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Abstract—Traditional Machine Learning (ML) models have had limited success in

predicting Coronoavirus-19 (COVID-19) outcomes using Electronic Health Record

(EHR) data partially due to not effectively capturing the inter-connectivity patterns

between various data modalities. In this work, we propose a novel framework that

utilizes relational learning based on a heterogeneous graph model (HGM) for

predicting mortality at different time windows in COVID-19 patients within the

intensive care unit (ICU). We utilize the EHRs of one of the largest and most

diverse patient populations across five hospitals in major health system in New

York City. In our model, we use an LSTM for processing time varying patient data

and apply our proposed relational learning strategy in the final output layer along

with other static features. Here, we replace the traditional softmax layer with a

Skip-Gram relational learning strategy to compare the similarity between a patient

and outcome embedding representation. We demonstrate that the construction

of a HGM can robustly learn the patterns classifying patient representations of

outcomes through leveraging patterns within the embeddings of similar patients.

Our experimental results show that our relational learning-based HGM model

achieves higher area under the receiver operating characteristic curve (auROC)

than both comparator models in all prediction time windows, with dramatic

improvements to recall.

Index Terms—Electronic health records, COVID-19, machine learning, deep learning,

LSTM, heterogeneous graphmodel, relational learning, embeddings, ICU,mortality
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1 INTRODUCTION

NEW York City (NYC) is one of the hardest hit regions of the
Coronavirus-19 (COVID19) pandemic with over 200,000 cases at
the time of this article. While much has been learned about this

disease since its first appearance, there is much not yet understood.
It is clear that COVID19 is a complex phenomenon with patients
having varied manifestations, long-term outcomes, and systems
affected. While it is imperative that we learn as much as we can
about this disease as quickly as possible, one of the major issues is
that these types of data are difficult to acquire especially in con-
junction with patient outcomes. Electronic Health Records (EHR)
are a collection of data that relate to patient interactions with a
health system, such as lab test results, and have been critical in
studies of health effects of COVID19 [1], [2], [3], [4] [5], [6]. Compu-
tational data science strategies, especially machine learning (ML),
have been deployed to make use of EHR data to aid the clinical
process for COVID-19 in key areas such as rapid diagnosis [7], bio-
marker identification [8], and outcome prediction [9], [10] among
many others. While these efforts have met with success, more and
more data are being compiled of various modalities that relate to
these phenotypes, spanning molecular and clinical features of dif-
ferent types such as cell counts, images, viral load, genomics,
among others. In order to truly leverage this massive amount of
multi-omic data, standard ML advanced methodologies may not
be sufficient. Graph models such as knowledge graphs [11], [12]
and graph neural networks [13] are known to better capture the
complex interplay between various feature types and can enhance
learning within multiple domains [14]. To date, there have not
been many studies that have attempted to used graph models for
representational learning in the context of COVID19. Ray et al.
used Graph AutoEncoders to predict possible drug targets [15];
Wang et al. built a knowledge graph to identify drugs to repurpose
for COVID19 [16]; and Kapoor and Ben et al. [17] built graph neural
networks on county level US population data to forecast the spread
of COVID19.

To our knowledge, there are no studies which leverage the rich
EHR patient data from a diverse and highly affected population
within a graph model framework for predicting clinically-relevant
COVID19 outcomes. In this work, we are the first to develop a
novel relational learning strategy using a heterogeneous graph
model on EHR data using various clinical features for this purpose.
We built this framework to predict mortality at various time frames
starting from transfer to an intensive care unit (ICU) using data for
over a thousand COVID19-positive patients from five hospitals
within NYC. We show that this strategy outperforms baseline
models and is extensible for future incorporation of other relevant
data types like images and clinical text.

2 PRELIMINARIES

In this section, we introduce some preliminary definitions and con-
cepts that are crucial for constructing our relational learningmodel.

Definition 1 (Heterogeneous Network). A heterogeneous network
is defined as a graph G ¼ ðV;E; T Þ, where each node v and each link e
are represented by their mapping functions to a specific node and rela-
tion type fðvÞ : V ! TV and fðeÞ : E ! TE . Where TV and TE denote
the sets of node and relation types, and jTV j þ jTE j > 2.

