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ABSTRACT Electromagnetic transient (EMT) simulation is one of the most complex power system studies
that requires detailed modeling of the study system including all frequency-dependent and nonlinear effects.
Large-scale EMT simulation is becoming commonplace due to the increasing growth and interconnection
of power grids, and the need to study the impact of system events of the wide area network. To cope with
enormous computational burden, the massively parallel architecture of the graphics processing unit (GPU)
is exploited in this paper for large-scale EMT simulation. A fine-grained network decomposition, called
shattering network decomposition, is proposed to divide the power system network exploiting its topological
and physical characteristics into linear and nonlinear networks, which adapt to the unique features of the
GPU-based massive thread computing system. Large-scale systems, up to 240 000 nodes, with typical
components, including synchronous machines, transformers, transmission lines, and nonlinear elements, and
multiple levels modular multilevel converter with up to 6144 submodules, are tested and compared with
mainstream simulation software to verify the accuracy and demonstrate the speed-up improvement with
respect to sequential computation.

INDEX TERMS Electromagnetic transient (EMT) analysis, massively parallel, fine-grained network
decomposition, nonlinear circuits, graphics processing unit (GPU), parallel numerical computing, power
system simulation, parallel programming.

I. INTRODUCTION
Computer simulation plays an essential roles in modern
power system design and analysis. The electromagnetic tran-
sient program (EMTP) [1], which analyzes the temporary
electromagnetic phenomena in both off-line and real-time [2],
such as changes of voltage, current and flux in a short
time slice induced by switching, surges, faults, lightning
strike or any other disturbances in the network [3], more-
over, is also indispensable for the planning, construction and
operation of realistic electrical generation, transmission and
distribution facilities. Mainstream EMT tools, such as ATP,
PSCAD/EMTDCr, EMTP-RVr and etc., developed over
several decades, are routinely used in the power and energy
industries, to study transient and dynamic phenomena over
a wide frequency range [4]. These simulation tools com-
prise of extensive libraries of power system equipment mod-
els to accommodate most physical phenomena of practical

significance. Due to the detailed, high-order and nonlinear
models applied, the performance of mainstream EMT tools
is bound by the sequential programing based on the CPU,
running on a closely saturated clock frequency, when the
network size becomes large. Meanwhile, the sparsity of the
system matrix is increasing rapidly along with the system
scale, which burdens the computational efficiency seriously.
The traditional way to handle this is to create a large-scale
sparse system matrix describing the physical electrical net-
work, and then use a mathematical method for its solution [5].

The graphics processing unit (GPU), which brings super-
computing for the masses, has been described by many
developers and researchers in various compute, analysis and
simulation fields [6]–[8]. The application of high perfor-
mance computing technology, such as multi-core CPU and
many-core GPU, for solving large-scale power system prob-
lems, especially for dynamic and transient analysis is on
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the rise. There have already been contributions made in
transient stability, dynamic state estimation, electromagnetic
field and transient simulation, and power flow calculation
areas [9]–[19]. For EMT simulation while there have been
efforts to develop massively parallel models for linear passive
elements and frequency-dependent elements, a comprehen-
sive treatment of transients in nonlinear elements using a
fully iterative solution for large systems is a desired and
yet to be achieved objective. The single instruction multi-
ple thread (SIMT), which is derived from single instruction
multiple data (SIMD), provides the ability of branching,
whereas the GPU has lightweight cores and coalescent mem-
ory. Therefore, the irregularity and unpredictability of the
sparse construction seriously sabotages the SIMT execution
and access efficiency of GPU cores compared with a multi-
core CPU-based sparse algorithm.

An alternative solution for SIMT execution is to partition
the large system into similar small parts, which increases
the rate of parallelism and the speed of convergence of
solution for nonlinear systems using Newton iterations [20].
Exploiting the interface and boundary type sharing between
subsystems, domain decomposition methods were proposed
for parallel processing, such as Schur complement [21], addi-
tive Schwarz and multiplicative Schwarz method [22], which
solve the system iteratively. Waveform relaxation methods,
similarly, were developed for solving large sparse linear and
nonlinear numerical systems iteratively [23]. In addition to
the various pure mathematical methods, a large circuit can
also be broken down into small parts based on its topol-
ogy and physical characteristics. Diakoptics, introduced by
Kron [24], showed that the method of system tearing can be
a combination of equations and topology, and was further
developed and systematized as a method to decompose elec-
trical circuits [25], [26]. Taking into account the interconnec-
tion among subsystems, the system matrix exhibits a special
bordered block diagonal pattern after transformation, which
enabled parallelism.

This paper proposes a fine-grained decomposition method
for sparse linear and nonlinear networks for large-scale EMT
simulation implemented on a GPU-based parallel computing
system. Considering the EMT simulation with detailed, non-
linear component models and the particular features of GPU-
based computing, the large-scale sparse linear system, (which
requires numerous random access and lowers data processing
density) and the wide ranging nonlinear solution, (which
is slow to converge and expensive to synchronize among
threads) are still the main challenges of this work. Therefore,
the partitioning method employed is much fine-grained than
usual and is named shattering decomposition in this work.
The compensation network decomposition method, evolving
from diakoptics, is utilized to solve the partitioned linear
system in parallel without iteration. The Jacobian domain
decomposition method is proposed to decouple the nonlinear
system to be solved by Newton-Raphson method iteratively.

