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ABSTRACT Successful adoption of electric vehicles requires adequate and widespread public charging
infrastructure to address customer confidence. Technological advancements in smart parking infrastructures
and vehicle-to-grid energy transfer have the capability to add value to the vehicle, grid, and electricity
markets. As a deferrable load and flexible source, an aggregate electric vehicle fleet can enhance system
resilience. In this paper, a long-term airport parking is used as a platform on which transactive business
models for electric vehicles have been developed. Different cost components were tested and compared under
profit maximization with due consideration with battery degradation costs. Technical details coupled with
business propositions have been developed in this paper using a mixed integer optimization implementation.
A day-ahead energy transaction portfolio was created considering customer convenience. Results indicate
that long-term smart parking can be profitable to all entities while providing significant benefits to the grid.

INDEX TERMS Electric vehicles, transactive operating model, vehicle-to-grid (V2G).

NOMENCLATURE
ηch Battery charging efficiency (0.92)
ηdch Battery discharging efficiency (0.90)
λt Electricity rate at time instant t
9rev
i Total revenue of vehicle i during the day

9
deg
i Battery degradation costs for vehicle i during the

day
9 t
i Battery degradation costs for vehicle i at time t

9SOC
i,t SOC related battery degradation for vehicle i at

time t
9DOD
i,t DOD related battery degradation for vehicle i at

time t
Bi,cap Battery capacity of vehicle i
Bi,min Minimum battery capacity for vehicle i
batlife Battery lifetime in years (10 years or 5000 cycles)
Cbat Battery cost ($300/kWh)
Cbatdeg Total battery degradation costs
Clabor Labor cost for battery replacement ($ 240)
Ci,rev Revenue/cost of vehicle i
Ci,rate Charger selection for vehicle i
CFmax Capacity fade (20% of usable battery life)
d Linear battery degradation cost-intercept

(6.41× 10−6)

di,arr Arrival day of vehicle i
di,dep Day of departure of vehicle i
di,park Number of parking days for vehicle i
DOD Depth of discharge (80%) at end of lif
E tbat Energy stored in the battery at time t .
Edchi,1t Energy discharged in 1t
Ei,req Energy required for full charge for vehicle i
Ei,sup Total energy supplied to vehicle during parking

duration
fi,adm Daily parking fee ($) for vehicle i
m Linear battery degradation cost-slope parameter

(1.59× 10−5)
SoC t

i,avg Average SOC of battery of vehicle i at time t
SoCi,arr SOC of battery at time of arrival of vehicle i
t Time step (1 hr).
ti,delay Delay in providing service to a vehicle
ti,avail Time available before vehicle departure i
ti,req Time required for full charge for i
ti,park Total parking hours for a vehicle
tdayspark Total parking days
x Optimization variable
x ti,ch Charging power of vehicle i at time t
x ti,dch Discharging power of vehicle i at time t
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I. INTRODUCTION
The increasing penetration of electric vehicles in the auto-
motive market has led to the development of public and pri-
vate charging infrastructures. Research efforts in the field of
drive trains, batteries, and power electronics have made them
increasingly affordable. Plug-in electric vehicles (PEVs) may
be used not only for travel, but also for providing energy
to the power grid. The concept of discharging the electric
vehicle energy into the grid is called vehicle-to-grid or V2G.
It has been proposed that aggregated PEV fleets may be used
for generating profits by transacting energy via electricity
markets. Their capability to charge/discharge may be used in
the ancillary services market for improving power grid oper-
ations, especially with widespread distributed, intermittent
renewable energy generation. One of the primary drawbacks
in using PEV fleets is that the period in which the vehicles
are parked does not often correspond to periods in which it
is advantageous to provide ancillary services through V2G.
However, airport long term parking structures have numerous
characteristics which make them highly suitable for V2G
services.

Generally, vehicles remain idle for a continuous period
when parked in the airport long-term parking structures. One
of the significant costs associated with air travel is the fees
associated with personal vehicle parking. Parking fees can be
evenmore significant for close proximity or covered structure
parking. However, airport parking structures offer consid-
erable potential for collaboration between electric vehicle
owners and structure owner/operators. Some of these uniques
features include:
• Unlike residential parking in which the vehicle is only
available during the night, long term airport parking lots
have the advantage of a large number of vehicles that are
available at all hours of the day and night.