Definition 2 (Heterogeneous Graph Learning). Given a heteroge-
neous networkG, the task of heterogeneous graph learning is to learn a
function mapping f : V ! Rd, that connects disparate type of nodes
into a d� dimensional uniform latent representation X 2 RjV j�d,
and d � jV j, that are able to capture the structural and semantic rela-
tions between them.

Definition 3 (One-hop Connectivity). One-hop connectivity in a
heterogeneous network is the local pairwise connection between two
consecutive vertices, which directly linked by an edge belongs to a rela-
tional type.
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Definition 4 (Two-hop Connectivity). Two hops connectivity
between a pair of vertices in a heterogeneous network is the local con-
nectivity between their one-hop neighborhood; it is determined by
whether there is edge connection between their one-hop neighborhood.

2.1 Skip-Gram Model

The skip-gram model [18] seeks to maximize the probability of
observing the context neighborhood nodes given the center node:

maxf
X
u2V

log PrðNcðuÞjfðuÞÞ: (1)

Where NcðuÞ is the neighborhood context nodes of the center node
u, and fðuÞ is the latent representation of u.

2.2 Heterogeneous Skip-Gram Model

Patient data is heterogeneous, including various type of vertices,
such as lab tests, diagnoses, vital signs, and patient demographics.
Each of these vertices encodes different information. A Heteroge-
neous Skip-gram model [19] learns the latent expression of these
different type of nodes by maximizing the probability of observing
heterogeneous neighborhood given a center node:

max
X
u2V

X
t2TV

log PrðNtðuÞjfðuÞÞ: (2)

Where NtðuÞ is the heterogeneous neighborhood vertices of center
node u, and t 2 TV is the node type.

2.3 TransE

The TransE model [20] aims to relate different type of nodes by
their relationship type. Specifically, two different types of nodes
that are connected by a relationship type would be represented as
a triple (head, relation, tail), denoted as ðh; l; tÞ. For example, one
triple from clinical data could be ðpatient; diagnosed; diseaseÞ,
where patient is the head node, disease is the specific diagnosis
attributed to the patient, and the relation between these two verti-
ces is diagnosed.

This TransE model leverages the procedure by first projecting
different type of nodes with different initial representation dimen-
sion into a same latent space (where the dimension of this latent
space can be customized). These two different types of projected
nodes are linked by a relationship type which is represented as a
translation vector in that latent space. Both the projection matrix
and the relational translation vector are learnable parameters in a
machine learning system.

3 METHODOLOGY

In this section, we detail the clinical cohort used for this study along
with data processing procedures and the architecture our relational
learning strategy alongwith the appropriate baseline comparators.

3.1 Clinical Data and Cohort

This study has been approved by the Institutional Review Board at
the Icahn School of Medicine at Mount Sinai (IRB- 20-03271). We
obtained the Electrical Health Records (EHR) of COVID-19 patients
from five hospitals within the Mount Sinai Health System located in
New York City. The EHR data collected contains the following
patient data: COVID-19 status, Intensive CareUnit (ICU) status, dem-
ographics, lab test results, vital signs, comorbid diseases, and out-
come (e.g., mortality, discharge). Lab tests and vital signs were
measured at multiple time points along the hospital course. We
included eight frequently measured vital signs: pulse, respiration
rate, pulse oximetry, blood pressure (diastolic and systolic), tempera-
ture, height, and weight. We also selected 76 lab tests that were both
commonly measured and relevant to COVID-19. For the static

features, we included age, gender, and race as demographics and 12
comorbid diseases: atrial fibrillation, asthma, coronary artery disease,
cancer, chronic kidney disease, chronic obstructive pulmonary dis-
ease, diabetes mellitus, health failure, hypertension, stroke, alcohol-
ism, and liver disease. Comorbid diseaseswere considered from their
presence at admission to the hospital and defined via ICD9/10-CM
codes collapsed by Phecode (https://phewascatalog.org/phecodes;
see https://github.com/Glicksberg-Lab/Wanyan-TBD-2020 for full
mappings used). Please also refer to Appendix A, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TBDATA.2020.3048644, for more
details regarding these variables.

