
IEEE Power and Energy Technology Systems Journal

Received 23 April 2015; accepted 7 September 2015. Date of publication 6 October 2015; date of current version 11 December 2015.

Digital Object Identifier 10.1109/JPETS.2015.2477598

A Bayesian Approach for Fault Location
in Medium Voltage Grids With

Underground Cables
YU XIANG1 (Student Member, IEEE) AND JOSEPH F. G. COBBEN1,2 (Member, IEEE)

1Electrical Energy Systems Group, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
2Alliander, Arnhem 6812 AH, The Netherlands

CORRESPONDING AUTHOR: Y. XIANG (y.xiang@tue.nl)

This work was supported in part by Alliander N.V.

ABSTRACT This paper proposes a statistical approach for section-based fault location in medium
voltage (MV) grids with underground cables, using Bayesian inference. The proposed approach considers
several important uncertainties in the MV grid, including measurement errors, fault breakdown resistance,
and the inaccuracies of zero-sequence parameters. The approach first obtains the prior distribution of the fault
position from the component failure database, the readings of the transmitted fault indicators, and the relevant
digging activity record. With the estimated prefault grid status and the measured transient voltages/currents,
the posterior distribution is then calculated based on Bayes’ theorem. To solve the problem numerically,
the Monte Carlo integration is applied and a two-step calculation procedure is proposed. Simulations are
performed on a typical European MV feeder to demonstrate the feasibility of the approach. The distribution
grid operators can use the calculated posterior distribution to rank the possible faulted sections and to facilitate
the restoration process, which can reduce the interruption duration of power supply.

INDEX TERMS Bayesian inference, Monte Carlo integration, section-based fault location, transient
measurements, underground cables.

I. INTRODUCTION

WHEN a fault occurs in a medium voltage (MV) distri-
bution grid, the protection relay will clear the fault

and some region will experience power outage. To restore
the power supply, the grid operator needs to first locate
and isolate the faulted section between two MV points of
connection (PoCs). Because the cables in the MV grids are
usually buried underground, traditionally, the grid operator
relies on the readings of the fault indicators along the faulted
feeder. Since the readings need to be retrieved locally, the
fault location is the most time-consuming task during the
restoration process [1].

Several studies aimed to locate the fault efficiently and
accurately. The most common method is to calculate the
fault loop impedance using the measured data of transient
currents and voltages, and to compare it with the preknown
grid model [2]–[4]. It was suggested that only the reac-
tance part is considered due to the presence of the fault
breakdown resistance. The limitation of this type of method

is the difficulty to cope with the uncertainties in the grids.
Zhu et al. [5] analyzed the influence of the uncertainties
and developed an approach to estimate the fault position
range.Mora-Flòrez et al. [6] compared the performance index
of different impedance-based fault location methods.

Other than the impedance-based methods,
Choi et al. [7], [8] presented a method based on a
direct circuit analysis, and enhanced its robustness to
load impedance uncertainty using impedance compensa-
tion with voltage and current measurements. Moreover,
Nouri et al. [9] and Thomas et al. [10] approached the
problem by applying wavelet transform. It has been pro-
posed to measure the time difference between the the trav-
eling waves during the fault. To compare different methods,
Lotfifard et al. [11] developed a systematical approach to rank
the fault location methods qualitatively and quantitatively.

Besides the deterministic methods, statistical methods
have also been proposed to properly consider the
uncertainties. Cormane et al. [12] presented an approach
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using data clustering. Mora-Flórez et al. [13] developed a
statistical classification algorithm based on fuzzy probability
functions to locate single-phase faults. Chien et al. [14]
adopted a Bayesian network on the basis of expert
knowledge and historical data for fault diagnosis. The
Bayesian network imitates the causal relations between
the fault equipment and the evidences of observations,
and gives the possibilities that the failure is on each
equipment.

Due to the high degree of uncertainties in the distribu-
tion grid, the statistical methods proposed by previous stud-
ies managed to solve the fault location problem effectively.
However, the distribution grid operators desire an approach
that considers the specific characteristics of the MV grids
with underground cables. To bridge this gap, in [15], we have
introduced an impedance-based statistical method for fault
location in simple situations. This paper takes a step further,
and presents a fault location approach with Bayesian infer-
ence based on the measured transient electrical quantities
during the fault. It considers the typical uncertainties in the
MV grids, including the measurement errors, the influence of
loads, the dispersed generations (DGs), and the inaccuracies
in the zero-sequence parameters of the cables. The proposed
procedure calculates a ranking of possible faulted sections,
which can be used by the grid operators to facilitate the power
restoration process.