The paper is organized as follows: Section II intro-
duces the important characteristics of the computing system

and electrical circuit for parallelism. Section III describes
the simulation work flow and component modeling, where
GPU-based parallelism can be engaged. Section IV gives the
methods of shattering decomposition for linear and nonlinear
systems. Section V explains the algorithms and implemen-
tations of the entire EMT simulation on a multi-GPU com-
puting system. Finally, the experimental results for various
large-scale test systems are shown, compared and analyzed
in Section VI, followed by the conclusions in Section VII.

II. COMPUTER SYSTEM AND ELECTRICAL NETWORK
A. GPU-BASED COMPUTING SYSTEM
NVIDIAr’s GPU has already shown its power in parallel
computing because of its native massive processing cores,
high memory bandwidth and outstanding floating point capa-
bility [27]. Different from the heavyweight cores in multi-
core CPU whose threads are almost independent workers,
the threads in SIMT GPU are numerous but lightweight.
Thus, the performance of GPU-based computation depends
to a great extent on the workload distribution and resource
utilization. The typical architecture of CUDA [28] in Fig.1,
shows hierarchies of thread and memory.

FIGURE 1. CUDA abstraction of device (GPU) and host (CPU).

Although the memories have high bandwidth, the channel,
PCIe bus, between host and device is slow; thus avoiding
those transfers unless they are absolutely necessary is vital
for computational efficiency.

Based on the compute capability version 6.1 utilized in this
work, each GPU device presents as a grid, in which there are
up to 32 active blocks [27]. The threads in a block are grouped
bywarps. There are up to 4 activewarps per block. Although a
block maximally supports 1024 threads, only up to 32 threads
in one warp can run simultaneously. In each block, there is
48KB of shared memory which is roughly 10x faster and has
100x lower latency than uncached global memory, whereas
each thread has up to 255 registers running at the same speed
as the cores. The overwhelming performance improvement
was shown with avoiding and optimizing communication
for parallel numerical linear algebra algorithms in various
supercomputing platforms including GPU [29]. Making a full
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play of this critical resource can significantly increase the
efficiency of computation, which requires the user to scale
the problem perfectly and unroll the for loops in a particular
way [30].

B. ELECTRICAL POWER NETWORK
The electrical power network transmitting energy from end
to end is a sparse system, where each element (component)
only linkswith few other elements (component) nearby. Fig. 2
shows the sparsity pattern of IEEE 39-bus power system,
where each dot represents link between two nodes. There

FIGURE 2. Sparsity of IEEE 39-bus power system. (a) 39-bus
network. (b) Admittance matrix (Y ).

are 117 nodes in total since all 39 buses are 3-phase. In order
to avoid dealing with this sparsity during the computation,
especially when the scale of network is considerably large,
the fine-grained decomposition is applied during the simu-
lation. Although the ideal target is to tear the system into
component level pieces, such as bus-by-bus, for EMT sim-
ulation such a partition scheme would cause extra computing
effort normally, such as data communication and connection
networks.

The simulation performance relating to the scale of the
subsystem has a step effect due to the warp execution of
CUDA, which means it has the same performance within
every 32-thread (1-warp) enlargement. Therefore, sparsity
can be ignored in each warp, and the scale of the subsys-
tems can be manipulated to meet the maximum size of the
warp.

III. ELECTROMAGNETIC TRANSIENT MODELING
In modern electrical networks, the classical components
include synchronous machines with control systems, trans-
formers, transmission lines, and linear and nonlinear passive
elements. Although the purpose of this work is to show the
compute acceleration of fine-grained parallel EMT nonlinear
simulation, detailed models are used to realize the computing
power of the GPU. The basic theory of the electromagnetic
transient program is to discretize the differential and integral
equations in electrical circuits by Trapezoidal rule; and then
to solve them repeatedly to find the numerical time-domain
solutions, such as voltages and currents [4].

A. SYNCHRONOUS MACHINE WITH CONTROL SYSTEM
The universal machine model provides a unified mathemati-
cal framework to represent various types of rotating machines
including synchronous, asynchronous and DC machine [31].
As shown in Fig. 3(a), the electrical part of the synchronous
machine includes 3 stator armature windings {a, b, c}; one
field winding f and up to 2 damper windings {D1,D2}
on the rotor direct d-axis; and up to 3 damper windings
{Q1,Q2,Q3} on the rotor quadrature q-axis. The discretized

FIGURE 3. Universal machine model, control system, and
time-step interface for synchronous machine. (a) Electrical side
model. (b) Mechanical side model. (c) Excitation system.
(d) Time-step interface.

