One disadvantage of DASH is the amount of storage re-
quired to host all videos in different bit rates and segment
lengths on YouTube. In this paper, we take advantage of the
user watching pattern and the inherent DASH feature to seg-
ment the videos to store videos distributed over several cache
levels that are part of the YouTube distribution architecture.
The idea is to store the first 50% of the segments of each
quality version of a video in the primary caches, 50%-75%
segments of the videos in secondary caches and the rest of
the segments in tertiary caches. We simulate this scenario of
data hosting and obtain a cache hit rate of ~ 19% by placing
only 50% chunks in primary caches and thereby reducing the
required cache size by half. Also, this solution reduces initial
start up delays and buffering for major part of the videos.

The remainder of the paper is organized as follows: Sec-
tion II presents related work in the area of DASH and YouTube
bandwidth savings. In Section III, we provide an overview of
the trace used in our analysis and give insight into the extra
data and cost consumed by YouTube streaming techniques.
Section IV demonstrates the advantages and disadvantages of
using DASH in YouTube video service. Section V provides
some discussion points on our analysis of using DASH in
YouTube and we conclude the paper in Section VI.

II. RELATED WORK

Adaptive HTTP streaming has been used in the Internet
for quite some time. Adobe Systems HTTP Dynamic Stream-
ing [1], Apple Inc. HTTP Live Streaming (HLS) [2] and
Microsoft Smooth Streaming [6] are some of the most popular
adaptive HTTP streaming solutions. Each of these adaptive
streaming systems are proprietary and are not specified by an
international standard.

Dynamic Adaptive Streaming over HTTP, also known as
MPEG-DASH is the first adaptive HTTP-based streaming that
is an international standard [26]. DASH is a relatively new
standard compared to its proprietary counterparts and currently
there are only a few video players with DASH implementation
publicly available. E.g., DASH plugin for VLC player [25] and
the DASH implementation in the GPAC project [5]. Most of
the work or testing carried out on the new standard of adaptive
streaming focus on different environment settings [22], [23],
[24], but none of them have looked into the feasibility of using
DASH for the most popular user generated video streaming
service, YouTube. In this paper, we look into the advantages
and disadvantages of using DASH in YouTube. The work that
comes closest to ours is an investigation of peer assisted DASH
by Lederer et al. [21], who look into the advantages of using
P2P adaptive streaming and show 25% bandwidth reduction
in CDN traffic.

YouTube is the most popular video streaming service with
100 hours of video uploaded per minute [10]. Millions of
videos uploaded and billions of hours of video watched every
month. Such huge amount of video requests make up large part
of the world’s Internet traffic, which may lead to congestion
in the network. Some of the research to reduce the amount

of back-end YouTube traffic involves techniques of caching
and prefetching. Khemmarat et al. [17], have presented the
advantages of caching and prefetching related videos offered
by YouTube to reduce bandwidth and latency. Recently, we
provided a new related videos reordering approach to take
advantage of the videos already in the cache and show
significant improvement in cache hit rate [19]. However, due
to the fact that the popularity distribution of YouTube videos
is long-tail, these approaches can only reduce core network
bandwidth requirements up to a certain level.

Finamore et al. [15] have analyzed the network traces from
campus and residential gateways and shown that users switch
videos 60% of the time after watching 20% of the duration of
the videos. We confirm this behavior of users switching within
the 20% duration of the video from our own trace taken in a
campus gateway. Although, in our trace we see only ~ 25% of
the users switching within 20% of the duration of the video.

In this paper, we take advantage of this behavior of YouTube
users in DASH enabled YouTube and analyze the amount of
savings in bandwidth and cost. To the best of our knowledge,
our work is the first to look into the feasibility of using DASH
in YouTube. As we will show later in the paper (Section III),
the higher percentage of users not watching more than the first
20% of a video (as reported in [15]) would actually lead to
even higher bandwidth savings in a DASH enabled YouTube
compared to the bandwidth consumed by the current YouTube
streaming approach.

III. YOUTUBE DATA ANALYSIS

In this section, we introduce the YouTube network trace,
which we analyze to determine the user behavior in watching
YouTube videos. First, we analyze in how many of the
overall video requests captured in the trace a video is not
completely watched. Not completely watching videos leads to
the download of data that is not consumed at the client. We
analyze the extra bandwidth consumption that is caused by
this effect.