Section II defines the problem of section-based fault loca-
tion and introduces the proposed procedure. In Section III,
the prior distribution of the fault location is calculated
considering the component failure, the transmitted fault
indicators (TFIs), and the digging activities. Section IV
defines the uncertainties as a grid condition vector, and
calculates the posterior distribution. In Section V, the numer-
ical issues are addressed to guarantee that the calculation
can be finished within a reasonable time. To demonstrate the
feasibility of the approach, a case study on a sample grid is
given in Section VI.

II. PROBLEM DEFINITION
A. SECTION-BASED AND POSITION-BASED
FAULT LOCATION
MV distribution grids are usually constructed as a ring or
meshed structure, and operated in a radial structure [16].
In case of a fault, the grid operators will isolate the faulted
section, and reconfigure the grid to restore the power
supply [1]. A reparation activity will be planned to further
examine and repair/replace the faulted cable section.

During the outage restoring procedure, the most time-
consuming task is to find the faulted section along the feeder.
Therefore, instead of locating the exact fault position, the
speed and the accuracy of the section-based fault location
are more of interest for the grid operators. Therefore, this
paper focuses on section-based fault location, and develops
a procedure to give a ranking of possible faulted sections,
which can facilitate the restoring process and minimize the
interruption duration. Due to the time constraint, the pro-
cedure has to rely on the online measured transient data,
e.g., transient fault currents/voltages and/or fault indicator
readings.

The position-based fault location is to locate the exact
fault position during the reparation of the (already isolated
and de-energized) faulted cable section. Without a strict time
limit, more sophisticated offline diagnostic methods are usu-
ally used to locate the exact fault position. In this case, the
(posterior) distribution of the fault position resulted from this
paper’s approach can give an extra indication besides the
offline methods.

B. PROCEDURE DESIGN
The fault location procedure designed in this paper is shown
in Fig. 1. It involves: 1) the preprocessing to acquire the
prior distribution of the fault position; 2) the application of
Bayes’ theorem to calculate the posterior distribution; and
3) the postprocessing to obtain a ranking of possible faulted
sections.

FIGURE 1. Designed fault location procedure.
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In the preprocessing, the prior (marginal) distribution
of the fault position is acquired from various input
data. First, the component failure database determines the
basic fault distribution due to normal component failure.
In addition, the digging activities during the fault and the
relevant digging company reputation should be considered.
Moreover, if the TFIs are present at the faulted feeder, the
range of the possible fault position can be shortened by the
TFI readings.

At the moment before the fault occurs, the prefault grid
status can be obtained from the quasi real-time state
estimation, which has been presented in [17]–[20]. During
the fault, the transient short circuit currents and voltages will
be measured and recorded. Given the measured transients,
the prefault grid status, and the network parameters, the
posterior (conditional) distribution is calculated based on
Bayes’ theorem.

In the postprocessing, the probability that this fault is on
each section is obtained, and a ranking of possible faulted
sections is available for the grid operator to facilitate the
outage restoring process.

III. PRIOR DISTRIBUTION OF FAULT POSITION
In this section, the calculation of the prior distribution is
discussed. The basic distribution of the fault position is
first calculated with the component failure rate, followed
by the consideration of the digging activity and the
TFI system.

A. BASIC DISTRIBUTION WITH MIXED
RANDOM VARIABLE
From the component failure rate database, the basic distribu-
tion of a potential fault position can be calculated. Although
the Weibull distribution is more suitable for the modeling
of component aging, practical experience suggests that only
minority of the faults are caused by aging [21]. Therefore,
this paper adopts the exponential distribution (which is mem-
oryless and has a constant failure rate) to model the failure of
components.

FIGURE 2. Fault: 1) along the cable or 2) at a joint.

If a fault occurs along an MV feeder due to component
failure, as shown in Fig. 2, the breakdown can take place
either: 1) along the cable or 2) at a joint position [15]. The
probability of the fault being at a joint position PJ and along
the cable PC is calculated by

PJ =
NJλJ

LTλ′C + NJλJ
, PC = 1− PJ (1)

where

LT total length of the cable;
λ′C failure rate per length of the cable;
NJ total number of joints;
λJ failure rate of each joint.