winding equations after dq0 conversion are described as

vdq0(t) = −Ridq0(t)−
2
1t

λdq0(t)+ u(t)+ Vh (1)

where R is the winding resistance, λdq0 are the flux linkages,
u are speed voltages and 1t is the simulation time-step.
The mechanical part shown in Fig. 3(b) is represented as a
linear electrical equivalent instead of traditional a mass-shaft
system

iTm = CJ
dvω
dt
+ GDvω + iTe (2)

where iTm ,CJ ,GD and vω represent the equivalent mechanical
torque, inertia, damping and rotor speed respectively [32].
The equivalent electromagnetic torque iTe , which interfaces
to the electrical part, can be represented by the flux linkages
λdq0 and the machine currents idq0 as

iTe = λd iq − λqid . (3)

Then the time discretization for linear passive elements is
applied to (2), to obtain

vω(t) =
iTm (t)− iTe (t)− IhCJ (t −1t)

GD + GCJ
(4)
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which merges the solution of mechanical part to that of the
electrical part. The equivalent conductance GCJ is given as

GCJ = 2CJ/1t. (5)

B. CONTROL SYSTEM INTERFACE
Since the model of excitation control system, shown
in Fig. 3(c), is different from that of the electrical network,
whose equations are difficult to be merged into the nodal
analysis equations in EMT simulation, they will be solved
separately. On the other hand, the sample time (Ts), used in
control system is much larger than the time step

Ts � 1t. (6)

Therefore, there is an interface between the two subsystems,
as shown in Fig. 3(d). After the machine network is solved,
the solutions including voltages and currents are sent to the
excitation system, and then its solutions are calculated, which
are in turn sent back to the former in the next time-step of
EMT computation. Since the excitation system appears as
almost static to the EMT network, the error introduced by the
time delay inserted is usually very small.

C. TRANSFORMER WITH MAGNETIC SATURATION
The n-winding transformer for EMT simulation with winding
resistance R and leakage inductance L is represented as

v = Ri+ L
di
dt

(7)

where R and L are n × n matrices; v and i are n × 1
vectors of winding voltages and currents. The linear part of
the transformer is modeled by admittance based model [33],
and the saturation effect is represented by the extra nonlinear
inductance connected to the secondary winding, which is
joined to the linear inductance matrix, as shown in Fig. 4.
By time discretization, (7) is rewritten as

i(t) = Geqv(t)+ Ih(t −1t) (8)

where the equivalent admittance is given as

Geq =
1t
2
[I+

1t
2
L−1R]−1L−1. (9)

FIGURE 4. Admittance-based transformer model with saturation.

The nonlinear inductance taking care of the saturation effect
contains the nonlinear relation between flux λ and branch
current i, given as

g(λ, i) = 0. (10)

On the other hand, the flux λ is the integral of node voltage v
over a time-step

λ(t) = λ(t −1t)+
∫ t

t−1t
v(u)du. (11)

Discretizing by Trapezoidal rule, we get

λ(t) =
1t
2
v(t)+3h. (12)

Thus, the relation found by substituting λ in (10) with (12)
between voltage and current of the nonlinear inductor is
expressed as

g(
1t
2
v(t)+3h, i) = 0 (13)

from which the Jacobian matrix can be derived by the deriva-
tive of voltage.

D. TRANSMISSION LINES
The universal line model (ULM) [34] is used for one of the
most important components in electrical circuit, transmission
line, which can represent both symmetrical and asymmetrical
overhead lines and cables since it is constituted in the phase-
domain directly. As shown in Fig. 5, the long line is modeled
by two separate circuits with admittanceG and history current
source Ih, sending end ‘k’ and receiving end ‘m’, linked by
traveling waves. The KCL equation is expressed as

i(t) = Gv(t)− Ih (14)

where the history currents are given as

Ih(t −1t) = Y ∗ v(t)− 2ii (15)

and the incident currents ii can be expressed by remote
reflected currents ir as

ii = H ∗ ir (t − τ ). (16)

FIGURE 5. Frequency-dependent transmission line model.

In (15) and (16), the ‘∗’ denotes numerical matrix-vector
convolution, which is a trade-off between the simplification
of model complexity and computational resources; Y and H
are the characteristic admittance and the propagationmatrices
respectively, which are approximated by finite-order ratio-
nal functions using the vector fitting (VF) method [35].
From (16), there is a propagation time delay ‘τ ’ between k
and m ends. The admittance in (14) is given as

G = (
1t
2
)/(1− p

1t
2
)r+ d (17)

where r, p and d are the residues, poles and proportional terms
of the vector fitting respectively.
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E. LINEAR AND NONLINEAR PASSIVE ELEMENTS
As shown in Fig. 6(a), the linear passive elements, including
resistor (R), inductor (L) and capacitor (C), can be repre-
sented as an equivalent admittance (Geq), and a virtual current
source (Ih)

i(t) = Geqv(t)+ Ih(t −1t) (18)

where Ih universally, defined as

Ih(t −1t) = GeqVh(t −1t). (19)

FIGURE 6. Equivalent models for passive elements. (a) Linear.
(b) Nonlinear.