A. Trace Details

The network trace used in our analysis is collected with
the aid of a monitoring device consisting of a PC with a Data
Acquisition and Generation (DAG) card [4], which can capture
Ethernet frames. The device is located at the University of
Connecticut (UConn) campus network gateway, which allows
it to capture all traffic to and from the campus network. It
was configured to capture a fixed length header of all HTTP
packets going to and coming from the YouTube domain. The
trace was obtained on Feb 6th 2012 for about 72 hours and
contains a total of 105,339 requests for YouTube videos. Out
of these 105,339 requests, ~ 80% of the videos are requested
only once during the trace period, while only ~ 20% of the
videos are requested more than once. Only the latter group
can take advantage of caching and consequently contribute to
the reduction of bandwidth consumption and latency. Earlier
research [13], [28], [17] on YouTube have shown similar trends
of YouTube video popularity distribution, where few videos
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are very popular but there is long tail of videos requested
only once.

Hence, additional approaches are required to reduce band-
width consumption in the case of YouTube videos that have
very low request probability and do not benefit from caching.

B. User Watching Behavior

In this section, we analyze user behavior in watching
YouTube videos by looking into the user watching pattern
once the viewer selects a video. To analyze the user watching
pattern, we investigate if viewers switch to a new video
before they completely finish watching the current video. In
order to analyze this behavior, we look into the timestamps
of a user requesting two consecutive videos from the trace
introduced in Section III-A. We calculate the interval between
these timestamps and compare it with the duration of the
initially requested video to determine if the user has switched
between videos before the first video is completely viewed'.
We perform this analysis for all the 16,284 unique users in
our trace and the result is shown in Figure 1.

The figure shows the number of occurrences (in percent out
of the total number of videos watched) a video is watched
for % of its total length. Results from Figure 1 show that,
only in 58% of the cases videos are watched completely (this
number is similar to the global study performed by Erman
et al. [14]). In all other cases only part of the video is
watched, with the majority of these cases (~ 25%) falling in
the 0-20% session length category. This user watching pattern
in switching videos without completely watching the current
video results in unnecessary consumption of bandwidth? due
to extra data downloaded to the client buffer and increases the
cost of data usage for the client, which will be studied in the
next section.

C. Bandwidth of YouTube Traffic

Based on the user watching pattern discussed in the previous
section, we analyze the extra data traffic downloaded but
not played and cost incurred by current YouTube streaming

'We ignore the last video requested by a user, as we cannot affirmatively
say if it was completely watched.

2Hereafter, unecessary consumption of bandwidth will be referred as
wastage of data or bandwidth.

Video Quality Base Size | Bitrate (Mbps) Minimum
(MB/min) Bandwidth
(Mbps)
240p 2.557 0.349 0.5
360p 4.298 0.6 0.75
480p 6.792 0.927 1.5
720p 15.487 2.114 3
1080p 32.698 4.464 6
TABLE 1

VIDEO QUALITY BANDWIDTH REQUIREMENTS

techniques in this section. We perform this analysis based on
the request data obtained from the YouTube trace described in
Section III-A.

The main goal is to determine how much overhead (in
terms of bandwidth consumption and cost) YouTube’s current
streaming approach causes for the cases in which videos are
not completely watched. YouTube currently offers 5 different
video quality formats (240p, 360p, 480p, 720p and 1080p) and
for each video request in the trace, we assume that the video
is available in these 5 different formats. For our analysis, we
calculate the average video size for each of the different quality
formats and obtain the duration of the videos in our trace using
YouTube data API [7], in addition to the information obtained
from the YouTube trace.

To calculate the average video size of the different quality
levels of a YouTube video, we downloaded 10 different videos,
each with the 5 different quality formats offered by YouTube
using YouTube downloader plugin for Google Chrome [8]
(resulting in a total of 50 downloads). The second column
in Table I shows the average base size’ of a YouTube video
for different quality levels for a one minute interval of the
video. As expected, the highest quality video (1080p) has the
highest average base size of 32.7 MB/min.

With the average base size and the duration of those 10
videos, we calculated the average bit rate of the videos for
each of the qualities using

b=S/L (1)

where, b is the average bit rate, S is the average base size and
L is the duration of the video. The average bit rate of a video
for each quality is provided in Table I. In this case, the average
bit rate indicates the minimum end-to-end bandwidth required
to view the video in respective quality without interruption
through client buffering. The minimum bandwidth is listed in
the last column of Table I and the values are in agreement with
those presented in [15]. We use these values as the network
bottleneck bandwidth between the client and the server to
request respective video quality throughout our analysis.