• Furthermore, unlike shopping center parking lots where
vehicles are only available for short periods of time
(typically 1 to 4 hours), airport parking lots have the
advantage that vehicles are typically available for longer
than 24 hours and usually up to several days with rela-
tively predictable departure times.

• The aggregator can predict the available capacity with
a high degree of certainty. This reduces the uncertainty
in provision, capacity, and service availability of the
asset (EVs).

• Lastly, consumers are able to predict with high confi-
dence when they will retrieve their vehicle, so guaran-
teeing full state of charge upon exit is achievable.

Aggregated electric vehicle batteries may be used to emu-
late bulk energy storage systems and can be used for earning
profits through energy transactions on the spot market or
through energy or ancillary service contracts. There is poten-
tial for lucrative models that may increase the PEV utility and
value to customers.

We envision a future in which a PEV owner can park at
the airport for a significantly reduced fee (or even free) by
simply allowing the parking structure owner/operator access

to the stored energy in their vehicle battery for short periods
of time. We propose an algorithm in which the vehicle owner
parks their automobile, plugs it in, enters their expected return
date and time, and then returns days later to a fully charged
vehicle at little or no parking cost to themselves. We propose
to accomplish this through a novel aggregation and control
algorithm that buys and sells power on the spot energy mar-
ket. We believe that both parking structure owner/operators
and travelers can benefit through participation.

The parking lot central controller collects individual PEV
information such as battery capacity, incoming state-of-
charge, and duration of availability. The vehicles are then
divided into two groups: a continuous-parking group and a
departure-day parking group based on the day the vehicle is
scheduled to leave the parking facility. The PEV owner has
the option to choose among a standard, or a set of variable,
admission fee options and charger types (Type I, II, III). The
PEV owner is also requested to specify the minimum energy
requirement at the end of its parking period (i.e. how full they
want their battery).

Once parked, the battery state-of-charge is controlled by
the proposed algorithm. The algorithm maximizes parking
lot owner (PLO) profits through continuous charging and
discharging of aggregated fleet based on utility price signals,
constrained by battery degradation costs. A customer satis-
faction index, based on admission fee and revenues earned,
is used as a metric for maximizing vehicle utility. The PLO
is penalized for any expected energy not served at the time
of departure of the EV. The PLO may use a net metering
approach to sell electricity at the market price or may add
a profit margin. The PLO may act as a player in the ancillary
services market to sell the energy discharged from the EVs
and thus make additional profits.

With the current advancements in information and com-
munication technology and smart grid applications, electric
vehicles can participate in demand response as controllable
loads and resources for grid support through unidirectional
(grid-to-vehicle) or bi-directional (vehicle-to-grid) energy
transactions [1]. Aggregated EV fleets can emulate a bulk
energy storage system with the capability of earning profits
through energy transactions on the spot market or through
ancillary service contracts [2]. They can support intermittent
renewable energy integration and provide effective solutions
to their ramping requirements. The recent adoption of ramp
capability services by MISO and CAISO is a significant
step in this direction [3]. Active participation in economic
or emergency-based demand response programs and spin-
ning reserves market can provide financial incentives to the
customers [4]. The aggregated impact of fleet PEVs canmake
a compelling case as an active entity in market operations.

Some of the challenges associated with EV parking lots
include:
• Dependence of parking lot energy requirement on uncer-
tainty in EV mobility pattern

• Management of grid-to-vehicle (G2V), vehicle-to-grid
(V2G) and vehicle-to-vehicle (V2V) interactions
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• Customer convenience including the impact on battery
degradation