For this study, we selected patients who were: COVID-19 posi-
tive (defined by a positive reverse transcriptase polymerase chain
reaction assay of a nasopharyngeal swab), admitted to the hospital,
and transferred to the ICU. Furthermore, we only considered
patients with a completed stay (i.e., those that either died or were
discharged. These filtering steps resulted in 1,269 patients, 328
(25.9 percent) of which died. The cohort breakdown is as follows:
mean age was 62.3 �16:2 std; 784 (61.8 percent) males and 485
(38.2 percent) females; and 341 (26.9 percent) African American,
283 (22.3 percent) White, 50 (3.9 percent) Asian, 537 (42.3 percent)
Other, and 58 (4.8 percent) Unknown race.

3.2 Data Pre-Processing

The lab test and vital sign features were pre-processed to deal with erro-
neous values andvarying scales. For each of these features,wediscarded
measurements that were above 99.5 and below 0.5 percentile from all
training values. We then computed the mean and standard deviation of
each feature and normalized the data by first subtracting themean value
from the measured value then dividing it by the standard deviation. In
thisway,we converteddifferent feature values into same scale.

The initial feature input for vital signal at every time point along
the ICU stay is a vector Xv 2 R8 representing those eight features
(blood pressure is separated into its two constituent components:
systolic and diastolic. Every entry of the vector records the normal-
ized numerical value for a specific value measurement at a specific
time. Similarly, the initial feature input for lab tests is a vector Xl 2
R76 representing the 76 lab test features at a specific time point.

For the static features, demographics consists of three catego-
ries. For Age, we record the actual numerical value for each patient
and normalized it as the same procedure for vital signs and lab
tests. For Gender, we use a two dimensional one hot vector to rep-
resent male or female. For Race, we use a five dimensional one hot
vector to represent the different race groupings. We form a vector
Xd 2 R8 to represent the demographic feature input. For the dis-
ease comorbidty features, we represent it by a 12 dimension one-
hot vector, and concatenate it to the demographics vectors and
finally forms 20 dimensional vectors.

3.3 Using an LSTM Model to Process Longitudinal Data

We applied an LSTM model to deal with the time sequences of
multiple vital sign and lab test data [21]. These data are broken up
by time steps (see below). The utilized mathematical for LSTM
model is as follows:

ft ¼ sðWf � ½ht�1; xt� þ bf Þ
it ¼ sðWi � ½ht�1; xt� þ biÞ
ĉt ¼ tanhðWc � ½ht�1; xt� þ bcÞ
ct ¼ ft 	 ct�1 þ ii 	 ĉt
ot ¼ sðWo½ht�1; xt� þ boÞ
ht ¼ ot 	 tanhðctÞ:

Where xt is the input feature values at time step t, ft is the forget
gate, ct is the cell state, ht is the hidden state, ĉt is the intermediate
cell state unit.
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We use this LSTMmodel to connect patient input features to the
proposed relational learning layer. Since demographic and comor-
bid disease features do not change during the visit timeline they
are not added to LSTM model. Instead, the input to LSTM model is
the concatenation of vital signal and lab test features, which forms
a X 2 R83 input vector. For each time step (two hours) in LSTM
model, we create a time window, every event(measurement for vital
signal and lab test) happened within this time period is recorded in
the concatenated 83 dimensional vector as the feature input in that
time step. For missing measurement values, we pad zeros to those
entries.

For demographic and comorbid disease input features, we apply
a separate fully connected layer to map the demographic input vec-
tor to a latent embedding representation, then concatenate this latent
representationwith the hidden representation from the LSTMmodel
output at the final time step. We then use this concatenated hidden
representation as the final patient representation Xp 2 Rm for rela-
tional learning.We display this procedure in Fig. 2.

