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ABSTRACT Distributed generation (DG) sources have become an integral part of today’s decentralized
power systems. However, current DG systems are mostly passive and do not provide intelligent information to
help detect power quality issues. In this paper, a novel and intelligent event classification scheme is proposed
to provide the DG systems with real-time decision making capabilities. The proposed technique has the
ability to provide information to help maintain the quality and reliability of the DG systems under various
disturbances or operating conditions. This event classification technique was developed using artificial neural
networks (ANNs) with a pre-defined set of local input parameters. The algorithm is implemented using
four parallel ANNs that were designed to operate under a majority vote fusion algorithm representing
the final classification output. A total of 310 event cases were generated to test the performance of the
proposed technique. Simulation results showed that events were accurately classified within 10 cycles of
their occurrences while achieving a 96.21% average classification accuracy.

INDEX TERMS Event classification, smart grid, distributed generation, artificial neural networks,
majority vote.

I. INTRODUCTION
Conventional electrical power grids consist of large central-
ized power plants that generate and transfer large amounts
of power via long distance transmission lines which presents
several operational challenges. The growing demand for elec-
tricity has also led to considerable transmission and distribu-
tion losses in the system. In addition, the power grid is highly
vulnerable to contingencies ranging from severe weather to
faults caused by falling trees on power lines [1]. Furthermore,
the polluting nature of the fossil-fuel powered generation
plants has led to strict regulations on the construction of new
power plants. Fortunately, the majority of these issues that
are due to the centralized nature of the power grid can be
mitigated by integrating distributed generation units within
the grid. Any decentralized electrical power source connected
to the grid at the distribution level is called a distributed
generation (DG) [2]–[4]. Since DGs are generally installed
at the consumers’ end, they tend to supply part of the local
demand and thereby reduce the load on the centralized system
including transmission. The small size and the decentralized

nature of DG systems render them very reliable since the
failure of a small unit can be easily compensated by the
remaining units. Furthermore, a considerable portion of DGs
is renewable sources such as solar, wind, and fuel cells [5].
Therefore, DG systems are environmentally friendly and can
help meet sustainability goals such as the US’s Executive
Order 13693 [6].

The inherent benefits of DG systems have led to a steady
rise in their utilization at the distribution level. A significant
portion of DG systems is owned and operated independently
by industries, universities, and homeowners [7]. Within the
structure of a traditional power system, the main components
of the system, such as power generation, power transmission,
power distribution, and loads, are considered to be quite
independent processes [8]. However, with the increase in
DG penetration and active energy resources such as dynamic
loads, energy storage, and plug-in hybrid vehicles, the com-
plexity of managing the grid increases significantly since the
complexity of the transmission network is combined with
the distribution network level [8]. In this case, it becomes
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TABLE 1. Comparative analysis of existing event classification techniques.

necessary to incorporate intelligence within the DGs to make
them smart and help maintain the overall system stability.
Current research on smart DG systems mainly deals with
autonomous voltage or frequency regulation and the optimum
use of renewable DG systems [9]. There is little research
effort towards the implementation of an event classifica-
tion feature into DG systems. Furthermore, existing research
addressing event classification techniques are mainly focused
on maintaining constant voltage and frequency in order to
prevent damage or shut down of essential electrical equip-
ment [10]. Therefore, extensive monitoring and data acquisi-
tion systems are needed to capture event data during power
system disturbances. This data is then processed to extract
features from local parameters to automate the process of
identification and classification of different power quality
variations such as voltage sag, swell, harmonics, frequency
oscillations, etc. A general structure of such technique is
shown in Fig. 1.

FIGURE 1. General principle of existing event classification
techniques.

Most of the classification techniques presented in the
literature generally use time domain voltage and current
waveforms to perform the classification. After the occur-
rence of an event, features, that can accurately represent
the characteristics of the event, are extracted from the input
parameters to be used for classification. The most commonly
used feature extraction techniques are Fourier transform [11],
wavelet transform [12]–[19] and S-transform [13], [20]–[22].
The extracted features are then used as inputs for the clas-
sification algorithm. Machine learning algorithms such as
Decision Trees (DT) [20], artificial neural networks (ANN)
[12], [14], [17], [18], [22], support vector machines (SVM)
[12], [13], [15], [17], genetic algorithm (GA) [16], [20],
least-squared SVM (LS-SVM), modular probabilistic neural

network (MPNN) [13], and fuzzy logic (FL) [19], [20] have
been used as classifiers. Even though these techniques were
able to classify the variation in the system’s power quality,
they were not able to identify the root cause of these varia-
tions. In addition, these classification techniques were only
tested using systems with conventional generation sources.
Table 1 summarizes the different classification techniques
presented in the literature including feature extraction tech-
niques and classification accuracies.