The equivalent resistances Geq for L and C are given as

GLeq =
1t
2L
, GCeq =

2C
1t
. (20)

Besides linear passive elements, the nonlinear ones, shown
in Fig. 6(b) also appear in the electrical network often,
such as surge arrestor, nonlinear L and C, for which the
voltage and current relation is defined by a nonlinear
function

f (v, i) = 0 (21)

instead of linear Ohm’s law. Thus, a Newton type iteration
method is involved to find their solutions. After the Jacobian
matrix JFv of the nonlinear system F is updated by partial
derivative of unknown voltages v, the next approximate solu-
tions v(n+1) can be solved as

JFv (v
(n)
− v(n+1)) = F(v(n)) (22)

where v(n) are the current approximation. The iteration is
repeated until v(n+1) or F(v(n+1)) is converged.

F. AC/DC CONVERTER
The structure of modular multilevel converter (MMC),
which consists of a series of submodules (SMs), is shown
in Fig. 7(a). The SM shown in Fig. 7(b) is made of two
sets of IGBT-Diode units and paralleled with a capacitor,
where the power electronic components can be modeled
as functional switches [36] and the capacitor can be rep-
resented as an equivalent voltage source and a resistor as
follows:

vc_h(t −1t) = 2rcic(t −1t)− vc_h(t − 21t), (23)

rc =
21t
C
. (24)

FIGURE 7. AC/DC converter: (a) MMC structure, (b) switch model
of SM, and (c) MMC control scheme.

The control scheme, as shown in Fig. 7(c), includes the
active and reactive power control, modulation signal phase
shifter and amplitude scaling, and capacitor voltage averaging
and balancing control [37]–[39]. The output gate signals,
g1 and g2, are used to control the switches, S1 and S2, in the
SM respectively. Since the gate signals are necessary for
switching in each time-step, the sample rate for the control
logic of MMC is the same with the time-step of the network
solution.

IV. MULTILEVEL SHATTERING NETWORK
DECOMPOSITION
According the characteristics of GPU-based computing
system mentioned in Section II-A, the key point of the par-
allelism is to partition the large system into enough indepen-
dent divisions such that the massive threads can access them
fully, two levels of decomposition, coarse-grained and fine-
grained, are proposed to decompose the large-scale electrical
power circuit. As shown in Fig. 8, the original circuit is
divided into linear subsystems (LS), nonlinear subsystems
(NLS), and control system (CS) in the first-level decompo-
sition by propagation delay based partitioning. In the second-
level, the fine-grained decomposition methods are different
for linear and nonlinear subsystems due to the solution
methods. The linear subsystems are partitioned into linear
blocks (LB) and connecting network (CN) by compensation
network decomposition, through which the linear solutions
can be obtained by solving the open-circuit voltages and
compensation voltages in parallel. For nonlinear subsystems,
the nonlinear components are detached from the network into
nonlinear blocks (NLB) by Jacobian domain decomposition
computed independently in parallel, and then the temporary
results are interfaced to the rest of the connecting network to
find the temporary solutions. Iterations of the above two-step
computations are repeated until the solutions of the subsys-
tems converge. All linear and nonlinear subsystems solutions
are integrated to obtain the final solutions of the large-scale
system.When the sample step arrives, the integrated solutions
are sent to the control block (CB) to obtain the excitation
signals which are fed back to the main circuit for the EMT
computation of next time-step.
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FIGURE 8. Shattering network decomposition.

A. FIRST-LEVEL DECOMPOSITION (COARSE-GRAINED)
Observing the procedure of modeling and discretization,
some components, such as transmission lines and control
systems, have time delays inside or for connecting to exter-
nal components, which provide the native characteristics to
decouple the network based on propagation delay [40].

For example, in ULM of transmission line, the propagation
delay τ in (16) is given as

τ = (β/ω)l =
√
LCl (25)

where β is the phase constant, ω is the angular frequency,
L is the intrinsic inductance, C is the intrinsic capacitance
and l is the length of the transmission line. Similarly the
control system can also be decoupled by1t time delay. Since
the transmission line is one of the essential components,
the large network is partitioned into small subsystems, which
are classified into linear subsystems decomposed into linear
blocks and connecting networks, and nonlinear subsystems
decomposed into nonlinear blocks. In the GPU architecture,
shared memory is much faster than other memory types, so it
is used to store the initial and intermediate data when the
task is dispatched to the CUDA block, and only the result
is sent back to global memory. On the other hand, registers
of CUDA threads have more bandwidth than shared memory
during arithmetic operations. The way to maximize the usage
of registers, reaching the best performance, is to unroll the
for loops in CUDA threads because the registers cannot be
indexed and optimized by GPU automatically, which multi-
plies the workload of each CUDA thread to reduce communi-

cation, overlapmemory access and increases occupation [41].
Since the general electrical network is 3-phase, the number of
operations is multiples of 3 normally.

Considering the number of threads per CUDA warp,
the amount of shared memory per CUDA block and the
number of registers per CUDA thread, which are the fun-
damental criterions of determining the subsystem partition
granularity, the node limitation of each network block is set
to 12 (4×3-phase buses) and the unroll factors can be 2,
3 or their multiple. Therefore, the subsystems with less than
12 nodes can be sent to GPU directly as network blocks.

B. SECOND-LEVEL DECOMPOSITION (FINE-GRAINED)
In contrast, the subsystems with more than 4 buses will
be divided into smaller blocks by fine-grained methods:
compensation network decomposition for linear networks,
and Jacobian domain decomposition for nonlinear networks
respectively.

