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ABSTRACT Mathematical models of biochemical networks are the useful tools to understand and ultimately
predict how cells utilize nutrients to produce valuable products. Hybrid cybernetic models (HCMs) in
combination with elementary modes (EMs) are a tool to model cellular metabolism. However, HCM is
limited to reduced metabolic networks because of the computational burden of calculating EMs. In this
letter, we develop the hybrid cybernetic modeling with flux balance analysis (HCM-FBA) technique, which
uses flux balance solutions instead of EMs to dynamically model metabolism. We show that HCM-FBA has
comparable performance toHCM for a proof of conceptmetabolic network and for a reduced anaerobicE. coli
network. Next, HCM-FBA is applied to a larger metabolic network of aerobic E. colimetabolism, which was
infeasible for HCM (29 FBA modes versus more than 153 000 EMs). The global sensitivity analysis further
reduces the number of FBA modes required to describe the aerobic E. coli data, while maintaining model
fit. Thus, HCM-FBA is a promising alternative to HCM for large networks, where the generation of EMs is
infeasible.

INDEX TERMS Cybernetic models, flux balance analysis (FBA), metabolic models.

I. INTRODUCTION

B IOTECHNOLOGY harnesses the power of metabolism
to produce products that benefit society. Constraints-

based models are the important tools to understand and
ultimately to predict how cells utilize nutrients to pro-
duce products. Constraints-based methods, such as flux
balance analysis (FBA) [1], and network decomposi-
tion approaches, such as elementary modes (EMs) [2]
or extreme pathways (EPs) [3], model intracellular
metabolism using the biochemical stoichiometry and other
constraints, such as thermodynamical feasibility under
pseudosteady-state conditions. FBA has been used to
efficiently estimate the performance of metabolic net-
works of arbitrary complexity, including genome scale net-
works, using linear programming [4]. On the other hand,
EMs (or EPs) catalog all possible metabolic behaviors such
that any flux distribution predicted by FBA is a convex com-
bination of the EMs (or EPs) [5]. However, the calculation
of EMs (or EPs) is computationally expensive and currently
infeasible for genome scale networks [6].

Cybernetic models are an alternative to the constraints-
based approach, which hypothesize that the metabolic control
is the output of an optimal decision. Cybernetic models have
predicted mutant behavior [7], [8], steady-state multiplic-
ity [9], and strain-specific metabolism [10], and have been
used in bioprocess control applications [11]. Hybrid cyber-
netic models (HCMs) have addressed earlier shortcomings of
the approach by integrating cybernetic optimality concepts
with EMs. HCMs dynamically choose the combinations of
biochemical modes (each catalyzed by a pseudoenzyme,
whose expression is controlled by an optimal decision) to
achieve a physiological objective [Fig. 1(A)]. HCMs gen-

erate intracellular flux distributions consistent with other
approaches, such as metabolic flux analysis (MFA), and
also describe dynamic extracellular measurements superior to
dynamic FBA (DFBA) [12]. However, HCMs are restricted to
networks, which can be decomposed into EMs (or EPs).

In this letter, we develop the hybrid cybernetic modeling
with FBA (HCM-FBA) technique. HCM-FBA is a modifi-
cation of the hybrid cybernetic approach of Kim et al. [12],
which uses FBA solutions (instead of EMs) in conjunction
with cybernetic control variables to dynamically simulate
metabolism. Since HCM showed superior performance to
DFBA, we compared the performance of HCM-FBA with
HCM for a prototypical metabolic network, along with two
real-world E. coli applications. HCM-FBA performed com-
parably to HCM for the prototypical network and a reduced
anaerobic E. coli network, despite having a fewer parameters
in each case. Next, HCM-FBA was applied to an aerobic
E. coli metabolic network that was infeasible for HCM.
HCM-FBA described cell mass growth and the shift from
glucose to acetate consumption with only a few modes. The
global sensitivity analysis allowed us to further reduce the
aerobic E. coli HCM-FBA model to the minimal model
required to describe the data. Thus, HCM-FBA is a promis-
ing approach for the development of reduced order dynamic
metabolic models and a viable alternative to HCM or DFBA,
especially for large networks, where the generation of EMs is
infeasible.