The potential fault position L is a mixed random variable,
since it has a discrete part at the joint positions and a
continuous part along the cable. Thus, this paper uses both the
probability mass function (PMF) fL,M (l) and the probability
density function (pdf) fL,D(l) to represent its distribution.
It is reasonable to assume that the basic prior distribution is
uniform, and is shown as

fL,M (l) =

{
PJ/NJ , l ∈ SJ
0, other

(2)

fL,D(l) =

{
PC/LT , l ∈ SL\SJ
0, other

(3)

where

SJ set of all joint positions;
SL = [0,LT ] interval of fault position along the cable.

B. DIGGING ACTIVITY
Besides the faults caused by the component failure, a large
number of faults in theMV grids with the underground cables
are caused by the incautious digging activities damaging the
cable. For each country, a governmental organization usually
manages a digging company reputation database, from which
a (equivalent) failure rate of digging damage by a certain
digging company can be obtained.

If (according to the record) a digging activity is present
during the fault, as shown in Fig. 3, this information should be
considered. In this case, the probability that the fault is caused
by the digging damage PD and by the component failure PB
can be calculated by

PD =
LDλ′D

LDλ′D + LTλ
′
C + NJλJ

, PB = 1− PD (4)

where

LD length of the cable involved in digging;
λ′D failure rate per length for the digging company.

FIGURE 3. Fault position involving digging activity.

Given that the fault is caused by the digging damage, the
pdf of the fault position is calculated by (5). It should be
noted that there is no discrete part (PMF) for the digging
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fault position, since a continuous section of the cable is
involved. Finally, combining the component failure and the
digging damage, the resulted PMF and pdf can be calculated
in (6) and (7)

fL,D(l|dig) =

{
1/LD, l ∈ [LD1,LD2]
0, other

(5)

where [LD1,LD2] is the interval of the cable section involved
in digging

fL,M ,dig(l) = PBfL,M (l) (6)

fL,D,dig(l) = PBfL,D(l)+ PDfL,D(l|dig). (7)

C. TRANSMITTED FAULT INDICATOR
Traditionally, grid operators rely on fault indicators to locate
the faulted section. A fault indicator trips if a large (short
circuit) current has flowed through it. Usually, this reading
is only available locally, while a limited number of fault
indicators are equipped with communication devices, so that
the readings can be retrieved remotely from the control center.

If the TFIs are present along the faulted feeder, the
TFI readings can limit the range of the fault location and,
therefore, influence the prior distribution. As shown in Fig. 4,
NTFI TFIs divide the whole feeder into NTFI+1 subintervals:
SFI,i, i = 1 ∼ NTFI + 1. If the TFI readings indicate that
the fault is within the subinterval SFI,i, the range of the fault
position is shortened, and the PMF and the pdf should be
modified as in (8) and (9). In (8) and (9), fL,M and fL,D should
be replaced by fL,M ,dig and fL,D,dig if a digging activity is
present during the fault

fL,M ,FI,i(l) =

{
fL,M (l)/PFI,i, l ∈ SFI,i
0, other

(8)

fL,D,FI,i(l) =

{
fL,D(l)/PFI,i, l ∈ SFI,i
0, other

(9)

where PFI,i is the marginal probability that the fault is within
the subinterval SFI,i, and is calculated as follows:

PFI,i =
∑

l∈SFI,i
⋂
SJ

fL,M (l)+
∫
SFI,i

fL,D(l)dl. (10)

FIGURE 4. Subintervals divided by TFIs.

If during the fault there are DGs connected along the
faulted feeder, the fault current contribution from the DGs
can trigger the TFIs from the opposite direction, and the
TFI readings can no longer indicate the faulted subinterval.
Therefore, the TFI readings should be discarded in those
cases.

IV. POSTERIOR DISTRIBUTION OF FAULT POSITION
AND RANKING OF POSSIBLE FAULTED SECTIONS
Given the measured fault transient currents/voltages and the
estimated prefault grid status, the posterior distribution of the
fault position is calculated in this section. The measurement
vector and the grid condition vector are first defined, followed
by the application of Bayes’ theorem.