In this paper, the proposed DG event classification differs
from other existing techniques by adding decentralized intel-
ligence capabilities into the DG sources within the power
system. Also, this proposed technique can identify the root
cause of a wide range of events which have a substantial
impact on the operation of grid-connected DG systems. Such
classification can help develop a clear understanding of the
operating requirements needed to mitigate the impact of such
events on the power system. The technique monitors and logs
data for a certain combination of local parameters which are
then used as the input to a set of ANNs trained to classify
these events. Every ANN is trained using values obtained
from only a single local system parameter. The classification
outputs of all the ANNs are combined using a majority vote
fusion algorithm to generate the final classification decision.
The proposed technique was optimized to reduce the com-
putational complexity while maintaining high classification
accuracy. The performance of the technique was also vali-
dated using a 10-fold cross-validation of a large dataset of
local events.

The rest of the paper is organized as follows. In Section II,
the proposed approach is presented. In Section III, the sim-
ulation model is discussed along with the results. The paper
concludes with a summary of the findings in Section IV.

II. PROPOSED CLASSIFICATION TECHNIQUE
The proposed technique is designed to classify power sys-
tem events according to their root cause by monitoring a
set of local parameters using a network of ANN classifiers
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combined with a majority vote fusion algorithm. Local power
system events, such as islanding, faults, load switching,
capacitor switching, and loss of parallel feeder have their
own signature on the measured electrical parameters at the
DG point of common coupling (PCC). When recording DG
electrical parameters for various events, distinct waveform
patterns can be observed. Fig. 2-a illustrates the characteristic
difference in the voltage waveforms for different types of
events over a period of 10 cycles. As shown, each event
exhibits a distinct pattern. On the other hand, events of the
same type exhibit high characteristic correlation as illustrated
in Fig. 2-b which shows the root mean square (RMS) voltage
waveforms for 3-phase faults of different magnitudes.

FIGURE 2. Voltage waveforms for (a) different type of events
(b) 3-phase events.

Although the differences are visible in the waveform pat-
terns, there is no definite model to distinguish between these
different events. Therefore, a suitable machine learning tech-
nique can be used to classify the various events by observing
the pattern in selected parameters at the PCC.

A. ARTIFICIAL NEURAL NETWORK MODEL
Feed-forward Artificial Neural Networks are used for pattern
recognition since they possess the ability to learn from com-
plex non-linear input-output relationships and to adapt to the
given data [23].

Fig. 3 illustrates the general structure of a layer of neurons.
The input vector I consists of inputs I1 through Ik . Each
element of this vector is associated with a neuron through
the weight matrix W with r × k elements, where r is the
number of neurons in the layer. For the i-th neuron, all the
weighted inputs are added together with the bias bi to obtain
the total sum (ni). ni is then passed through a transfer function
to obtain the output (ai). The relationship between the final
output of the neuron (ai) and the set of inputs (Ij) is mod-
eled by:

ai = f


k∑
j=1

[
Wi,jIj

]
+ bi︸ ︷︷ ︸

ni

 (1)

At the beginning of the ANN training, the weights
and biases are randomly initialized. After each iteration,

FIGURE 3. A layer of neurons in an Artificial Neural Network.

the ANN training algorithm will slowly converge the values
of the weights and biases until the network response matches
the desired response. This is generally achieved by adjust-
ing the weight matrix to minimize the error function. The
error function is dependent on the classification error. The
weights are adjusted according to the derivative of the error
function with respect to the individual weights to guarantee
a minimum error. The transfer function serves the purpose of
normalizing the input data because most training algorithms
are sensitive to the actual scale of the data.

Initially, in this study, a single ANN classifier with 8 input
parameters was utilized. However, due to the curse of dimen-
sionality, the classifier was complex and required more
training which also resulted in relatively poor classifica-
tion [24]–[26]. Therefore, we proposed a solution for this
problem by using a fused network of single input simple ANN
classifiers to improve the classifier performance.