3.4 Connecting the Hidden Representation From
LSTMWith a Relational Learning Model

We create a heterogeneous graph model in the final step after gen-
erating the hidden embedding vector from the LSTM model. This
model includes two types of nodes: Outcome and Patient, where the
Outcome node type contains Death and Discharge. We connected
patients who did not survive to the Death node and those who
were eventually discharged to the Discharge node. We specify a
relationship type Outcome to connect Patient node to Death and
Discharge node. With this procedure, we can create a heteroge-
neous graph which can be represented as the following triples:

Patient
Outcome������!Death :

ðPatient; outcome;DeathÞ
Patient

Outcome������!Discharge :

ðPatient; outcome;DischargeÞ:

The Patient node embedding representation Xp is the
concatenated hidden embedding representation introduced in Sec-
tion 3.3. The initial Death and Discharge nodes are represented as
two dimensional one-hot vectors separately, where Xd ¼ ½0; 1� rep-
resentsDeath, andXc ¼ ½1; 0� representsDischarge.

With the type of relationship Outcome, we can construct a het-
erogeneous graph integrating all patient data from our cohort
(Fig. 1). Both Death andDischarge nodes have connections with all
Patient nodes based on their outcome. Through this operation, pat-
terns can be learned between patients that have the same outcomes.

3.5 Embedding the Heterogeneous Graph Model
Into a Latent Space

Nodes from the constructed HGM can be embedded into a shared
latent space using the TransE [20] method (Fig. 2 Right Side). This
model uses a set of 1) projection matrices and 2) relation vectors.
After initialization, projections and translations can be optimized
end-to-end (see section 3.6).

Heterogeneous graph model nodesXp;Xd;Xc are projected into
a shared latent space with trainable projection matrices Wp;Wm

using these nonlinear mappings:

Cp ¼ sðWp �XpÞ
C	

d ¼ sðWm �XdÞ
C	

c ¼ sðWm �XcÞ:
(3)

Where s is a non-linear activation function, Wp 2 Rk�m, Wm 2
Rk�2 are the projection matrix. k is the projected dimension, m is

the dimension of patient embedding representation. Cp; C
	
i ; C

	
d are

the projected latent representations of each type of node. We use
the same projection matrix Wm to project both Death and
Discharge nodes because they both belong to Outcome node type.
Despite the EHR-space using different dimensions for different
node types Xp;Xd;Xc, all nodes types are projected into the same
dimension latent space.

Then we apply translation operations(subtract a relational vec-
tor Rm from C	

d and C	
c ) to semantically translate the projected

embedding representation C	
d and C	

c into the same latent space of
patient embedding Cp:

Cd ¼ C	
d �Rm

Cc ¼ C	
c �Rm

(4)

Where Rm is the relation vectors representing relation type
Outcome connecting patients to Death and Discharge nodes,
respectively. Eq. (4) ensures to use translation relation Rm to fur-
ther translate the projected outcome node latent representation C	

d

and C	
c into the same latent space of patient Cp, so that we can

apply similarity comparisons(inner product) between these two
representations in that latent space. Therefore, Cd and Cc is the
eventual projected medical outcome representation that lies in the
same space with Cp.

3.6 Optimizing the Heterogeneous Graph Model
Embedding

With the projection and translation operations we can convert dif-
ferent types of nodes into the same latent space. We then tune these
parameterized transforms to increase the proximity between those
embedding points whose corresponding graph nodes are often
connected. Specifically, we apply the relational learning strategy:
Heterogeneous Skip-gram optimization [19] using the optimization
model:

max
X
u2V

X
t2TV

logPrðNtðuÞjfðuÞÞ: (5)

Where NtðuÞ is the heterogeneous neighborhood vertices of center
node u, and t 2 TV is the node type. Here, we effectively learn
node embeddings by maximizing the probability of correctly pre-
dicting the center patient node’s associated Outcome node. The
prediction probability is modeled as follow:

PrðctjfðuÞÞ ¼ e~ct �~u

Zu
: (6)