A. MEASUREMENT VECTOR
This paper defines the vector M as the real values of the
measured quantities applied in the analysis. The number of
the dimensions ofM is 9×Nmea, whereNmea is the number of
points along the faulted feeder with transient measurements.
Usually, meters are installed at the beginning of the feeder,
while sometimes, there are additional measured points along
the feeder. The composition ofM for single measured points
is shown in (11), while that for multiple measured points is
the duplication of the corresponding components

M = [Ua,b,c Ia,b,c ϕα]
T (11)

where

Ua,b,c rms values of line-to-ground three-phase
voltages;

Ia,b,c rms values of three-phase currents;
ϕα phase angle vector;
α indication on the type of the fault: 0 for

three-phase fault, 1 for single-phase fault,
2 for two-phase fault, and 3 for two-phase-
to-ground fault.

The phase angle vector ϕα varies for different types of
the faults, depending on how the fault loop impedance is
calculated [4]. Its composition for three-phase, single-phase
(phase A), and two-phase (phases B and C) faults are shown
in (12)–(14), respectively

ϕ0 = [ϕ(Ia/Ua) ϕ(Ib/Ub) ϕ(I c/U c)] (12)

ϕ1 = [ϕ(Ia/Ua) ϕ(Ib/Ua) ϕ(I c/Ua)] (13)

ϕ2,3 = [ϕ(U c/Ub) ϕ(Ib/Ub) ϕ(I c/Ub)] (14)

where ϕ(X/Y ) represents the angle difference between the
phasors X and Y .

Instead of the real values of the measured quantities,
the meter readings only give the measured values (which
include errors). Thus, the vector M̃ is defined as the cor-
responding measured values of M . It should be noted that
the measurement errors of the transient currents and voltages
are usually larger than those of the steady states, because:
1) the transient processes are involved; 2) the higher current
measuring ranges are needed for large fault current; and
3) the current transformers are inclined to be saturated.
Nevertheless, to mitigate the influence of the transient
processes, it has been suggested to pick up the
(current/voltage) values at the moment before the fault is
cleared, when the waveforms are the steadiest [1].
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B. GRID CONDITION
Besides the fault position, a number of other factors have
influence on the measurement vector M . To consider these
uncertainties, the random variable grid condition vectorGc is
defined. It consists of five independent components shown
in (15). The sample space of Gc is defined as �Gc , and its
joint pdf is designated as fGc (gc)

Gc = [Rf Ug SLoad E′DG Z′0]
T . (15)

Rf represents the fault breakdown impedance. It only has
a resistive part, because the reactance of the fault is usually
zero [3]. It can be assumed that Rf follows a uniform distri-
bution between 0 and Rf ,max. Rf ,max is the upper bound of the
breakdown resistance.
Ug, SLoad, and E′DG represent the prefault grid status,

which is obtained through the state estimation. In particular,
Ug is the voltage level of the equivalent external grid,
SLoad is the load vector in the MV grid, and E′DG is the
vector of transient excitation voltage of the DGs with fault
ride through capability. To ensure the numerical stability, with
a given known estimated prefault grid status, the errors of the
state estimation (and the real grid status) can be assumed to
follow the truncated normal distribution.
Z′0 represents the inaccuracies in the zero-sequence param-

eters of the cables. Similarly, given ameasured zero-sequence
impedance per length of the cable, the real Z′0 follows the
truncated normal distribution. Note that this component can
be omitted for nonground faults.

C. CONDITIONAL DISTRIBUTION OF MEASURED VALUE
With L and Gc, the real values of the measured quantity
M can be explicitly calculated (using common short
circuit calculation methods), designated with hα(·, ·), and is
shown as

M = hα(L,Gc). (16)

Given a particular known fault position l and the grid
condition gc, as well as the calculated real-value vector of
the measured quantities m, it is common practice to assume
that the measured value vector M̃ conditionally follows the
normal distribution. The conditional pdf of M̃ is calculated
in (17), where the covariance matrix represents the measure-
ment error

fM̃ (m̃|l, gc) = N(m̃|m,6e) (17)

where

N(·|µ,6) pdf of the multivariate normal distribution with
mean µ and covariance matrix 6;

6e covariance matrix of the measurement error.