Before we present our analysis results we take a more
detailed look into the current YouTube streaming approaches.
YouTube uses progressive download streaming for low quality
videos (240p, 360p, and 480p) and regular HTTP streaming
for HD videos (720p and 1080p). The difference between
the two streaming techniques is that, at any given point in

3In this work, base size is the unit of data downloaded to the client.
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Fig. 2. Pictorial representation of extra data downloaded to client buffer at
video switching instance.

time irrespective of the network connection, for low quality
videos YouTube buffers only up to a maximum of 50 seconds
worth of extra data from the current play point. However,
for HD, YouTube employs regular HTTP streaming which
downloads (buffers) the whole video to the client. In our
analysis of extra data consumed by YouTube users based
on user switching pattern, we apply the above mentioned
approaches of YouTube streaming for the different qualities.
Figure 2 illustrates the client buffer, depicting the extra data
downloaded to the buffer at the time of a user discontinuing
to watch a video. Line p(t) shows the data consumed by the
player and line b(t) shows the data streamed to the client
depending on the link bandwidth between client and server.
The amount of data that is unnecessarily downloaded because
of a viewer not completely watching a video can then be
expressed as b(tswitch) — P(tswitch)-

Figure 3(a) shows the amount of extra data downloaded
but not played for each of the 5 different qualities for the
minimum bandwidth cases shown in Table I. To calculate
the extra data downloaded but not played, we consider only
the videos which are not completely watched in our trace, as
shown in Figure 1 (i.e., ~ 42% of the videos). The results show
that low quality videos using progressive download streaming
(240p, 360p and 480p) consume up to 600 GB of extra data
as seen from Figure 3(a). It is to be noted that the extra
data consumed by requesting low quality videos under higher

Bandwidth and Cost wastage for not completely watched videos due to current YouTube streaming techniques.

bandwidth connection does not increase since, at any point,
only 50 seconds worth of extra data is buffered. However,
for HD videos, for which YouTube employs regular HTTP
streaming, the extra data downloaded goes up to 2,400 GB
for 720p video on a 6 Mbps network link between client
and YouTube server and up to 600 GB for a 1080p video.
This is a significant amount of data wasted due to extra
data download and incurs additional unnecessary traffic in the
network. Similarly, if we consider a network link bandwidth
of greater than 6 Mbps between the client and YouTube server,
the amount of data wasted increases even more than the values
shown in Figure 3(a) for HD videos.

Since not all Internet services are based on the flat rate
model, we also determine the extra cost the download of
unwatched data can incur. This analysis is important for clients
that, for example, use cellular (e.g., 3G or 4G) service to
watch YouTube videos on mobiles or tablets, as the data plan
cost for these services is often based on per MB downloaded.
For our cost analysis, we consider a base cost of $0.01 per
MB, according to AT&T’s data service plan of 5 GB for
$50 [3]. Our trace does not have information on the device
used to request the videos, hence for our anlaysis in this
section, we assume all the videos were requested via cellular
devices. Figure 3(b) shows the total cost for the extra data
consumed by client video requests in our trace for each video
quality under different network condition. The results show
that, for low quality video requests from our trace, all clients
together lose about $5,000 due to extra data downloaded but
not watched. For HD videos, the cost increases to $25,000.
As in Figure 3(a), these values are also bound to increase for
HD videos under high network bandwidth conditions.

The interesting point from Figures 3(a) and 3(b) is that
these values are only for a 3 day trace from a campus with
~ 25,000 students. These values could increase significantly
if one considers the case of regional access networks or all
caches of the YouTube distribution infrastructure or if the
amount of not completely watched videos is higher as reported
in [15].
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IV. YOUTUBE DASH

In Section III, we analyzed a YouTube trace collected from
an university campus gateway. We found that YouTube users
often do not watch videos completely. We also looked at the
amount of data or bandwidth wasted by downloading more
than the user watches and the potential related monetary loss.
In this section, we will look at the new international standard
in multimedia streaming, Dynamic Adaptive Streaming over
HTTP (DASH), and analyze the advantages and disadvantages
of deploying DASH for YouTube video service.

In the following, we provide a short overview of the
functionality of DASH, then look at the amount of data and
hence bandwidth savings that can be achieved by deploying
DASH in YouTube. Further, we provide an insight into the
hosting of DASH encoded videos in YouTube caches and show
a case study on how DASH improves QoE of the viewer by
reducing the number of pauses or buffering.