1) COMPENSATION NETWORK DECOMPOSITION
Considering the N -node sparse linear system (26) obtained
using nodal analysis

Yv = i (26)

which can be rewritten as

Y ′ · v = i+ i′. (27)

The skipped sparse elements of Y , ignored in Y ′, represent
the network components connecting between the blocks of
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subsystems. The injecting currents i′ on RHS of (27) can be
expressed by the B branch currents I of those components

i′ = cI (28)

where the N × B matrix c indicates the connecting relations
of the skipped components, whose element is just one among
−1, 1 and 0 depending on the existence and direction of
those currents. Similarly, the potential difference E across
the connecting components can also be defined by the node
voltages as

E = dv (29)

where the B× N matrix d is also a sign matrix. Inverting the
Y ′ of (27), the solution v has two parts, open circuit solutions
v and compensated solutions v′, defined as

v = v+ v′ = (Y ′)−1i+ (Y ′)−1i′. (30)

The open circuit solutions v can be directly solved in parallel
with

v = (Y ′)−1i (31)

since Y ′ is in block format. Applying Ohm’s Law to the
connecting components, we obtain

ZI = E = dv = −cT v (32)

where Z is a B-order diagonal impedance matrix of the
connecting components. Define an intermediate impedance
matrix as

Z′ = Z+ cT (Y ′)−1c (33)

and then the compensation solutions v′ can be obtained from

v′ = −(Y ′)−1c(Z′)−1cT v. (34)

The compensation network decomposition partitions the sub-
system into fine blocks (Fig. 9) and sparse admittance matri-
ces are decoupled; therefore, the GPU-based dense direct lin-
ear solution algorithms, including matrix LU and inverse, can
be implemented to solve the decomposed system in parallel
without iterations.

FIGURE 9. Compensation network decomposition for LS.

2) JACOBIAN DOMAIN DECOMPOSITION
For the solutions of nonlinear subsystems, Newton-
Raphson (NR) iteration method is applied. If there is
only a nonlinear component in the subsystem, NR will
involve all components in it theoretically. However, the large
sparse Jacobian matrix will impact the solution conver-
gence and the application of parallelism. Therefore, Jacobian
domain decomposition method is proposed to decouple the
nonlinear elements into nonlinear blocks, as shown in Fig. 10.

FIGURE 10. Jacobian domain decomposition for NLS.

A subsystem with M nonlinear components is decomposed
into M nonlinear blocks. For the NLBk (k = 1, 2, · · · ,M ),
The nonlinear components can be expressed by a set of
equations given as

f k (νk , ιk ,χk ) = 0 (35)

where νk are the node voltages, ιk are currents connecting
to the subsystem, and χk are all internal variables of the kth
block, which may be any internal voltages, currents, fluxes,
etc. bonded with nonlinear relations. On the other hand,
the linkages of the block in the subsystem can be described
by a set of linear equations given as

gk (ν, ι) = 0 (36)

where ν are the set of connection node voltages of all non-
linear blocks of the subsystem, and ι are connection node
currents similarly. For the kth block, ν and ι can also be
rewritten by νk , ιk and their complementary νck , ι

c
k . Since (36)

is linear, gk can be reformatted as gk for the node currents ιk
represented as

ιk = gk (νk , ν
c
k , ι

c
k ). (37)

Substituting (37) into (35), the nonlinear equations are
updated as

f k (νk , ν
c
k , ι

c
k ,χk ) = 0 (38)

which can be solved for νk and χk using NR method. The
Jacobian matrix is given as

J (n+1)k =
df k (ν

(n)
k , ν

c(n)
k , ι

c(n)
k ,χ

(n)
k )

d[νk χk ]
(39)
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FIGURE 11. Fine-grained EMT simulation work flow.

where νck and ιck are the connection interfaces of other blocks
inserted by the values of previous iteration. In this way, all
nonlinear blocks are calculated independently and in parallel.
When the new connection node voltages of all blocks are
found, the node currents can be updated by (37), a part of
which will be the connection voltages νc and currents ιc

for other blocks used in the next Jacobian matrix update.
In contrast to the traditional NR method, the connection node
voltages and currents of all blocks are interchanged with
others to update the Jacobian matrix for the next iteration
according to domain decomposition theory [42], [43]. The
final solution for the subsystem can be found when all blocks
have converged.

V. MASSIVELY PARALLEL IMPLEMENTATION ON
MULTIPLE GPUs
The proposed fine-grained EMT simulation is implemented
on a CPU-GPU heterogeneous platform. Considering the
64-bit double precision performance, which is used across
the simulation, two Pascal architecture (GP104) NVIDIAr

GPUs are mounted into the Intelr Xeonr E-2620 server
with 32 GB memory running Windows 7 Enterprise
64-bit OS.