D. POSTERIOR DISTRIBUTION OF FAULT POSITION
After measuring the transient voltages and currents during a
fault, a particular instance of the measured value vector is
obtained as m̃∗. To consider the influence of different grid

conditions, the probability density of m̃∗ under the condition
of given l can be calculated through the integral with the
sample space of the grid conditions, and is shown as

fM̃ (m̃∗|l) =
∫
�Gc

fM̃ (m̃∗|l, gc)fGc (gc)dgc. (18)

Since L is a mixed random variable, the calculation of the
marginal probability density of m̃∗ includes a summation and
an integral, using the law of total probability, and is shown as

fM̃ (m̃∗) =
∑
l∈SJ

fM̃ (m̃∗|l)fL,M (l)+
∫
SL
fM̃ (m̃∗|l)fL,D(l)dl.

(19)

Finally, based on Bayes’ theorem, the posterior conditional
PMF and pdf of the fault position L given the measured value
vector m̃∗ can be calculated by (20) and (21), respectively

fL,M (l|m̃∗) =
fM̃ (m̃∗|l)fL,M (l)

fM̃ (m̃∗)
(20)

fL,D(l|m̃∗) =
fM̃ (m̃∗|l)fL,D(l)

fM̃ (m̃∗)
. (21)

In (19)–(21), fL,M and fL,D should be replaced by fL,M ,dig
and fL,D,dig if a digging activity is present during the fault.
Similarly, they should be replaced by fL,M ,FI,i and fL,D,FI,i
when the TFI readings are available and indicate that the fault
is in the subinterval i.

E. RANKING OF POSSIBLE FAULTED SECTIONS
With the posterior distribution of the fault position, the
probability that the fault is in a particular section can be
calculated by (22). By calculating the probabilities for each
cable section, a ranking of possible faulted sections can be
obtained, which can be used by the grid operator to facilitate
the restoring process and to reduce the outage time

Pi =
∑

l∈Si
⋂
SJ

fL,M (l|m̃∗)+
∫
Si
fL,D(l|m̃∗)dl (22)

where

Pi probability that the fault is in section i;
Si position range of section i.

V. NUMERICAL CONCERNS
The analytic mathematical principle of the approach has been
introduced in Sections III and IV. However, in practice, the
grid operator needs to calculate the aforementioned formulas
numerically. To reduce the outage duration, the calculation
should be finished within a strict time constraint, which is
defined as less than 5 min in this paper. The numerical
complexity is, in general, one of the main difficulties when
applying Bayesian inference [22]. To ensure that the proposed
fault location procedure is practically feasible, this section
discusses the related numerical concerns.
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A. MONTE CARLO INTEGRATION WITH INDEPENDENT
IMPORTANCE SAMPLING
Given the measured value vector m̃∗, for each particular
sampling l∗ of the fault position L, the integral in (18)
has to be calculated to obtain the corresponding conditional
pdf fM̃ (m̃∗|l∗). The number of the dimensions of the integral
is the same as the grid condition vector Gc, and is shown as

dim(Gc) = 2+ 2NLoad + 2NDG + 2NCableType (23)

where

NLoad number of MV loads;
NDG number of MV DGs;
NCableType number of cable types in the faulted feeder

(this item can be omitted for nonground
faults).

It is usually not viable to evaluate this high-dimensional
integral using the deterministic methods. Therefore, this
paper applies the Monte Carlo integration with independent
importance sampling [22]. Considering the composition of
the integrand, the pdf p(gc) of the sampling distribution is
chosen to be the same as the joint distribution of the grid
condition vector, i.e., p(gc) = fGc (gc). Because the compo-
nents inGc are independent to each other, it would be feasible
to sample the components individually and to combine them
together. Two types of sampling are involved: 1) uniform
and 2) truncated normal distribution, where the latter needs
special sampling techniques [23], [24].

With NMCI random samples generated, shown in (24),
the numerical approximation of the integral in (18) can be
calculated by (25). With the principles of the Monte Carlo
integration, the error of the approximation decreases
as 1/

√
NMCI, and does not depend on the number of the

dimensions

p(gc)
sampling
−−−−−→ g(1)c , . . . , g

(NMCI)
c ∈ �Gc (24)

fM̃ (m̃∗|l∗) ≈
1

NMCI

NMCI∑
k=1

fM̃ (m̃∗|l∗, g(k)c )fGc (g
(k)
c )

p(g(k)c )

=
1

NMCI

NMCI∑
k=1

fM̃ (m̃∗|l∗, g(k)c ). (25)

B. SAMPLING OF FAULT POSITION AND TWO-STEP
CALCULATION PROCEDURE
For the accuracy and the smoothness of the posterior distri-
bution, it is preferred to calculate its values at the densely
sampled points of the fault position L. On the other hand, for
each sampled point l∗, the time consuming integral in (18)
has to be evaluated. Thus, a proper sampling strategy for L is
essential for the numerical approach, where two important
aspects need to be considered.