A. DASH

DASH [26] is the MPEG adaptive streaming standard devel-
oped for media. DASH consists of two components: A Media
Presentation Description (MPD) manifest file which contains
the description of the available content, their URL addresses,
different bit rates or qualities available, segment lengths and
other characteristics; and video segments, which contain the
actual multimedia bit streams in the form of single or multiple
files based on the encoder [20].

With the DASH standard, a video is encoded into different
representations (e.g., different video qualities). The DASH
client downloads the MPD in order to retrieve a complete
list of components, including video, audio and subtitles. The
DASH client then determines the preferred set of representa-
tions based on its capability (e.g., resolution), user preference
(e.g., language), and network bandwidth (e.g., high or low
bit rate). And finally, the DASH client downloads the desired
spliced content from the HTTP server and plays the content.
Figure 4 depicts the streaming flow process in DASH.

DASH videos are usually encoded with different segment
lengths. Commercial approaches use segment lengths ranging
from 2 seconds per fragment (e.g., Microsoft Smooth Stream-
ing [6]) to 10 seconds per fragment (e.g., Apple HLS [2]).

A Data downloaded
B by progressive
u download
f DASH data
f downloaded
e
r
e
d
b ¥
. Data Watched /
a
/ >
ts ts+50 Time (t)
 J
s + Gswitching interval
Fig. 5. Tllustration of potential data savings by employing DASH.

The segment length is an important factor when providing
content for adaptive streaming. Shorter segments may provide
a larger overhead in term of requests and result in more quality
switches. Longer segments are not efficient in high bandwidth
fluctuating environments like mobile networks, because the
client cannot adjust the video stream as fast as necessary in
case of a significant bandwidth change. Hence, it is important
to decide on the segment lengths which suit an application or
network connection best.

B. Bandwidth Savings

In Section III-C, we have shown that YouTube users waste
bandwidth by not watching a video completely. (Obviously,
this is not the case if a video is watched in its entirety.) This
waste of bandwidth was also shown as potential monetary loss
for mobile clients. In this section, we look into the amount of
bandwidth and cost savings that can be achieved by employing
DASH streaming in the YouTube video service.

Figure 5 gives an example of the amount of extra data
buffered at the client by employing DASH with a switching
interval* of Lswitching_interval compared to YouTube’s pro-
gressive download streaming approach. As shown in the figure,
the amount of extra data downloaded by employing DASH
at any time ¢ i8 d(ts + tswitching_interval) — d(ts), Where
Lswitching_interval 15 usually between 2 and 10 seconds. But
with YouTube’s progressive download approach, the amount
of extra data downloaded is up to d(ts + 50) — d(t5), because
at any instance during video play, YouTube’s progressive
download strategy downloads up to 50 seconds worth of extra
data to the client buffer. Hence, it is apparent that DASH
saves bandwidth and cost by limiting the amount of extra data
downloaded to the client. In the following, we will look at the
exact amount of savings in bandwidth and cost by employing
DASH.

The amount of bandwidth and cost savings that can be
achieved by employing DASH in YouTube depends on the
switching interval chosen. As already mentioned, a very small
or a very large switching interval has its advantages and
limitations. Therefore, we calculate the amount of data and

4Switching interval is used as synonym for segment length throughout our
analysis.

411



38th Annual IEEE Conference on Local Computer Networks

QOB
atetetetetetatotatetetets!

-
o0%S

Percentage Saved (%)
CXXXXLLLIK &
QSEERLLELR

L L

=
K

Switching Interval (s)

Percentage Saved (%)
[22]
o

2 4 6 8 10
Switching Interval (s)

(a) Percentage of bandwidth and cost savings in low quality videos (b) Percentage of bandwidth and cost savings in high quality videos

by employing DASH

Fig. 6.

Video Quality | Bandwidth saved for | Bandwidth saved
videos not completely | for all videos
watched

240p 95.60% 40.15%

360p 95.60% 40.15%

480p 95.60% 40.15%

720p 97.87% 41.10%

1080p 83.06% 34.88%
TABLE II

BANDWIDTH SAVED EMPLOYING DASH WITH SEGMENT INTERVAL OF 2

SECONDS

cost savings for various segment lengths (2 to 10 seconds) for
each video quality. Figures 6(a) and 6(b) show the percentage
of data and cost savings for different switching intervals for
low quality videos and high quality videos respectively. We
performed this analysis based on the YouTube request trace
presented in Section III-A.