In [5], it was established that the parking lot owner and the
vehicle owner may benefit simultaneously while maintaining
network constraints. The study further showed that it is more
beneficial if the parking lot owner participates in the reserve
market instead of the energy market. In [6], the authors
treat mobility uncertainty by designing a system that uses a
trace-based mobility model to account for regular and irreg-
ular vehicle arrivals at the parking lots and seek to maximize
revenues while maximizing energy transfer to the vehicles.
Energy management in G2V, V2G and V2V modes has been
explored in [7]. The proposed direct load control policy uses a
mix of residential and commercial charging to ascertain eco-
nomic service to the vehicles while minimizing battery degra-
dation. Reference [8] proposes V2V to develop an ‘ad-hoc’
mini-grid with vehicles. It suggests a paradigm for optimizing
driving experience using a carbon-efficient charging sched-
ule. It is important to note here, that even though EVs are
zero-emission vehicles, there are indirect emissions involved
based on fuel used for generating electricity [9]. While [4]
uses a neural network based stochastic model to predict EV
arrivals, [10] proposes a real-time model-predictive control
strategy to deal with this uncertainty. The two-stage optimiza-
tion in [10] predicts the electricity sales price under uncertain
solar generation to maximize the revenues.

Even though considerable work has investigated EV charg-
ing in the current open literature, business, technical, and
economic models for long-term parking facilities have not
been given due consideration despite their transactive poten-
tial. We propose to bridge this gap while leveraging the
ideas in [5]–[10]. Furthermore, a technical construct has been
proposed and built around the control and charging paradigm
proposed in [11] and [12].

Airport parking structures offer considerable potential for
collaboration between EV owners and parking lot operators.
In this study, an optimal energy transaction policy to coor-
dinate EV charging and discharging for the mutual bene-
fit of the customer and the parking lot operator has been
proposed. Customer satisfaction index and a profit model
based on different pricing structures are developed. A novel
aggregation and control algorithm that buys and sells at spot
energy market has been proposed. It has been shown that
both the parking lot owner and the customers can benefit
through active engagement. The key contributions of this
work include:
• A novel aggregation scheme for long-term EV parking
structures,

• A control architecture for optimal energy transactions
for the EV fleet,

• A transactive business model for airport parking,
• High customer satisfaction guarantees and mutually
beneficial profit models for the principal entities,
and

• Understanding the internal charge/discharge dynamics
of a fleet in a centralized control architecture.

II. THE BUSINESS MODEL
The dynamics among the principal entities depends on the
plans, options, and transactions specifications. Together with
subsidiary entities, they complete the model for the parking
facility as shown in Fig. 1. The cost and revenue components
for the principal entities are summarized in Table 1.

FIGURE 1. Airport parking lot model.

A. PRINCIPAL ENTITY PORTFOLIOS
The principal entity portfolio (PEP) defines the major players
in the model. The principal entities include electric vehicle
owners (EVO), the parking lot operator (PLO), and the energy
provider (EPO). The EVO has the authority to choose from
and approve the set of operating options for their individual
vehicles. These operating options are designed by the PLO
in accordance with their market transactions with the EPO.
This information regulates the monetary transactions and
profits made by each entity and thus determines the energy
transaction portfolio for each principal entity.

B. PLANS, OPTIONS, AND TRANSACTIONS
Plans, options, and transactions (POT) determine the major
costs incurred and revenues earned by the principal enti-
ties. They will be inherently affected by the services the
PLO offers to the grid through contractual agreements with
the EPO. Certain schemes could be designed to encour-
age specific behavioral patterns. Table 1 provides a list of
cost/revenue components, a subset of which has been used
in this study. It is assumed that all contractual agreements
between PLO and EPO are enforced.

C. SUBSIDIARY ENTITIES
External businesses can network with the PLO for providing
value-added services to the customers. This can improve the
value proposition of the smart parking facility. These benefits
may take the form of retail coupons, rebates, special services
at the airport, etc. Such subsidiary entities (SE) support the
infrastructure and may offer mutual benefits by attracting
more customers.
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TABLE 1. Cost and revenue components for the principal entities.

III. THE PARKING LOT MODEL
The business model gives the structural and functional
framework for the proposed transactive energy paradigm.
Successful implementation of the business model requires
an understanding of the parking facility characteristics.
Although actual PEV arrival/departure times are not known
in advance, airport arrival and departure times are predomi-
nantly determined by the flight schedules which vary within a
knownwindow. Therefore the scheme developed in this paper
is based on a prior reservation strategy (PRS) with a buffer
window for the arrival time.