II. RESULTS
HCM-FBA was equivalent to HCM for a prototypical
metabolic network (Fig. 1). The proof of concept network,
consisting of six metabolites and seven reactions [Fig. 1(B)],
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FIGURE 1. HCM proof of concept metabolic study. (A) HCMs distribute
uptake and secretion fluxes amongst different pathways. For HCM, these
pathways are EMs; for HCM-FBA, these are FBA solutions. HCM combines
all possible modes within a network; whereas HCM-FBA combines only
steady-state paths estimated by FBA. (B) Prototypical network with six
metabolites and seven reactions. Intracellular cell mass precursors A,B,
and C are balanced (no accumulation) while the extracellular metabolites
(Ae,Be, and Ce) are not balanced (can accumulate). The oval denotes the
cell boundary, qj is the jth flux across the boundary, and vk denotes the
kth intracellular flux. (C) Simulation of extracellular metabolite
trajectories using HCM-FBA (solid line) versus HCM (points) for the
prototypical network.

generated three FBA modes and six EMs. Using the EMs
and synthetic parameters, we generated test data from which
we estimated the HCM-FBA model parameters. The best fit
HCM-FBA model replicated the synthetic data [Fig. 1(C)].
The HCM and HCM-FBA kinetic parameters were not quan-
titatively identical, but had similar orders of magnitude; the
FBA approach had three fewer modes; thus, identical param-
eter values were not expected. The HCM-FBA approach
replicated synthetic data generated by HCM, despite having
three fewer modes. Thus, we expect that HCM-FBA will
perform similar to HCM, despite having fewer parameters.
Next, we tested the ability of HCM-FBA to replicate real-
world experimental data.

The performance of HCM-FBA was equivalent to HCM
for anaerobic E. coli metabolism [Fig. 2(A)]. We con-
structed an anaerobic E. coli network [12], consisting of 12
reactions and 19 metabolites, which generated seven FBA
modes and nine EMs. HCM reproduced cell mass, glucose,
and by product trajectories using the kinetic parameters
reported by Kim et al. [12] [Fig. 2(A), points versus dashed].
HCM-FBA model parameters were estimated in this letter
from the Kim et al. [12] data set using simulated annealing.
Overall, HCM-FBA performed within 5% of HCM (on a
residual standard error basis) for the anaerobic E. coli data
[Fig. 2(A) (solid line)], despite having two fewer modes and
four fewer parameters (17 versus 21 parameters). Thus, while
both HCM and HCM-FBA described the experimental data,
HCM-FBA did so with fewer modes and parameters.

HCM-FBA captured the shift from glucose to acetate
consumption for a model of aerobic E. coli metabolism that
was infeasible for HCM [Fig. 2(B)]. An E. coli metabolic
network (60 metabolites and 105 reactions) was constructed

FIGURE 2. HCM-FBA versus HCM performance for small and large
metabolic networks. (A) Batch anaerobic E. coli fermentation data versus
HCM-FBA (solid line) and HCM (dashed line). The experimental data was
reproduced by Kim et al. [12]. Error bars represent the 90% confidence
interval. (B) Batch aerobic E. coli fermentation data versus HCM-FBA
(solid line). Model performance is also shown when minor modes
(dashed line) and major modes (dotted line) were removed from the
HCM-FBA model. The experimental data was reproduced by Varma and
Palsson [13]. Error bars denote a 10% coefficient of variation.

from the literature [14], [15]. EM decomposition of this
network (and thus HCM) was not feasible; 153 000 EMs
were generated before the calculation became infeasible.
Conversely, FBA generated only 29 modes for the same
network. HCM-FBA model parameters were estimated from
cell mass, glucose, and acetate measurements [13] using sim-
ulated annealing [Fig. 2(B) (solid line)]. HCM-FBA captured
glucose consumption, cell mass formation, and the switch
to acetate consumption following glucose exhaustion.
HCM-FBA described the dynamics of a network that was
infeasible for HCM, thereby demonstrating the power of
the approach for large networks. Next, we demonstrated a
systematic strategy to identify the critical subset of FBA
modes required for model performance.