As shown in Fig. 11, the simulation starts with loading
the netlist including the network connections and parameters,
from which the topology of the network can be analyzed
to find the boundaries of propagation delay for the first-
level decomposition, such as transmission lines and control

systems. The large network is then divided into subsystems
by coarse-grained decomposition, and the bus node system is
also rebuilt according to the new topology. After separating
linear and nonlinear subsystems, they are partitioned into
small linear blocks and nonlinear blocks with fine-grained
decomposition methods as described in Section IV-B. The
bus node numbers have to be remapped again to guarantee
the admittance, and the resulting Jacobian matrices will be
block diagonal. At this time, all the detailed component mod-
els including frequent-dependent line model are specified,
the data structures on both host (CPU) and device (GPU) are
determined and all necessary data are transfered from the host
to the devices when the entire simulation process is branched.
One GPU is responsible for linear blocks and the other takes
charge of nonlinear blocks. Every component model listed
in Section III is represented by a module, consisting a set of
CUDA kernels, as well as solution methods, such as matrix
operators, linear and nonlinear solvers [16]. According to
the communication avoiding parallel theory in numerical
linear algebra [44], in order to increase the register utilization
inside each thread and minimize the data exchange between
memories, the kernels are designed in small scale for limited
register resource, the for loops are unrolled to make more
data cached and individual thread work load is increased to
extend the data lifetime inside the thread. Therefore, the per
thread throughput is amplified, while the device occupancy
per kernel is lowered, which can be compensated by kernel
concurrent execution.
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a: LINEAR SIDE
The component modules are applied to compose the admit-
tancematrixY ′ and initial inputs i in (27). Due to the indepen-
dence of component modeling, all classified modules can run
in parallel on the GPU. Since the optimized sparse admittance
matrix Y ′ is decoupled, the open circuit linear solutions v
for all blocks run in parallel as well using (31). After all
compensation voltages v′ are solved by (34) at the same
time, the solutions of linear blocks are found, which are then
integrated to the solutions of the large system.

b: NONLINEAR SIDE
Since all nonlinear components are decoupled by Jacobian
domain decomposition, the NR iterations are processed for
all nonlinear blocks independently. The Jacobian matrices are
composed by (39) with the updated nonlinear equations f
created during decomposition. When the next step voltages
ν
(n+1)
k for each blocks are solved, the node currents ι

(n+1)
k can

be obtained by the updated linkage functions g in (37). They
are interchanged among the blocks to update the connection
voltages and currents for the next iteration. The parallel
nonlinear solvers are synchronized when all solver loops are
converged, and the results are sent to the host side as the other
part of the system solution.

Combining the linear and nonlinear parts solutions,
the large network system solutions for one time-step are
found. Before approaching the next time-step, the synchro-
nization of control system and EMT network is checked on
the CPU, and if ‘Yes’, the control system solution will be
calculated for the next EMT time-step. In order to parallelize
the tasks with various algorithms that cannot be contained in a
same kernel with different blocks, and cover the data transfer
time between host and device, multiple streams are used to
group independent kernels. As shown in Fig. 12, the depen-
dent kernels, such as a set of kernels for a component module,
are assigned to the same stream, which are executed in serial,
while the kernels in different streams are independent without
any data or procedure interference. Firstly, the data for each

FIGURE 12. Concurrent execution with multiple streams.

stream are copied from host to device costing ti; then the
set of kernels belonging to the stream are executed in texe;
lastly, the results of the stream execution are copied back to
host consuming to. The data transfer cost can be effectively
covered only if texe > (ti+ to), which is scheduled delicately.
In addition, the execution of streams can also be concurrent
when the GPU hardware still has enough resources available,

which increases the overall occupation of GPU since the
kernel are designed with low occupancy.

VI. SIMULATION CASE STUDIES
In order to show the accuracy of transients, and the accelera-
tion for the proposed simulator, three test cases are utilized.

In the first test case, various transient behaviors are pre-
sented, and the simulation results are validated by the EMT
software ATP and EMTP-RVr. In the second test case,
the accelerating performance of GPU, whose execution times
on various system scales are compared to those EMTP-RVr,
is shown and analyzed by running the EMT simulation on the
extended large-scale power systems.

In the last test case, the 3-phase modular multilevel con-
verter (MMC) based AC/DC converter is simulated and com-
pared with different submodule levels. The hardware and
software environment of the test system is listed in Table 1,
and the parameters for the test cases are given in the
Appendix.

TABLE 1. Test system specification.

A. CASE STUDY A
The synchronous machine (SM), two transformers (T1, T2)
and the arrester (MOV) are nonlinear components in the test
system, as shown in Fig. 13. The first switch (SW1) closes at

FIGURE 13. Single-line diagram for Case Study A.

0.01s, the ground fault happens at 0.15s, and then the second
switch (SW2) opens at 0.19s to clear the fault. The total
simulation time is 0.3s with 20µs time-step.

The 3-phase voltages at Bus2 and Bus3, currents through
Bus2, power angle, electromagnetic torque, active power and
reactive power are shown in Fig. 14, where both voltage
and current waves illustrate good agreement with ATP and
EMTP-RVr.