A. EV-ENERGY TRANSACTION POTENTIAL
Customers are considered to be prosumers due to their
involvement as both producers (V2G) and consumers (G2V).
The aggregated EV fleet energy transactions have been opti-
mized by coupling customer and parking lot operator objec-
tives. The bi-directional energy transfer capability of EVs
can be used for grid-support in two modes: as a dispatchable
source or a controllable load. Since the parking period of
each vehicle is known, they can be dispatched as a large
energy storage system on demand while serving within their
individual battery limits. However, even though this prob-
lem appears to be conceptually straightforward, the optimal
implementation of the proposed strategies requires an inte-
grated solutions.

B. PARKING RESERVATION SYSTEM
Upon arrival, an EVO would select their charger, enter a
retrieval time, and select the option plan for their vehicle.
This portal would serve as the human-machine interface that
provides the prosumers with analytics on their vehicles, such
as vehicle state of charge, energy use, or real-time parking
fee.

C. VEHICLE AVAILABILITY INFORMATION
Vehicle owners are requested to register with the PLO
and provide their vehicle information. Each vehicle is
assigned a unique identification number (VIN) and a
charging spot in the parking lot. The Vehicle Avail-
ability Information (VAIn)-tuple for vehicle i contains
a static block including 〈Bi,cap,Ci,rate〉 and a dynamic
block 〈di,arr , ti,arr , di,dep, ti,dep, dpark , SOCi,arr 〉. With cus-
tomer consent, this information may be stored and used
for future forecasting, diagnostics, and analysis by the PLO
or its subsidiaries. The vehicle information for this study

was emulated using statistical distributions based on certain
assumptions as illustrated in Fig. 2. These include:

1) The airport arrival and departure times for the vehicles
were randomly sampled from beta probability density
functions. This data is generated using the assumption
that air traffic is more prevalent during the morning and
evening hours.

2) The vehicle state of charge (SOC) on arrival varies
between 20% and 50%.

3) The parking period of each vehicle was sampled from a
multinomial random distribution. The vehicles may be
parked for any period between 1-10 days, with a most
probable duration of stay of 3 days.

4) The vehicle battery type was selected from a range
of available battery sizes according to the probability
distribution of that size [13].

D. COMMUNICATION AND INFRASTRUCTURE DESIGN
CPL represents the total number of parking spots in the facility
with a total of CSPL charging stations available. The charging
stations are divided into Type I, Type II, and Type III chargers
(CSIPL ,CS

II
PL ,CS

III
PL respectively). In this study, it is assumed

that the parking lot has sufficient charging spots to serve all
the vehicles that arrive, thus CSPL = CPL .
The status of each charging spot is encoded as a 3 bit

unit shown in Table 3. The first bit represents the charger
availability and the next two represent charging, discharging,
charged or idle states. The charger status and vehicle status
information is stored as shown in Table 2. This information
is updated regularly to maintain PLO control.

TABLE 2. Charger status and information encoding.

Each charging station is connected with the central con-
troller through a two-way communication channel using
an automatic energy metering system. The communication
infrastructure may be based on ISO 15118 standard, SAE
J2847/1 [14] or AMI communication networks [15]. These
standards are designed specifically to allow synergistic devel-
opment of communication, interoperability, and security pro-
tocols for EV-utility interface. Grid-networking protocols
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FIGURE 2. Statistical data for a vehicle population of 10000.

TABLE 3. 3-bit unit code for charger status.

such as IEEE 802.15.4 (Zigbee), broadband over Powerline
and HomePlug, ZWave, etc. may be used for this purpose.

E. PARKING LOT CONTROLLER DESIGN
The parking lot controller collects the vehicle information
based on the daily reservations and uses this information to
categorize the vehicles into two groups 1) departure storage,
and 2) parked storage.

The departure battery group has limited V2G capability
since these vehicles must be charged to the customer desired
SOC (typically at, or near, full SOC) by the end of their
specified parking periods. Vehicles scheduled to remain in
the structure beyond that day are assigned to parked storage
group and have greater resource flexibility because they have
no daily hard target SOC. Fig. 3 shows the aggregated battery
capacity for the two storage groups. Note that there is a start
up period for these results that would not exist in a real-time
system. Parked/Departure storage is used to indicate total
aggregated battery capacities of the two groups respectively.
Parked group includes that are not scheduled to depart at the
end of the optimization day. Departure storage aggregates
vehicles that are expected to leave the parking facility on the
day.