B. MAJORITY VOTE BASED MULTIPLE
CLASSIFIER SYSTEM MODEL
The proposed technique utilizes multiple Feed-Forward
ANN (FF-ANN) classifiers combined with a majority vote
fusion algorithm. The input for each classifier represents a
specific local DG power parameter such as voltage, rate of
change of voltage, frequency, voltage total harmonic distor-
tion, etc. This approach simplifies the classification process
by decomposing the multi-input single classifier into a set
of simpler single-input classifiers with its inputs distributed
over this set of classifiers. This multi-classifier system will
exploit the difference in how these local parameters react to
different events to enhance the accuracy and the reliability
of the overall classification system. i.e., if some parameters
fail to accurately classify the event, then the overall system
might still be able to accurately classify it using the majority
voting fusion algorithm. Fig. 4 illustrates the proposed con-
figuration of the classifier ensemble using the majority vote
fusion.
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FIGURE 4. Proposed Feed-Forward ANN classifiers combined
with a majority vote fusion algorithm.

The proposed system consists of three stages. Stage 1 rep-
resents the individual parameter classification process, where
local parameters (features) vector xk defined in the feature
space <n is fed to N parallel classifiers. These classifiers are
composed of Feed-Forward ANNs with different optimized
structure using the same training algorithm. Each classifier in
the ensemble is trained to classify M events. Each classifier
has M binary classifier outputs each output representing a
specific event. The classifiers’ outputs are binary vectors
(di,j), i.e. di,j ∈ [0, 1], where i = 1, 2, ...,N represents
the classifier number and j = 1, 2, ...,M represents the
class or event number. In stage 2, the majority voting is used
as the fusion algorithm to combine the different classifiers’
outputs for each event. This is used to estimate the posterior
probability for each event ωj as follows:

p̂
(
ωj|x

)
=

∑(
d1,i, d2,i, ..., dN ,i

)
M

(2)

In stage 3, the final event classification ωk is determined.
The final classification is basically the event with the maxi-
mum posterior probability modeled as follows:

assign x → ωk if p̂ (ωk |x) > p̂ (ωl |x) (3)

In the case of a tie, the final classification of events is
based on their historical classification record. The tiebreaker
is basically the event that was most recently classified.

To analytically validate that using the majority voting as a
fusion algorithm will improve the classification accuracy of
a system of classifiers, a simplified parallel classifier model
was used and compared to the model under consideration.
This simplified model is assumed to have only 2 classes
(events) to be classified using an odd number of base clas-
sifiers to form an ensemble. The base classifier posterior
error probabilities (Ps) are assumed to be equal. In addition,
it was also assumed that all the base classifiers have an
uncorrelated or negatively correlated mutual error.

The ensemble classification probability of error (PE )
model for a system of classifiers with a majority voting fusion
algorithm used to classify two events (N = 2) using an odd
number of base classifiers M is given as follows:

PE =
M∑

j=(M+1)/2

(
M
j

)
(PS)j (1− PS)M−j (4)

Fig. 5 highlights the performance of the system in terms
of the ensemble classification probability of error (PE ) as a
function of the base classifier probability and the number of
classifiers.

FIGURE 5. Classification probability of error of a parallel system
of classifiers combined with a majority vote fusion algorithm
versus the base classifier probability of error.

As depicted in Fig. 5, the system of classifiers using major-
ity voting fusion algorithm can improve the overall system
classification accuracy as more classifiers are added com-
pared to a single classifier (M = 1) provided that Ps < 0.5.
However, if Ps > 0.5, then the ensemble classification
probability of error will increase as more classifiers are added
which defeats the purpose of using such a system.

In this paper, the proposed classification model is more
complex than the model used to derive the ensemble prob-
ability of error. First, the proposed model uses 8 events
instead of 2 which complicates the permutations of accu-
rate majority voting. Second, it also uses classifiers that are
relatively correlated with different base classifiers’ posterior
error probabilities. In such a case, the derivation of a closed-
form expression to model the ensemble probability of error is
more involved. More details regarding majority voting fusion
algorithms can be found in [27] and [28].

C. PROPOSED MODEL IMPLEMENTATION
The implementation of the proposed DG event classifica-
tion method consisted of three principal steps: 1) parameter
selection, 2) feature extraction and model construction, and
3) optimization. In the parameter selection step, the local
current and voltage waveforms are measured and a set of
parameters, affected by theDG events, are derived using these
waveforms. In this paper, 8 different input parameters were
used which are among the most popular parameters already
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used in islanding detection techniques [29], [30]. These input
parameters are voltage, the rate of change of voltage, voltage
total harmonic distortion, current total harmonic distortion,
frequency, the rate of change of frequency, power factor, and
the rate of change of power factor as listed in Table 2.