Where ~u is the latent representation of a center patient node u,~ct
is the latent representation of the one-hop neighbor Outcome node
and two-hops neighbors Patient nodes of u, and ~ct �~u is the inner
product of the two embedding vectors representing their

Fig. 1. A HGM constructed to connect patients to death or discharge nodes.
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similarity. Zu is the normalization term Zu ¼ P
v2V e~vt�~u. Where Zu

integrate over all vertices. Therefore, Eq. (5) could be simplified to:

Ls ¼ �
X
t2T

X
u2V

X
ct2NtðuÞ

~ct �~u� logZu

2
4

3
5 (7)

Numerical computation of Zu is intractable for very large
graphs with millions of nodes. So we adopt negative sampling
strategy [18] to approximate the normalization factor, making the
optimization function as such:

Ls ¼�
X
t2T

X
u2V

" X
ct2NtðuÞ

logsð~ct �~uÞ

þ
XK
j¼1

Ecj
PvðcjÞlogsð�~cj �~uÞ
#
;

(8)

where sðxÞ ¼ 1
1þexpð�xÞ , K is the number of negative samples. PvðcjÞ

is the negative sampling distribution. Eq. (8) is the final objective
function we are using for heterogeneous graph learning.

For training the heterogeneous graph model, we first pick the
one-hop neighborhood Outcome node (either Death or Discharge
node) that connects to the center Patient node, then we pick the
two-hop connectivity neighborhood Patient nodes that connects to
the same Outcome node. Note that we connect similar patients
(both died or discharged) through this operation, so we can use
relational learning (heterogeneous skip-gram learning) to propa-
gate information between similar patients, and update the final
patient embedding.

Specifically, for one center Patient node in training, we first pick
the Outcome node the patient connects to (i.e., Death or a
Discharge), From the selected Outcome node, we then uniformly
sample another ten Patient nodes that are two-hops connected to
the center Patient node. In this way, we can connect the center
patient node with highly similar other Patient nodes via their
shared outcome status. For negative sampling [18], we first pick

the Outcome node which the patient does not connect to, then we
perform uniform sampling through all Patient nodes that do not
have two-hops connections with the center training patient node.
Then we project these different nodes into same latent space
through TransE model: after unifying the embeddings for different
node types, each concept is represented as a point in a euclidean
space. In this space we can measure the similarity between any
two points by the angle between vectors between them and the
origin.

4 EXPERIMENT

In this section, we describe the process of performing all experi-
ments, including training and testing procedures and baseline
comparator methods. We used 70 percent from our cohort as train-
ing set and 30 percent as testing set. For all models, we predict the
event outcome at varying lengths of time (time windows) prior to
the event, specifically 6, 12, 24, and 48 hours. These time windows
are broken down by two hour time steps as previously described.

4.1 Baselines

MLP(Multi Layer Perceptron) The first baseline we use is a shallow
neural network with a fully connected layer that connects the fea-
tures with the logit output. We then apply a softmax layer on top
of logit output to predict patient mortality. Since this model does
not utilize time-varying features, we take the mean value of the
vital sign and lab test features along the entire patient’s time line,
and concatenate these with demographic and comorbidity features.

LSTM The second baseline we are comparing is a LSTM model
with softmax layer as the final classification layer. Note that the
LSTM baseline method is the same way in which our relational
learning model deals with multiple time points of vital and lab fea-
tures. The difference is that in our LSTM + HGM, we use a rela-
tional learning layer at the end instead of a softmax layer.

4.2 Experimental Design

Our cohort contained 1,269 patients, with 328 of eventually dying.
As such, we have much more negative labels than positive labels.
A more robust system should be tolerant of this unbalanced class

Fig. 2. Schematic figure for the LSTM + HGM architecture. Multi-time-point features, specifically vital signs and lab tests, are encoded within an LSTM model while static
features (demographics and disease comorbidities) are concatenated within the final layer. Relational learning is then applied to an HGM.

IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 1, JANUARY-MARCH 2021 41



label and be able to predict the minority group labels. As another
challenge, patient data tend to vary in terms of length of stay. For
example, a discharge event could happen as early as a few days or
over a month from transfer to ICU. So when we train the system to
assess risk of death for a certain period given a previous training
time window, events may not always occur in these time frames
leading to spare outcomes. As such, we create different time win-
dows prior to the event (i.e., whether a patient died or was dis-
charged), and use this time window to do prediction on either the
training set or the test set.

We record f1, accuracy, auroc, preciton and recall scores both
for training and test sets to observe different models performance
in various evaluation metrics.

5 RESULTS

In Table 1, we observe that using a relational learning model con-
sistently outperforms all baseline methods with respect to f1, accu-
racy (percentage correctly labeled), auroc score, and recall scores.
The LSTM + HGM f1 scores are consistently 30 to 40 percent higher
than both MLP and LSTMmodels. This increase is due primarily to
the huge increase in performance within recall. The low testing
recall and f1 score for both MLP and LSTM shows the deficiency of
machine learning models that apply per-data training via a final
softmax layer. This procedure updates system parameters in one
training iteration to be independent of other similarly relevant
data. So when the training data class label is very unbalanced,
especially in a situation seen in our COVID19 ICU cohort, these
models tend to overfit to the majority group labels. Therefore, even
though we observe high precision score from LSTM and MLP
model, their f1 score and recall are considerably low, indicating an
inability to capture the risk for death for all patients who will do so.

In contrast, our relational learning layer seen in the LSTM +
HGM model propagates information from similar patients who
both connect to the same outcome node. The Heterogeneous Skip-
Gram learns scenarios that maximize the similarity between
patients that connect to common event (i.e., Death or Discharge)
and meanwhile minimizes the similarity between patients that do
not have connections through common event. This is a good strat-
egy in dealing with situations when we do not have balanced clas-
ses. Similar patients’ pattern information can be shared and
learned via embeddings in addition to their class labels, which
optimizes the learning ability to best find the patterns that discrimi-
nate between different groups and distinguish them.

The ROC curve (Fig. 3) shows the effectiveness of this approach.
Through using all thresholds as classification criteria, the relational

learning model outperforms both baselines to a large degree. It
was interesting to note that a simple MLP model which averages
multiple time points of data performs well in short prediction time
windows, but the performance decrease as the prediction time win-
dow duration increases from the event. In contrast, the LSTM and
LSTM + HGM approaches see improvements in performance as
more longitudinal data is provided to the model.

The precision score from our relational learning model is rela-
tively lower compared to baseline LSTM because we hypothesize
the latter is more overfit to the major class group, leading to a low
false positive rate, while relational learning model predicts more
positive labels overall since it better balances the minor class labels
through information sharing. Despite the somewhat lower preci-
sion scores, this strategy ultimately has much improved overall
accuracy and f1 score.

The training f1 score& accuracy vs epoch plot (Fig. 4) shows
that the relation learning model converges to fixed accuracy and f1
score that is overall higher and did so much quicker, meaning that
the learning strategy is more efficient so that it can quickly reach
optimal point.

6 DISCUSSION

The complex nature and manifestation profiles of COVID-19 sug-
gests the need for machine learning algorithms to appropriately
model the heterogeneous types of patient data for more accurate
predictions. In this work, we sought to predict mortality for
COVID-19 postive patients that were transferred to the ICU. We
hypothesized that a relational learning strategy that also takes into
account the varying and dynamic nature of frequently measured
vital signs and lab test measures would have optimal performance.
As such, we developed a framework that incorporates an LSTM to
model time varying features as well as a relational learning layer
via a HGM. We compared this framework to two relevant baseline
machine learning comparator models, specifically a shallow MLP
and an LSTM with a softmax layer. We performed experiments on
different time windows (e.g., 6, 12, 24, and 48 hours) leading up to
the outcome (i.e., death or discharge, see Table 1, as a way to assess
the different model frameworks ability to predict outcomes using
different amounts of data throughout the time course of the hospi-
talization. We performed this experiment on a large and diverse
cohort from the Mount Sinai Health System, totalling 1,269 patients
from five affiliated hospitals.