Global sensitivity analysis identified the FBA modes
essential to model performance (Fig. 3). Total-order sensitiv-
ity coefficients were calculated for all kinetic parameters and
enzyme initial conditions in the aerobic E. colimodel. Five of
the 29 FBA modes were significant; removal of the most sig-
nificant of these modes (encoding aerobic growth on glucose)
destroyed model performance [Fig. 2(B) (dotted line)].
Conversely, removing the remaining 24 modes simulta-
neously had a negligible effect upon model performance
[Fig. 2(B) (dashed line)]. The sensitivity analysis identified
the minimal model structure required to explain the experi-
mental data.

III. DISCUSSION
In this letter, we developed HCM-FBA, an effective model-
ing technique to simulate metabolic dynamics. HCM-FBA
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FIGURE 3. Global sensitivity analysis of the aerobic E. coli model.
Total-order variance-based sensitivity coefficients were calculated for the
biomass yield on glucose and acetate. Sensitivity coefficients were
computed for kinetic parameters and enzyme initial conditions
(N = 183 000). Error bars represent the 95% confidence intervals of the
sensitivity coefficients.

uses FBA solutions in conjunction with cybernetic control
variables to dynamically simulate metabolism. We studied
the performance of HCM-FBA on a prototypical metabolic
network, along with two E. coli networks. First, we showed
that the performance of HCM-FBA and HCM was com-
parable for the prototypical network and a small model of
anaerobic E. coli metabolism. For the anaerobic case, both
approaches described the experimental data. However,
HCM-FBA (which was within 5% of HCM and slightly
better than HCM for lactate secretion) had fewer modes
and parameters. Next, HCM-FBA was applied to an aerobic
E. coli metabolic network that was not feasible for HCM.
EM decomposition of the aerobic network generated
over 153 000 EMs. Conversely, the HCM-FBA approach
described cell mass growth and the shift from glucose to
acetate consumption with only 29 FBA modes. Global sen-
sitivity analysis further showed that only five of the 29 FBA
modes were critical to model performance. Removal of these
modes crippled the model, but removal of the remaining
24 modes had a negligible impact. These insignificant modes
were associated with maintenance; thus, they would likely
not impact model predictions for a growing culture.
HCM-FBA is an alternative approach to HCM, especially for
large networks, where the generation of EMs is infeasible.
EMs show the complexity of a cell, displaying the many
routes it can take, but mathematically, FBA has an objective
superiority for large networks.

HCM-FBA is a promising approach to model large
metabolic networks, where EMs calculations are infea-
sible, and where kinetic models of such systems have
intractable identification problems. However, there are
additional studies that should be performed. First, the
intracellular flux distribution predicted by HCM-FBA
should be compared with HCM and to flux measure-
ments calculated using MFA or FBA/DFBA in combi-
nation with carbon labeling. HCM predicted intracellu-
lar fluxes that were similar to MFA results [12]; how-
ever, the fluxes predicted by HCM-FBA have not yet
been validated. Next, the performance of HCM-FBA
should be compared with lumped HCMs (L-HCMs).
L-HCMs, which combine EMs into mode families based

upon metabolic function [10], [16], have been applied to
an E. coli network with 67 reactions and a Saccharomyces
cerevisiae network with 70 reactions; both cases had satisfac-
tory fits to extracellular experimental data. However, while
L-HCM reduces the dimension of possible alternative modes
that must be considered, it still requires the calculation of an
initial set of modes. For metabolic networks of even mod-
erate size, EM (or EP) decomposition may not be possible.
On the other hand, the generation of flux balance solutions
(convex combinations of the EMs or EPs) is trivial, even for
genome scale metabolic networks. Thus, HCM-FBA opens
up the possibility for dynamic genome scale models of bac-
terial and perhaps even of mammalian metabolism.