Once the participating vehicles have been categorized into
one of the two groups, the parking lot controller optimizes
the energy transactions for the aggregated fleet as shown
in Fig. 4. Depending on the business strategy adopted, a wide
range of objectives might be applicable to the optimiza-
tion process; they may be classified into 1) PLO-driven,
2) customer-driven, 3) system-driven, or any combination of

FIGURE 3. Aggregated Parked and Departure Energy Capacity:
(1) shows the minimum energy required by the vehicle batteries,
(2) shows the initial energy stored in the EVs at the beginning of
the day, and (3) represents the maximum aggregated battery
capacity for the EVs.

these three categories. Vehicle charging constraints have been
adopted from [16]. These business strategies are described in
the following sections.

1) MAXIMIZE PLO PROFITS
This objective seeks to maximize the parking lot owner’s
profits. This strategy generates revenues by selling maximum
energy to the power grid (during high price periods) and
buying energy from the grid to charge the vehicle fleet during
the low-cost periods of the day. It also seeks to avoid any
penalties based on contractual violations with the ESO or the
customer. The PLO may buy/sell at the wholesale rate by
transacting energy between the vehicles and the EPO. This
profit may be shared between the PLO and the EVO. The
total costs incurred/revenues earned by the customer are given
by 9rev

i in:

9rev
i (x) =

ti,avail∑
t=1

(
x tch,i
ηch
− x tdch,i · ηdch

) (
λt
)

(1)
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FIGURE 4. Flowchart for parking lot control algorithm.

2) MINIMIZE BATTERY DEGRADATION
One of the major challenges associated with V2G is battery
degradation during cyclic charging/discharging of the battery
that may adversely affect the automotive life of the battery.
Because numerous charge/discharge cycles can degrade the
battery, an additional objective is to minimize battery dam-
age, thus protecting EVO interests. Simple linear approxima-
tions for SOC and DOD related degradation costs have been
adopted from [17] and [18]:

9
deg
i (x) =

ti,avail∑
t=1

9 t
i =

ti,avail∑
t=1

9
SOC(x)
i,t +

ti,avail∑
t=1

9DOD
i,t (2)

9SOC
i,t = Cbat

m · SOC(x)avg,t − d
8760 CFmax · batlife

(3)

9DOD
i,t =

Cbat · Bi,cap + Clabor
batlife · Bi,cap · DOD

E(x)dchi,1t (4)

x =

{
x tch,i, if υ ti = 1 (charging mode)
x tdch,i, if υ ti = 0 (discharging mode)

(5)

where

SOCavg,t+1 = SOCavgt +
x ti,ch + x

t
i,dch

Bcap
(6)

Edchi,1t = Ebatt−1 − E
bat
t (7)

The binary variable υ ti ascertains either charging or dis-
charging mode at each time instance t for each vehicle i (5).

3) OPTIMIZE VEHICLE UTILITY
The major aspects of vehicle utility include:
• Maximize utilization of the battery capacity during the
entire parking period, while

• Minimizing battery degradation costs, and
• Maximizing energy transaction profits.

The PLO seeks to maximize its profit by optimizing vehicle
utility.

4) CUSTOMER SATISFACTION INDEX (CSI)
A customer satisfaction index may be defined for each cus-
tomer based on 1) total costs incurred including any portion of
the PLO profit shared with the EVO, 2) total expected energy
served by the PLO, and 3) the SOC at time of departure.
This index is defined as a weighted sum of three components
1) total costs Ci,total , 2) expected energy served Ei,SOC , and
3) delay in service Ti,delay due to inadequate SOC at time of
departure. The weightwk where k ∈ {1, 2, 3} is a user defined
ratio based on external priorities.