1) The joint positions and the edges of the cable section
involved in the digging activity (if present) will lead to
discontinuous or nondifferentiable points in the cumu-
lative distribution function. Thus, these positions are

defined as critical points in this paper, and should be
included in the sampling of L.

2) The posterior PMF and pdf only have significant values
within a limited interval near the real fault position,
while their values at other positions are (near to)
zero. Therefore, it would be inefficient to sample L
homogeneously and to calculate the corresponding
Monte Carlo integration with the same number of
points.

This paper proposes a two-step calculation procedure.
First, the rough posterior distribution is obtained using lower
calculation intensity, followed by a finer calculation within
the 95% confidence interval of L, where the PMF and the
pdf have significant values. The detailed procedure is shown
below:

1) sample L homogeneously with step 0.1 km, and
include all the critical points, with NL1 points in total;

2) given each sampled l∗, calculate fM̃ (m̃∗|l∗), using
NMCI,1 points in the integral;

3) calculate the rough posterior PMF and pdf of the fault
position, and identify the 95% confidence interval;

4) resample L (more densely) in the 95% confidence
interval (also including all the critical points inside the
interval) with NL2 points;

5) given each resampled l∗, calculate fM̃ (m̃∗|l∗), using
NMCI,2 (higher than NMCI,1) points in the integral;

6) combine the results from Steps 2 and 5, and calculate
the final posterior PMF and pdf.

FIGURE 5. Sample 10-kV grid with single feeder.

VI. CASE STUDY ON SAMPLE GRID
A. SIMULATION PARAMETERS
A case study is performed on a 10-kV sample grid with one
MV feeder to demonstrate the feasibility of the fault location
method. As shown in Fig. 5, the feeder has a 10-km cable
and 38 joints. There are 19 MV PoCs, among which
PoCs 7 and 13 are (optionally) connected with DGs. Other
important parameters are shown below.

1) Short circuit capacity of a 10-kV grid: 325 MVA.
2) Cable impedance per length:

a) Z ′1 = Z ′2 = (0.126+ j0.109) � · km−1;
b) Z ′0 = (0.83+ j0.05)± 10% � · km−1.

3) Failure rate:
a) cable: λ′C = 0.025 year−1 · km−1;
b) joint: λJ = 0.007 year−1;
c) digging: λ′D = 0.25 year−1 · km−1.

4) Fault breakdown resistance: Rf ,max = 0.1 �.
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5) Voltage meter, measuring range: 8.66 kV, error: 3%.
6) Current meter (two level):

a) measuring range 1: 1 kA, error 1: 3%;
b) measuring range 2: 15 kA, error 2: 5%.

7) Phase angle meter, error: 10◦.
8) Two-step sampling and Monte Carlo integral:

a) NL1 ≈ 135, NMCI,1 = 1× 104;
b) NL2 = 120, NMCI,2 = 1× 106.

Three measurement scenarios are considered:
1) Scenario 1 is the basic scenario where meters are only
installed at the beginning of the feeder; 2) in Scenario 2,
there is a second measured point at PoC 10, which is 5 km
from the MV busbar; and 3) in Scenario 3, a TFI (instead of
meters) is available at PoC 10. As described in Section III,
Scenario 3 is only applicable for the situations without DGs.

In total, 100 random (fault) cases are simulated for
three-phase fault and single-phase fault, wherein half of the
cases, the digging activities are involved. As a reference,
the fault position is first calculated with the X method (the
method purely using fault-loop reactance). And the ranking
of the possible faulted sections are calculated with Bayesian
inference. The results from both the methods are compared
with the real faulted section.

B. THREE-PHASE FAULT
First, 100 simulation cases with three-phase fault are
executed, with and without DGs. Fig. 6 compares the count
of cases that the calculated faulted section matches the real
faulted section, between the X and Bayesian methods, with
different measurement scenarios.

FIGURE 6. Count of cases that the calculated (ranking of) faulted
section matches the real faulted section, for three-phase
fault (a) without and (b) with DGs.