B. CASE STUDY B
In order to show the acceleration of GPU based EMT simula-
tion, large-scale power systems are built, which are based on
the IEEE 39-bus network as shown in Fig. 2(a).
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FIGURE 14. Simulation results of Case Study A, including three-phase Bus voltages, branch currents, angles, torques, active power,
and reactive power, compared among GPU-based simulation, EMTP-RVr, and ATP. (a) Bus2 voltages from GPU-based simulation.
(b) Bus2 voltages from EMTP-RVr. (c) Bus2 voltages from ATP. (d) Bus2 currents from GPU-based simulation. (e) Bus2 currents from
EMTP-RVr. (f) Bus2 currents from ATP. (g) Angle and torque from GPU-based simulation. (h) Angle and torque from EMTP-RVr.
(i) Angle and torque from ATP. (j) P and Q from GPU-based simulation. (k) P and Q from EMTP-RVr. (l) P and Q from ATP. (m) Bus3
voltages from GPU-based simulation. (n) Bus3 voltages from EMTP-RVr. (o) Bus3 voltages from ATP.
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Considering the interconnection is a path of power grid
growth, the large-scale networks are obtained by duplicat-
ing the Scale 1 system and interconnecting by transmission
lines; nevertheless, the proposed shattering decomposition
method is applicable to general large-scale power systems.
As shown in Table 2, the test systems are extended up to
3×79872 (239616) buses. All networks are decomposed into

TABLE 2. Comparison of execution time for various networks
among CPU, single-GPU, and multi-GPU, for simulation
duration 100ms with time-step 20µs.

LBs, NLBs and CBs after fine-grained decomposition in the
unified patterns. For instance, the 39-bus network is divided
into 28 LBs, 21 NLBs and 10 CBs. The simulation is based
on CPU, 1-GPU and 2-GPU computational systems from
0 to 100ms with 20µs time-step respectively, using double
precision and 64-bit operation system. All test cases are
extended sufficiently long to suppress the deviation of the
software timer, which starts after reading the circuit net-list
and parameters, including network decomposition, memory
copy, component model calculation, linear/nonlinear solu-
tion, node voltage/current update, result output and transmis-
sion delay.

The scaled test networks are given in Table 2, includ-
ing network size, bus number and partition. The execution
time for each network is listed in order of network size
and categorized by the type of computing systems as well
as the speedup referred to the performance on CPU. In the
plotted Fig. 15 along the 1-GPU speedup curve, the speedup
increases slowly when network size is small (lower than
4 scales) since the GPU cannot be fed enough workload; for
the network scale from 4 to 32, the acceleration climbs fast,
showing the computational power of the GPU is released by
fetching a greater amount of data; when the network size is
more than 32, the performance approaches a constant since
the computational capability of GPU closes to saturation.
In the case of 2-GPU system, the trend of speedup increase is
similar to the 1-GPU case except that the saturation point is
put off because of the doubled computational capability.

Due to the nonlinear relationship of the execution time
to the system scale, the bar diagrams of execution times
for various system scales are zoomed using a logarithmic
log axis to obtain a detailed view. Additionally, it can be
noticed that the performance of CPU is also enhanced by
the proposed decomposition method since the divided circuit

FIGURE 15. Execution time and speedup for varying scales of
test networks on CPU, one GPU, and two GPUs-based programs
compared to EMTP-RVr.

blocks simplify the sparse data structure to dense one along
with the increasing system scale, thus the systems can be
solved by dense solver and avoid the extra cost of dealingwith
the sparse structure, such as nonzero elements analysis, which
is involved in every solution. In that case, the computation
load is almost linearly related to the system scale comparing
with the nonlinear traditional sparse solver. Owing to the
shattering network decomposition, the computation load can
be well-distributed to each compute device so that the overall
performance of a computing system is decided by the number
of processors, following the Gustafson-Barsis’ law [46]. The
average execution time for one time-step is listed in Table 3
due to the different convergent speed of each time-step.

TABLE 3. Average execution time (ms) for one time-step.

FIGURE 16. Single-line diagram for Case Study C.

When the network scale is up to 211 (2048), which is close to
the memory limitation of the computing system, the 2-GPU
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FIGURE 17. Simulation results of Case Study C, including three-phase output voltages, SM capacitor voltages, output currents, power,
and reactive power, from GPU-based simulation with 8-SM per arm (17-level) MMC. (a) Three-phase output voltages of 17-level MMC
from GPU-based simultion. (b) SM capacitor voltages of 17-level MMC from GPU-based simultion. (c) Three-phase output currents
of 17-level MMC from GPU-based simultion. (d) Zoomed output voltages of MMC. (e) Zoomed SM capacitor voltages of MMC. (f) Active
and reactive power control.

TABLE 4. CPU and GPU execution times of three-phase AC/DC
converter for 0.5s duration with 10µs time-step.

system doubles the performance of the 1-GPU system and
attains 30 times faster than EMTP-RVr.