Short switching intervals (2 seconds) yield more bandwidth
savings compared to longer switching intervals (10 seconds),
as longer switching intervals buffer more data compared to
shorter switching intervals. Bandwidth savings for longer
switching intervals depend on the switching time instance
during the segment length. For example, if the user switches
during the 8th second of a 10 second segment, then the amount
of data transmitted but not watched is just 2 seconds, where
as if the switch occurs during the 1st second of a 10 second
segment, the amount of data wasted is 9 seconds. This situation
is avoided in short segment length intervals as the duration
between segment streams is short, the probability of data
wastage during such a small interval is minute.

Results from Figure 6(a) show that, for low quality videos,
DASH reduces bandwidth and cost consumption by 95% for
videos that are not entirely watched under small switching
intervals and about 80% for switching intervals of 10 seconds.
The savings remain almost the same for each of the 3 low
quality videos offered by YouTube (240p, 360p, 480p). This is
attributed to the fact that YouTube already employs progressive
download for these video qualities and downloads only up to
50 seconds worth of data for each of these video qualities at
any point in time. In contrast, Figure 6(b) shows the savings
for high quality (720p and 1080p) videos by employing
DASH. The percentage of savings shown in Figure 6(b) were

by employing DASH

Bandwidth and Cost savings by employing DASH in YouTube for different Switching Intervals

calculated assuming a client-server link bandwidth of 6 Mbps.
By employing DASH for high quality videos, we can obtain
95% data and cost savings for 720p videos and 83% savings
for 1080p videos with a switching interval of 2 seconds.
These values decrease as the switching interval is increased
to 10 seconds as shown in Figure 6(b). The savings shown
in Figure 6(b) for HD videos increase as the link bandwidth
between the client and server increases, since the extra data
consumed at the client increases as shown in Figure 3(a).

Table II provides a comparison of bandwidth savings for
videos which are not completely watched and for all the
videos seen in our trace. Table II shows the bandwidth savings
for each of the 5 different video qualities by employing
DASH with a buffer interval of 2 seconds. As seen from
Table II, for 240p, 360p and 480p video qualities, we obtain a
95% bandwidth savings for videos which are not completely
watched, but when videos which are completely watched are
considered, the bandwidth savings reduce to 40%. For HD
videos, the bandwidth savings decrease from 83% to 35%,
when all the videos in our trace are considered. The results
from Table II show that, even while considering all the videos
in our trace, the total bandwidth savings obtained are about
40% for low quality videos and 35% for HD videos when
employing DASH with a segment interval of 2 seconds. This
shows significant improvement in bandwidth savings when
employing DASH in YouTube video service.

In summary, we have shown that employing DASH in
the world’s most popular video streaming service, YouTube,
saves unnecessary bandwidth consumption, which has the
potential to reduce congestion in the network by eliminating
the transmission of unused data.

C. Data Hosting

Having shown the advantages of DASH in bandwidth and
cost saving when employed for YouTube video service, we will
now look into one of the disadvantages of using DASH, the
additional cost of data hosting. Depending on the number of
different representations provided per video, adequate storage
for all representations is required.

As already mentioned, YouTube currently offers a maximum
of 5 different quality versions of a video, but not all videos
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# of Videos in | Cache Size | Cache Hit | Partially

Cache (Thou- | (TB) Rate (%) Served (%)

sand)

20 7 30.537 53.170

40 8.59 34.690 54.294

60 8.99 36.827 54.676

80 9.2 37.766 54.772

100 9.3 38.127 54.769
TABLE III

CACHE HIT RATE FOR DASH DATA HOSTING

on YouTube are offered in these 5 qualities. According to
statistics from 2011 [9], only 10% of the videos in YouTube
are available in HD quality, hence only 10% of the videos on
YouTube are available in the 5 different qualities offered. The
remaining 90% of the videos are available in either 2 qualities
(240p and 360p) or 3 qualities (240p, 360p and 480p).

Employing DASH in YouTube would increase the storage
requirements on YouTube by ~ 36%, since each of the billions
of videos on YouTube would have to be stored in 5 different
versions. This is a significant increase in data storage for
YouTube as it may reduce the caching efficiency and may
redirect requests to more distant (2nd and 3rd tier) caches,
thus increasing the latency of serving videos to the clients
and reducing the QoE of the viewer.