CSIi = w1Ci,total + w2Ei,SOC + w3Ti,delay (8)

Ci,total = 1−
(Ci,rev + fi,adm + Ci,batdeg)

fi,adm
(9)

Ei,SOC =
Ei,sup
Ei,reqd

(10)

Ti,delay = 1−
ti,delay
ti,park

(11)

IV. MODEL DEVELOPMENT
The airport parking lot is modeled as a structure that has
predictable (within set variances) arrival and departure of
vehicles. A minimum of 500 vehicles are available at any
time during the 30 day consideration period. The number
of vehicles arriving or departing the parking lot on any day
is selected randomly based on the probability distribution
shown in Fig. 2. After the vehicle information is obtained
through the parking reservation system, the scheduling con-
troller runs the optimization under the constrained scenarios
generated using the PLO-defined single or multiple objec-
tives. This optimization for day d is completed using the
information available by 23:59 hours on day d − 1. The
obtained profiles � are appended to the VIN and sent over
the communication channels to the assigned charging sta-
tion. Once the vehicle is parked in a designated spot, its
energy transaction profile follows the pattern stored at the
corresponding charging station. On completion of the parking
period, the energy transactions are evaluated and the financial
logs are updated.

For the 30 day period, the number of vehicle arrivals/
departures, trip duration, arrival SOC, and arrival/departure
times were sampled from the data shown in Fig. 2. Loca-
tional marginal prices for a node in the Midwest Independent
System Operation (MISO) region were selected as the test
case data [20]. Figure 5 shows a comparison between the
hourly fluctuation of prices during the months of June and
January that were selected to account for seasonal variations.

Three cases have been simulated for the months of
January and June:
• Case 0: Traditional parking lot without charging capa-
bilities
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TABLE 4. Monthly revenues for a parking lot with Type III chargers ($).

FIGURE 5. Daily maximum and minimum LMP variation for a
node in the MISO region (June/Jan) [20].

FIGURE 6. Energy transacted by parked and energy storage
blocks (Type I chargers) during the month.

• Case 1: Parking lot with charging capability (only)
• Case 2: Smart parking lot for maximizing PLO revenue
through active energy transactions

A standard (base case) daily parking fee (fadm) and two
additional fee structures are analyzed: 1) a SOC dependent
fee (f SOCadm ), and 2) a usable capacity dependent fee (f capadm).

fadm = tdayspark × fee$/day (12)

f SOCadm = (1− SOCarr )× t
days
park × fee$/day (13)

f capadm =
(Bi,cap − Bi,min)

Bi,cap
× tdayspark × fee$/day (14)

FIGURE 7. Energy transacted by parked and energy storage
blocks (Type III chargers) during the month.

The standard daily parking fee (fadm) is the per vehicle fee
that would normally be charged. If the vehicle is parked less
than 24 hours, the parking fee is pro-rated linearly. Covered
vehicle parking in metropolitan areas can range from $15 to
upwards of $30 per day.

V. RESULTS AND DISCUSSION
A 30 day parking lot model was simulated for PLO profit
maximization. This convex optimization problem (mixed-
integer linear problem) was solved using Gurobi [19] con-
sidering the fleet arrival/departure times and energy needs.
The results further reflect the battery degradation costs
observed using the corresponding argmin. A comparison of
the Case 1 and Case 2 with respect to the base case (Case 0) is
summarized in Table 4 for the case in which all EVs use Type
III chargers. The two operating paradigms are 1) charging
only and 2) transactive. This assumption is made to provide a
level comparison between the two operating paradigms. In the
Total Costs category, a negative cost indicates that a profit is
being generated. This table implies that without some level
of transactive operation, the PLO would be forced to charge
EV owners an additional fee to offset the costs of providing
the charging service. However, with transaction operation,
the PLOwouldmake a profit. However, without profit sharing
with the EV owners, there is no incentive for them to partic-
ipate in the transaction market operations. The basic premise
of the proposed algorithm is to find a profit sharing model
such that the EV owner is sufficiently incentivized to park in
the parking structure and allow their vehicle to participate in
the transactive scheme.
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FIGURE 8. Hourly energy transactions (Type I chargers) for a 5-day sample.

FIGURE 9. Hourly energy transactions (Type III chargers) for a 5-day sample.

FIGURE 10. Probability density functions for variation in charging fee by battery type.