IV. MATERIALS AND METHODS
The HCM-FBA approach is a modification of HCM, where
EMs are replaced with FBA solutions. Thus, extracellular
variables are dynamic, while intracellular metabolites are at
a pseudosteady state. The abundance of extracellular species
i (xi), the pseudoenzyme el (catalyzes flux through mode l),
and cell mass is governed by

dxi
dt
=

R∑
j=1

L∑
l=1

σijzjlql(e,k, x)c i = 1, . . . ,M

del
dt
= αl + rEl(k, x)ul − (βl + rG)el l = 1, . . . ,L

dc
dt
= rGc

where R and M denote the number of reactions and extra-
cellular species in the model, and L denotes the number of
FBA modes. The quantity σij denotes the stoichiometric
coefficient for species i in reaction j, and zjl denotes the
normalized flux for reaction j in mode l. If σij > 0, species
i is produced by reaction j; if σij < 0, species i is consumed
by reaction j; if σij = 0, species i is not connected with reac-
tion j. Extracellular species balanceswere subject to the initial
conditions x(to) = xo determined from experimental data.
The term ql(e,k, x) denotes the specific uptake/secretion rate
for mode l, where e denotes the pseudoenzyme vector, k
denotes the unknown kinetic parameter vector, x denotes
the extracellular species vector, and c denotes the cell mass,
and ql(e,k, x) is the product of a kinetic term (q̄l) and a
control variable governing enzyme activity. Flux through
each mode was catalyzed by a pseudoenzyme el , synthesized
at the regulated specific rate rE,l(k, x), and constitutively
at the rate αl . The term ul denotes the cybernetic variable
controlling the synthesis of enzyme l. The term βl denotes
the rate constant governing nonspecific enzyme degradation,
and rG denotes the specific growth rate through all modes.
The specific uptake/secretion rates and the specific rate of
enzyme synthesis were modeled using saturation kinetics.
The specific growth rate was given by

rG =
L∑
l=1

zµlql(e,k, x)

where zµl denotes the growth flux µ through mode l. The
control variables ul and vl , which control the synthesis and
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activity of each enzyme, respectively, were given by

ul =
zsl q̄l
L∑
l=1

zsl q̄l

vl =
zsl q̄l

max
l=1,...,L

zsl q̄l

where zsl denotes the uptake flux of substrate s through
mode l. The model equations were implemented in
Julia (v.0.4.2) [17] and solved using SUNDIALS [18]. The
model code is available at http://www.varnerlab.org under an
MIT license.

A. ELEMENTARY MODE AND FLUX BALANCE ANALYSIS
EMs were calculated using METATOOL 5.1 [19]. FBA
modes were defined as the solution flux vector through the
network connecting substrate uptake to cell mass and extra-
cellular product formation. The FBA problem was formu-
lated as

max
w

(wobj = θTw)

s.t. Sw = 0
αi ≤ wi ≤ βi i = 1, 2, . . . ,R

where S denotes the stoichiometric matrix, w denotes the
unknown flux vector, θ denotes the objective selection vec-
tor, and αi and βi denote the lower and upper bounds on
flux wi, respectively. The FBA problem was solved using
the GNU linear programming kit (v 4.52) [20]. For each
FBA mode, the objective wobj was to maximize either the
specific growth rate or the specific rate of byproduct forma-
tion. Multiple FBA modes were calculated for each objective
by allowing the oxygen and nitrate uptake rates to vary.
For aerobic metabolism, the specific oxygen and nitrate
uptake rates were constrained to allow a maximum flux of
10 and 0.05 mM/gDW · h, respectively. Each FBA mode was
normalized by the specified objective flux.

B. GLOBAL SENSITIVITY ANALYSIS
Variance-based sensitivity analysis was used to estimate
which FBA modes were critical to model performance. The
performance function used in this letter was the biomass yield
on substrate. Candidate parameter sets (N = 182 000) were
generated using Sobol sampling by perturbing the best fit
parameter set±50% [21]. Model performance, calculated for
each of these parameter sets, was then used to estimate the
total-order sensitivity coefficient for each model parameter.

C. ESTIMATION OF MODEL PARAMETERS
Model parameters were estimated by minimizing the differ-
ence between simulations and experimental measurements
(squared residual)

min
k

T∑
τ=1

S∑
j=1

(
x̂j(τ )− xj(τ,k)

ωj(τ )

)2

where x̂j(τ ) denotes the measured value of species j at time τ ,
xj(τ,k) denotes the simulated value for species j at time τ ,
and ωj(τ ) denotes the experimental measurement variance

for species j at time τ . The outer summation is with respect
to time, while the inner summation is with respect to state.
Themodel residual wasminimized using simulated annealing
implemented in the Julia programming language.
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