Our solution for this data storage conundrum lies within the
YouTube data caching system and the user watching pattern.
Researchers have re-engineered YouTube’s data center strategy
and shown that YouTube deploys a 3-tier caching strategy to
serve videos to client’s around the world [11], [12]. We take
advantage of this 3-tier caching strategy to mitigate the DASH
data hosting problem. We also take advantage of the inherent
feature of DASH in segmenting the videos into small chunks
and the user watching pattern in often not watching a video
till the end. To avoid increasing cache miss rate and hence,
increase latency in video serving from far away caches, due to
increase in data hosting cost by employing DASH in YouTube,
we suggest placing the earlier chunks (50%) of the videos in
each of the 5 qualities in the primary caches closer to the
clients and placing middle segments (50% - 75%) of the videos
in secondary caches and the final segments (75% - 100%) of
the videos in the tertiary caches.

We simulate the above mentioned scenario of placing the
initial 50% segments of a video in the primary cache for
the YouTube video requests in our trace. We store the initial
segments of the video in all 5 different quality formats and
calculate the cache hit rate for this scenario. The results are
shown in Table III. We vary the number of videos stored
in the primary cache from 20K to 100K and the resulting
cache sizes required to store those partial videos are shown in
Table III. Results from our simulations show that we obtain a
maximum cache hit rate of 38.12% by placing only the initial
50% segments of videos in the cache. Compared to caching
full-length videos, this solution reduces the required cache size
by half. We also calculate the percentage of requests from the
cache which are partially served, i.e., require more than the
initial 50% stored in the primary cache and the results are
shown in the last column of Table III. The results show that

54.76% of the requests which can be served from the cache
with 100K videos (Hit Rate of 38.12%) require more than the
50% chunks stored in primary cache, which reduces our cache
hit rate by 54.76%. Yet, by storing only half of the chunks of
the videos and thus reducing the storage requirement by half,
we obtain a hit rate of ~ 19%.

Therefore, by storing the initial 50% of the video in all
available quality levels in primary caches, we can reduce
the cache miss rate, reduce the storage requirement in half
and reduce the latency in serving videos. In addition, this
approach integrates well with the prefix prefetching approach
we presented in [16]. In this earlier work we have shown that
storing a 30% prefix at the first tier cache can significantly
increase the viewers QoE.

D. Switching Quality

In the previous sections, we looked at the advantage of
DASH in bandwidth and cost savings, the disadvantage of
DASH in data hosting, and using YouTube’s caching strategy
and user watching pattern to overcome this disadvantage. In
this section, we investigate how employing DASH improves
the Quality of Experience (QoE) of the viewer. We present
a case study of a viewer watching an HD video (worst case
in terms of bandwidth requirements) under varying network
conditions using current YouTube streaming. We determine
QoE by the number of pauses encountered by the viewer while
watching this HD video and show how those pauses can be
eliminated by employing DASH.

We provide an illustration to show how the throughput
varies at the client in the case of poor network connection
while playing HD video. Figure7(a) shows the throughput per
second for an HD video measured in a residential network.
As it can be seen from the graph, the network condition is not
suitable to smoothly play out an HD video and it takes about
270 seconds with 6 pauses to completely buffer the video of
214 seconds total length. This behavior is very annoying for a
client who requests an HD video on YouTube. The client has
two choices: Either to pause the video and wait for the video
to buffer completely or manually select a lower bit rate quality
of the video from the YouTube player settings. Recently,
Krishnan and Sitaram [18] have shown that users usually get
annoyed and stop watching videos even if they experience
pauses or buffering for a minimum of 2 seconds. Hence, pauses
during watching a video are bad for the viewer’s watching
experience and for the video service provider’s revenue. Also,
selecting a different quality manually starts buffering the video
again from that point in time, removing any data already
buffered, which is another disadvantage of selecting different
quality version of the video.

Figure 7(b) shows the scenario in which we assumed that a
DASH encoded version of the same video would be streamed.
In this figure (which shows only the 60 - 120 second play out
period for better illustration) we indicate the quality changes
and the level of quality changes depending on the viewers
link bandwidth to the server. In this example, we consider a
switching interval of 6 seconds with segments of similar length
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being available in 5 different quality levels. As can be seen
from Figure 7(b), the video quality switches between 480p
and 1080p depending on the link throughput at the instance
of the switching interval. The intervals in which the lowest
(480p) quality is selected would lead to re-buffering (and
consequently pause the playout) in the case of HD streaming
as it is used by YouTube today.