TABLE 2. Parameters selected for event classification.

In the feature extraction step, each input sample represents
the mean over one cycle for a specific parameter. For each
parameter, a combination of 10 consecutive cycles mean
values was used as an input to a moving window. The size
of the moving window directly proportional to the amount
of information provided to the classifier and inversely pro-
portional to how fast the classification is generated. In this
study, the moving window size of 10 cycles was selected,
through intensive investigation, to provide the best perfor-
mance within a reasonable time delay of 166ms which is
much lower than the islanding detection delay limit mandated
by IEEE Std 1547 [31]. A separate data matrix for each
parameter was constructed as depicted in Table 3. In the data
matrix, any given column represents the moving window of a
specific parameter for a period of 10 cycles. The various event
classes are represented in different columns in the matrix.
Since a set of 10 average values were recorded for each
event, then m = 10 while N represents the total number of
sample sets of the various events used. A subset matrix for
each parameter was assigned as an input to a specific neural
network for training and validation.

TABLE 3. Organization of input matrix to neural networks.

Instead of using all the parameters as inputs to one large
ANN, a separate and simpler ANN was allocated for each
parameter. This approach simplified the design of the clas-
sifier, improved its performance, and facilitated its opti-
mization. In the model construction and optimization stage,
the neural networks were trained using the MATLAB’s
Neural Network Toolbox. The pattern recognition feature

TABLE 4. ANN transfer function and training algorithm selection.

of this toolbox was used for constructing the feed-forward
network. The transfer functions selected for the hidden and
output layers were the tan-sigmoid and softmax function
respectively. This combination of transfer functions is widely
used for pattern recognition applications [32]. The scaled
conjugate gradient training algorithm was used because of its
fast convergence, memory efficiency, and suitability for large
complex systems [33]. Table 4 lists the benefits for selecting
these specificANNhidden and output layer transfer functions
and training algorithm.

FIGURE 6. Concept of 10 fold cross-validation.

The 10-fold cross-validation method was used to train and
validate each neural network. The concept of 10-fold cross-
validation is illustrated in Fig. 6. In this method, the dataset
was randomly divided into 10 subsets containing equal num-
bers of the various types of events. Nine of these subsets are
then used to train the network and the validation was con-
ducted using the remaining subset. This process was repeated
10 times and the average classification accuracywas recorded
as the performance index.

The number of neurons in the hidden layer of each network
was varied between 1 to 20 and the cross-validation method
was used to optimize the number of neurons in the hidden
layers. This optimization process was based on the criteria
of minimizing the misclassification rate while maintaining
reasonably simple neural networks.

After the optimization of each neural network, the outputs
of these networks were arranged in a vector form and the
majority vote output was used to generate the final classifica-
tion. This approach was shown to provide more accurate and
robust results compared to using one large neural network.
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FIGURE 7. ANN structure design process for the DG event
classification system.

This structure of parallel ANNs facilitated the process of
optimizing the classification performance of the ensemble
by removing the low-performing ANNs and their associated
parameters. Recursively, the ANNs having the lowest accu-
racy were eliminated and the updated classification perfor-
mance was recorded. The optimal structure was obtained
when further elimination led to a decrease in the classification
performance. Fig. 7 summarizes the ANN structure design
process for the proposed DG event classification system.

FIGURE 8. Simulation model of a grid-connected PV system.

III. SIMULATION MODEL AND RESULTS
The performance of the proposed event classification tech-
nique was verified using a MATLAB Simulink model of a
grid-connected photovoltaic (PV) array as shown in Fig. 8.
The PV array generated 100.7 kW at an irradiance of
1000 W/m2 and a temperature of 25oC. It was connected to
the grid via a DC-DC boost converter and a 3-phase inverter
designed to output AC power at unity power factor (PF = 1).
The switching duty cycle of the DC-DC boost converter was
optimized using a Maximum Power Point Tracking (MPPT)
controller with Incremental Conductance and Integral Regu-
lator technique. The RMS of the inverter output voltage was
set to 260V and was connected to the 25 kV utility grid via
a 100 kVA transformer. The grid had a short circuit capacity
of 2500 MVA and an X/R ratio of 7. A 10 kVAR capacitor
bank was connected near the utility side to provide reactive
support to the load. A total of 310 events were simulated for
training and testing of the different ANNs. The distribution

TABLE 5. Simulated cases for DG event classification

of the input samples of various types of events is provided
in Table 5.