To ascertain the impact of the type of charger on the
algorithm behavior, the transactive scheme was applied to a
structure with Type I chargers only and Type III chargers only.
These results are summarized in Figures 6 and 7 respectively.

The total energy transacted by the PLO during the month
of June in Case 2 is shown in Figs. 6 and 7 for slow (Type
I) chargers and fast (Type III) chargers respectively. As
expected, these results indicate that the EVs using slow charg-
ers resulted in lower cumulative energy transactions in com-
parison to those with fast chargers. Therefore, for maximizing
vehicle utility, fast chargers would bemore beneficial than the
slow chargers. Furthermore, more energy was transacted by
the parked storage group as opposed to the departure storage
group, primarily because of the departure SOC requirement.

Figures 8 and 9 show a sample 5-day hourly variation
of energy bought and sold by the parking lot outfitted with
Type I and Type III chargers respectively. The Type I charg-
ers result in lower, contiguous energy transactions, whereas
Type III chargers lead to non-contiguous, higher transactions.

This result can help in understanding the regulation capability
of a smart parking lot. The charge and discharge cycles
typically follow the pattern of discharging energy to the grid
(V2G) in the afternoon and charging (G2V) at night when
electricity prices are low. Note that at any time instant (1 hr
time step for optimization algorithm) some vehicles may
be charging while others are discharging. This result may
be counter-intuitive, but it is a product of the optimization
process that balances SOC needs, battery degradation, arrival,
and departure times across the entire population of vehicles.

Fig. 10 shows the probability density functions of the daily
profit for each battery type for the month of June obtained
from the population data set described earlier. A similar pat-
tern was observed for other months of the year. These proba-
bility distribution functions highlight a few trends. All of the
distribution functions indicate a typical profit margin. This
margin is in addition to the base case (case 0) daily fee that
would normally be charged. This indicates that the parking lot
owner could easily decrease the nominal daily fee, thereby
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FIGURE 11. Daily parking fee variation for the months of January and June.

incentivizing vehicle owners to park in the structure, and
still maintain a healthy profit margin. The profits are more
likely to be larger for vehicles with large batteries since they
are more likely to have significant transactive participation.
There are a small number of vehicles however, for which the
profit margin is negative. This situation is caused by vehicles
parked for short periods that require significant charging.
In the case of large battery/short duration, it would make
sense to charge the vehicle owner a surcharge for vehicle
charging. However, in all other cases, the profits could be
used to incentivize vehicle owners to participate (i.e. by giv-
ing them a parking fee discount) while still maintaining a
significant profit for the parking lot owner.

Figure 11 shows the aggregation of all vehicles and costs
for June and January. Each of these figures represent the
variation in daily ‘‘break-even’’ parking costs with change in
parking period and battery size. These results are based on a
base case parking fee of $20/day. There are several notable
trends illustrated in this figure. Note that the largest daily
cost occurs for vehicles with large batteries parked for short
periods of time (black triangle). This is because these bat-
teries typically only charge due to their short duration in the
parking structure and they cannot participate in V2G. Thus
a surcharge for charging may be required. However, as the
parking length increases, the average daily cost decreases as
the benefits from the transactive algorithm begin to dominate
(black circle). For small batteries however, the opposite situa-
tion arises; as the small batteries participate in the transactive
market, the battery degradation costs become apparent the
longer the vehicles are parked (black square). Note how-
ever, that in all cases except the large battery/short duration,
the daily fees are less than $20/day, and in the month of June,
they actually become negative, indicating large profits can be
realized.

VI. CONCLUSION
This paper discusses a detailed business model for smart air-
port parking facilities. The transactive capabilities of a large

EV fleet were leveraged to find an optimal charge/discharge
paradigm that maximizes vehicle utility, enhances customer
experience and provides profits to the parking lot owner.
This work provides a framework that may be used to design
a business model for any long-term parking facility. Fur-
ther, the impact of the choice of charger type and hourly
price variation has also been discussed. The day-ahead algo-
rithm may be utilized to assess the daily energy transaction
capability of the parking lot and provide the customer with
impact-assessment of various POT schemes. Uncertainties
due to price changes, driver behavior and renewable energy
will be explored in future extensions of this work.
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