C. CASE STUDY C
The AC/DC converter based on MMC, as shown in Fig. 16,
is used to evaluate the power electronic type of switching
in GPU-based EMT simulation. Due to the proposed fine-
grained decomposition algorithm, all 6 arms in 3-phaseMMC
are decoupled and each SM in one arm is processed by one
thread. The waveforms in Fig. 17 show the EMT simulation
results of the converter with 8 SMs per arm (17-level) MMC
with 10µs time-step. The 3-phase output voltages of MMC
are shown in Fig. 17(a) and zoomed in Fig. 17(d) between
56ms to 59ms; the capacitor voltages of upper and lower arms
of SMs in MMC are shown in Fig. 17(b) and the waveforms
inside the marked area on upper arm curves are zoomed
in Fig. 17(e) between 53.2ms and 54.8ms; 3-phase output

FIGURE 18. Execution time and speedup of simulation for
varying levels of MMC on CPU, one GPU, and two GPUs-based
programs.

currents are shown in Fig. 17(c); active and reactive power
control results are shown in Fig. 17(f), which correctly follow
the reference P and Q signals.

The performance of GPU-based massively parallel EMT
algorithm with the proposed fine-grained decomposition is
compared to CPU-based simulation by varying the number
of SMs per arm in MMC. The execution times from CPU,
1-GPU and 2-GPU based simulation of 3-phase MMC con-
verter with a 10µs time-step during 0.5s simulation are listed
and compared in Table 4 from 8 SMs per arm (17-level)
to 1024 SMs per arm (2049-level) in MMC. In Fig. 18,
the bar graph shows the comparison of execution among
various computational platforms and curves illustrate that the
speedup keeps increasing along with the number of SMs in
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MMC, which is close to 51 times for 1-GPU platform and
reaches 64 times for 2-GPU platform compared to the single
thread CPU simulation. It is obvious that the execution time is
almost doubled when the number of SMs in MMC is doubled
on CPU-based simulation; however, it grows much slower for
GPU-based simulation. Since the increase of speedup is close
to linear, the computational complexity order of the EMT
simulation is reduced effectively by the massively parallel
computation on the GPUs.

VII. CONCLUSION
Electromagnetic transient simulation of large-scale nonlinear
power grids is computationally demanding, and it is there-
fore imperative to accelerate the simulation which is used to
conduct a wide variety of studies by electric utilities. The
shattering network decomposition methods proposed in the
paper

partitions the power electrical circuit, decouples the linear
and nonlinear solution, and accelerates the power electronic
converter circuit simulation working with high frequency
switching, which enables the transient simulation to take
advantage of massively parallel computing platform conve-
niently and unleashes the computational power of GPUs.
All the component models employed are detailed and the
solution is fully iterative. Along with the increasing scale,
fully decomposed simulation can be easily deployed on to
multi-GPU computing system and implement the massively
parallel algorithms, so that the maximum performance of
simulation can be obtained according Gustafson-Barsis’ law.

APPENDIX A
The parameters for Case Study A are as follows:

1) Synchronous machine parameters: 10MVA, 3.5kV,
Y-connected, field current: 5A, 2 poles, 60Hz, moment
of inertia: 4Mkg·m2/rad and damping: 50kg·m/s/rad.

2) Transmission line parameters: Line1: three conductors,
resistance: 0.0583/km, diameter: 3.105cm, line length:
50km; Line2: three conductors, resistance: 0.0583/km,
diameter: 3.105cm, line length: 150km. Line geome-
try: flat horizontal phase spacing; horizontal distance
between adjacent phases = 4.87m; vertical distance:
phases a to ground, c to ground = 30m, phase b to
ground = 28m, and shield wire to tower arm = 6m.

3) Transformer parameters: T1: 10MVA, 3.5kV/22kV,
Xleakage = 6.89e−3pu, Y-Y connection; T2: 10MVA,
22kV/3.5kV, Xleakage = 0.192pu and Y-Y connection.

4) Arrester parameters: Vref = 5kV, multiplier(p) =
1.1 and exponent(q) = 26.

5) Loads parameters: R = 1k� and L = 1mH .

The parameters for the Scale-1 39-bus test system of
Case Study B are as follows:

1) Synchronous machine parameters: 1000MVA, 22kV,
Y-connected, field current: 2494A, 2 poles, 60Hz,
moment of inertia: 4Mkg·m2/rad and damping:
6780kg·m/s/rad.

2) ULM transmission line parameters: Line 1 - 35: three
conductors, resistance: 0.0583/km, diameter: 3.105cm,
line length: 50km (Line 5, 6, 7, 8, 15, 16, 18, 19, 23,
27, 29, 30, 31, 35), 150km (Line 2, 3, 4, 9, 10, 11, 13,
14, 20, 21, 22, 24, 25, 26, 32, 33) and 500km (Line 1,
12, 17, 28, 34). Line geometry: flat horizontal phase
spacing; horizontal distance between adjacent phases
= 4.87m; vertical distance: phases a to ground, c to
ground = 30m, phase b to ground = 28m, and shield
wire to tower arm = 6m.

3) Transformer parameters: 1000MVA, 22V/220kV,
Xleakage = 9.24e−3pu and Y-Y connection;

4) Loads parameters: R = 1k� and L = 1mH .
The parameters for MMC of Case Study C are as follows:
1) MMC parameters: DC voltage Vdc = 1kV, arm induc-

tance La=Lb=Lc = 150mH, SM capacitance Cm =
4mF, carrier frequency fc = 2500Hz, system frequency
fs = 60Hz.

2) AC Source parameters: transformer reactance XT =
1.88�, Vs = 1kV, Rs = 5�.
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