For uniform distribution, each event had 30 samples.
In addition, 10 sample cases of grid-connected normal oper-
ation were included in the input data for the classifier to
operate in real-time. The 10-fold cross-validation was used to
evaluate the average performance of the ANNs. Each subset
of data in the folds had an equal distribution of the various
types of events to avoid any bias in the training and testing.

FIGURE 9. Change of misclassification rate for two different
ANNs.

Initially, 8 parameters were used as inputs to 8 different
ANNs (one ANN per parameter). These parameters were the
normalized voltage (Vpu), frequency (f ), frequency deviation
( dfdt ), voltage deviation (

dV
dt ), voltage total harmonic distortion

(THDV ), current total harmonic distortion (THDI ), power
factor (PF), and power factor deviation ( dPFdt ). Fig. 9 depicts
the change in themisclassification rate of two different ANNs
(using Vpu and f as input parameters) as a function of the
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number of neurons in the hidden layer. The misclassification
rate illustrated in the figure represents the average value after
10-fold cross-validation. It can be observed that the misclas-
sification rate decreases drastically as the number of neurons
starts increasing and then converges as the number of neurons
continues to increase. To heuristically optimize the size of
the hidden layer, the selection of the number of neurons for
each ANN was based on the lowest misclassification rate
observed. Table 6 lists the optimal number of neurons and
the corresponding classification accuracy for each ANN. The
events classified are listed in Table 7.

TABLE 6. Optimized classification performance of various ANNs

TABLE 7. The set of classified events.

TABLE 8. Classification accuracy in the majority vote for
different combinations of ANNs.

Based on Table 6, the lowest performing ANNs were
eliminated one at a time and the classification performance
of the majority vote was observed at each step to optimize
the event classification technique. Table 8 lists the classifi-
cation performance at each step of the optimization process.
It was observed that the optimal combination of perfor-
mance and computational simplicity was achieved with the
combination of 4 parameters: the normalized voltage (Vpu),
frequency (f ), frequency deviation ( dfdt ) and voltage devia-
tion ( dVdt ). This combination has a very high classification

TABLE 9. Sensitivity and specificity for each event.

accuracy of 96.21% with a variance of 0.48%. Each ANN
has only one hidden layer and one output layer. The number
of neurons in each hidden layer varied because they were
selected according to their individual optimal performance.
The number of neurons in each output layer is the same and is
equal to the number of classes. The sensitivity and specificity
of the model with 4 parametric ANNs with respect to each
type of event are listed in Table 9. For a given event, the sen-
sitivity indicates the percentage of correct identification of
that event (i.e., avoiding false negatives) while the specificity
indicates the percentage of correct rejection of that event
(i.e., avoiding false positives). It can be observed that for
all events, except the real power mismatch events, the sen-
sitivity and specificity values exceeded 94%. This indicates
that all these events were classified accurately most of the
time. As for real power mismatch events, the sensitivity was
less than 80% indicating that false negatives were relatively
higher than all other events. In other words, the classifier
didn’t always detect real powermismatch events, which could
be the subject of future work.

IV. CONCLUSION
In this paper, a novel event classification technique for smart
DG systems is proposed. The proposed event classification
technique is able to detect and classify local events which
have a considerable impact on the safety and operation of
DG systems. The technique is implemented using the pattern
recognition feature of ANNs. Four parallel ANNs are used
for classification. Each neural network is optimally designed
to classify events based on a specific local parameter. The
output of each neural network is arranged in a vector form
and the majority vote of the four ANN classifiers is selected
as the final classification output. A total of 310 sample cases
of islanded and grid-connected events have been generated
to test the performance of the technique. The accuracy of
the proposed event classification technique has been verified
using 10-fold cross-validation. The technique classifies the
event within 10 cycles of event occurrence with a 96.21%
average classification accuracy. The implementation of this
classification feature in distributed generation systems can
help the system operator to develop a clear understanding
of the operating requirements to mitigate the effects of such
events. Furthermore, this technique is able to classify an
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islanding event according to the type of mismatch within the
island. This added capability can help the system operators
make informed actions to react to such events after island-
ing. To the best of the authors’ knowledge, incorporating
such an event classification feature into DG systems has not
been investigated before. In this study, individual occurrence
of events was investigated due to the low probability of
two or more events coinciding. However, this case could be
further investigated in a future work.
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