Regardless of the measurement scenario or the presence
of DGs, the first rank of the calculated faulted sections from

the Bayesian method matches the real faulted section for at
least 75% of all the cases, which is higher than the possibility
of match for the X method. Moreover, the real faulted section
always falls into the top four calculated sections from the
Bayesian method. Therefore, the Bayesian method has a
moderate improvement over the X method.

As for the impact of different measurement scenarios,
one measured point can already achieve reasonably high
accuracy. The additional measured point can improve the
results slightly, while the TFI in the middle point provides
little benefit. Furthermore, the results in the situations with
DGs is better than those without DGs, because the prefault
status (transient excitation voltage) of the DGs are known
to the proposed method. This additional information
(of the extra DG voltage sources apart from the equivalent
external grid) can improve the accuracy of the algorithm in
the Bayesian approach.

C. SINGLE-PHASE FAULT
Fig. 7 shows the results for single-phase fault. In the MV grid
with earthed neutral, the accuracy of the Bayesian method is

FIGURE 7. Count of cases that the calculated (ranking of) faulted
section matches the real faulted section, for single-phase fault,
in the MV grid (a) with earthed neutral and without DGs, (b) with
earthed neutral and with DGs, and (c) with isolated neutral and
without DGs.
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significantly higher than the X method, especially when the
DGs are present. In addition, in the cases without DGs, the
scenario with two measured points has a considerable benefit
for locating single-phase fault. Besides, the simulations are
performed in the MV grid with isolated neutral, where the
X method is not applicable anymore. The Bayesian method
can still locate the faulted section within the top five ranking
for at least 70% of the cases. In addition, in this situation, the
second measured point has reasonable benefit.

The Bayesian method can be especially beneficial for
single-phase fault (which is the most common fault in the
MV grids), as the inaccuracies of the zero-sequence parame-
ters and the errors of the phase angle measurement deteriorate
the results of the X method. Using the ranking of the possible
faulted sections, the grid operator can facilitate the fault
location and reduce the outage time.

D. CALCULATION TIME
The simulation has been executed on a workstation with a
dual-CPU (Intel Xeon E5-2680 v3 [25]) configuration and
128-GB RAM. The algorithm is programmed in Mathworks
MATLAB with 24-thread parallel computing. The average
calculation time of the Bayesian method is shown in Table 1.
Obviously, the calculation time of both three-phase fault and
single-phase fault satisfied the 5-min constraint proposed in
this paper.

TABLE 1. Average calculation time of the Bayesian method.

It should be noted thatMATLAB is an interpreted language
and has generally lower efficiency. When programming the
approach in a fully compiled environment (e.g., C++), even
a shorter calculation time can be expected. Therefore, it can
be concluded that the grid operators can realize the proposed
fault location method within a reasonable calculation time
and at an acceptable cost on hardware/software investment.

VII. CONCLUSION
This paper proposes a section-based fault location procedure
for MV grids with underground cables, with Bayesian infer-
ence. The result of the approach is a ranking of possible
faulted sections. The grid operators can use this ranking to
facilitate the outage restoration process and to reduce the
interruption duration.

When calculating the prior distribution of the fault loca-
tion, the approach considers two types of major root causes
of the faults in the underground cables: 1) component failure
and 2) digging damage. In addition, the TFI readings can limit
the interval of the fault positions. These readings can be espe-
cially useful when multiple branches exist in one MV feeder.

Considering themeasurement errors, the posterior distribu-
tion of the fault position is calculated with Bayes’ theorem.
Besides, other uncertainties in the calculation are charac-
terized as a grid condition vector that consists of fault

breakdown resistance, prefault grid status, and the
inaccuracies of zero-sequence parameters.

To ensure the approach is computationally feasible, two
major numerical issues are addressed. The Monte Carlo
method is applied to calculate the integral on the grid con-
dition vector. Moreover, a two-step calculation procedure
is proposed to ensure the accuracy and the speed of the
calculation.

The results from the case study show that the proposed
approach has a significant advantage over the conventional
impedance-based method for single-phase fault, which are
the most common fault in the MV grids. It also merits mod-
erate improvement for three-phase fault. Furthermore, the
average calculation time is well below the proposed time
limit.

The major advantage of the proposed Bayesian approach
is the ability to integrate various measured data. Therefore,
the accuracy can be improved by adding measured locations
and/or electrical quantities. For future research, the paper
suggests to integrate non-rms measurement quantities, such
as the timing of traveling waves and/or the frequency of
transient components.
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