Hence, by employing DASH in YouTube, viewers experi-
ence of watching videos can be improved due to seamless
transition in quality depending on the client’s link bandwidth
to the video server. Also, since DASH downloads videos in
short segments equal to the segment length chosen, there is
no discarding of buffered data during quality switching, which
saves bandwidth and cost compared to the current HTTP
streaming mechanism employed by YouTube.

V. DISCUSSION

In this section, we briefly discuss YouTube’s Auto feature
and load balancing within its cache hierarchy and the impli-
cations for our proposed approach.

A. “Auto” Feature in YouTube

YouTube offers a setting in their client player to manually
choose the video quality the viewer prefers. The choices in-
clude 240p, 360p, 480p, 720p, and 1080p. Some videos might
have a quality of 4096p, but this is very rare and experimental.
Other than the choices of these different qualities, there is
one other choice called Auto, which when selected changes to
the quality pre-selected by the user. For example, if the user
has pre-selected a quality of 720p and then selects the auto
feature, the quality would gradually increase to 720p quality
when the user selects a new video (if the video is available in
that quality). This feature is close to DASH but not quite the
same. DASH does not require the user to pre-select a quality
to switch. The switching interval used in the aufo feature is
around 10-15 seconds and the switching is not as seamless as
DASH. Another important factor is the amount of data wasted
when it switches to different video quality every switching
interval. The auto feature switches to another video quality and
starts buffering data again from the point of switching during
the play. Depending on the network connection, number of

interval of 6 seconds

Throughput variations and DASH switching while viewing a 1080p video.

switches and the quality of the video at previous switching
point, significant amount of data can be wasted due to this
extra buffering during the play of the whole video.

B. YouTube Load Balancing of Requests

In Section IV-C, we showed the possibility of using the 3-
tier YouTube caching strategy to host DASH enabled videos
in 5 different qualities for each video. The MPD files for
each video should therefore contain the URL of the 3 caches
holding the different quality data for the video. One possible
problem with that solution would be the load balancing of
the requests performed by YouTube in selecting the cache to
map the requests [12]. Hence, to maintain the load balancing
of requests to caches and still have the MPDs for the videos
sent to the client to request the videos, MPDs have to be
dynamically created. This dynamic creation of the MPDs
will allow YouTube to specify the host cache of a DASH
video segment based on load. However, dynamic generation of
MPDs should not be a problem, as web pages are dynamically
generated by many applications in the Internet.

VI. CONCLUSION

Analyzing the YouTube user watching pattern from a uni-
versity campus trace, we reveal that 42% of the time YouTube
viewers rather watch only the initial part of the video than the
whole. This user watching pattern leads to huge amount of
unnecessary data transmission and potentially monetary loss
for cellular users due to the traditional streaming techniques
employed by YouTube. In this paper, we investigate the
advantages and disadvantages of using DASH as a streaming
standard for YouTube video service. We show that by using
DASH as a streaming technique in YouTube, and encoding
videos at segment length of 2 seconds, we achieve bandwidth
and cost savings of 95% for low quality videos (240p, 360p,
480p) and up to 83% for HD videos (720p and 1080p) for
videos not entirely watched, which is ~ 42% of the videos in
our trace. When we consider all videos requested in the trace
the overall bandwidth reduction is 40% for low quality videos
and 35% for HD videos. One disadvantage of using DASH
as YouTube streaming standard is the cost of data hosting
due to the different representations of the same video. For the
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data hosting problem, we suggest taking advantage of the 3-
tier caching strategy employed by YouTube and the inherent
feature of DASH to segment videos to store only the initial
50% of the segments of all representations in the primary
cache. Hosting DASH encoded data with such a strategy
provides a hit rate of ~ 19% and reduces required storage in
the 1st level caches by half. Finally, we present a case study
for an HD video (1080p) to show the QoE improvement of
the viewer by employing DASH, due to seamless transition
of video to different bit rates depending on the client’s link
bandwidth to the server.

VII. FUTURE WORK

As a future work on using DASH in YouTube, we would
like to investigate how modifications of DASH standard for
YouTube player improves the performance of YouTube and the
network. Also, we would like to investigate how DASH com-
pares to Microsoft’s and Apple’s dynamic, adaptive streaming
approaches.
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