In our study there a there were more negative labels (n = 941)
than positive (n = 328) resulting in a class imbalance. Furthermore,
there were challenges in the fact that different time varying

TABLE 1
Evaluation of Different Algorithms on Predicting Risk of Mortality

Lead TimeWindow Training set Test set

f1 accuracy auroc precision recall f1 accuracy auroc precision recall

MLP
6h 0.438 0.784 0.786 0.720 0.295 0.487 0.803 0.766 0.814 0.368
12h 0.435 0.757 0.797 0.719 0.212 0.446 0.748 0.746 0.603 0.322
24h 0.314 0.729 0.809 0.885 0.191 0.269 0.706 0.762 0.705 0.167
48h 0.422 0.759 0.808 0.887 0.214 0.295 0.729 0.775 0.804 0.275
LSTM(softmax)
6h 0.208 0.776 0.681 0.897 0.117 0.205 0.779 0.669 0.882 0.132
12h 0.251 0.764 0.709 0.867 0.147 0.322 0.787 0.689 0.947 0.193
24h 0.248 0.770 0.701 0.861 0.144 0.336 0.787 0.718 0.924 0.204
48h 0.610 0.832 0.806 0.773 0.504 0.585 0.821 0.790 0.737 0.489
LSTM + HGM
6h 0.741 0.871 0.825 0.753 0.743 0.690 0.843 0.821 0.718 0.684
12h 0.801 0.901 0.866 0.832 0.774 0.779 0.887 0.857 0.784 0.776
24h 0.818 0.873 0.861 0.886 0.778 0.781 0.877 0.824 0.778 0.785
48h 0.875 0.935 0.922 0.877 0.874 0.748 0.847 0.879 0.727 0.837

Lead Time Window refers to the amount of time utilized prior to outcome.
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features had different frequencies and compelteness across time.
Regardless, we developed an experimental strategy which lead to
effective utilization of LSTM architecture. Interestingly, the MLP
model was able to achieve decent performance at short time win-
dows prior to the event but its performance dropped as greater
time lengths were added. On the other hand, the performance of
the LSTM models increased when more longitudinal data was
added. Our biggest finding, however, was the huge improvements
in performance by adding a relational learning HGM layer instead
of the traditional softmax to the LSTM models. This performance
was driven by large gains in recall between the two.

Our study had several limitations which need to be addressed.
First, while our cohort is one of the largest and most diverse, it does
consist of patients onlywithin theNewYorkCity region and therefore
our model may not be generalizeable to the outside population. Sec-
ond, we predicted mortality at time windows leading up to the event
and not from onset of transfer. This was based on initial evaluation of

this framework as a proof-of-concept which future work will extend
upon. Third, there are other key clinical variables thatmay be of value
to themodel that were not added based on lack of availability. Fourth,
our models were not assessed using cross-validation. Fifth, while we
believe we have selected appropriate baseline models to compare our
proposed method against, there are many other machine learning
models as well as ways to model time series that our framework
should bemeasured against in futurework.

In our future work, we plan to refine our framework by model-
ing the HGM dynamically over time. We will also use this frame-
work for predicting other highly relevant clinical outcomes, such
as development of acute kidney injury. We also plan on incorporat-
ing other patient data modalities within the relational learning
framework, including electrocardiogram signals in the form of
physiological wave form data, imaging features from x-rays, and
genomics. This framework will also be applied to predict outcomes
of other diseases.

Fig. 3. Testing data ROC curve measurements for different models on different prior time windows

Fig. 4. f1 & accuracy vs training epoch for 6 hour prediction time window.
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In conclusion, we believe this work is one of the first to demon-
strate the utility of relational learning and heterogeneous graph
models in predicting COVID-19 mortality for those within an ICU.
The relational learning strategy employed allowed for better
modeling of the various types of patient data which resulted in
superior performance over relevant baselines. With further testing
and improvements, we hope to be able to test this framework
within hospital operations with the eventual goal of aiding clinical
practitioners’ fight of this pandemic.
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